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under cadmium stress
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3-Ketoacyl-CoA synthase (KCS) is the key rate-limiting enzyme for the synthesis

of very long-chain fatty acids (VLCFAs) in plants, which determines the carbon

chain length of VLCFAs. However, a comprehensive study of KCSs inOryza sativa

has not been reported yet. In this study, we identified 22 OsKCS genes in rice,

which are unevenly distributed on nine chromosomes. TheOsKCS gene family is

divided into six subclasses. Many cis-acting elements related to plant growth,

light, hormone, and stress response were enriched in the promoters of OsKCS

genes. Gene duplication played a crucial role in the expansion of theOsKCS gene

family and underwent a strong purifying selection. Quantitative Real-time

polymerase chain reaction (qRT-PCR) results revealed that most KCS genes

are constitutively expressed. We also revealed that KCS genes responded

differently to exogenous cadmium stress in japonica and indica background,

and the KCS genes with higher expression in leaves and seeds may have

functions under cadmium stress. This study provides a basis for further

understanding the functions of KCS genes and the biosynthesis of VLCFA in rice.

KEYWORDS

rice, very long-chain fatty acids, b-ketoacyl-CoA synthase, gene family, cadmium stress
Introduction

Very long-chain fatty acids (VLCFAs) are molecules with a hydrocarbon chain

containing more than 18 carbon atoms, which are important components of plant cell

membrane lipids, cutin wax, and seed storage lipids (Scott et al., 2022). VLCFAs and their

derivatives play an important role in plant growth and development, signal transduction, and
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adverse stress. Disorders in the expression of genes involved in the

synthesis of VLCFAs lead to phenotypic consequences, ranging from

cell dedifferentiation to embryo lethality (De Bigault Du Granrut and

Cacas, 2016; Zhukov and Popov, 2022). VLCFA exists in cell

membrane phospholipids and sphingolipids, especially in

phosphatidylserine (PS) and phosphatidylethanolamine (PE),

participating in intercellular signal transduction to regulate plant

growth and development (Boutte and Jaillais, 2020). VLCFAs are

precursors of plant cuticle and cutin waxes in epidermal cells, which

attach to plant surfaces and are the first line of defense against

external stresses (Kunst and Samuels, 2003; Li et al., 2018). VLCFAs

can be contained in developing seeds, accounting for up to two-thirds

of the total amount of FA. There, they can be in the composition of

triacylglycerols (TAGs), playing a key role in seed germination

(Cahoon and Li-Beisson, 2020).

The biosynthesis of VLCFA is the elongation of fatty acids from

C18 chains to C26–C34 chains via fatty acid elongase (FAE) complex

in the endoplasmic reticulum (ER); FAE is composed of four major

enzymes such as 3-ketoacyl-CoA synthetase (called as b-ketoacyl-CoA
synthetase, KCS), trans-2,3-enoyl CoA reductase (ECR), 3-

hydroxacyl-CoA dehydratase (HCD), and 3-ketoacyl-CoA reductase

(KCR) (Haslam and Kunst, 2013). In this process, C16:0 or C18:0 or

C18:1, the product of de novo fatty acid synthesis, is used as a substrate,

which is catalyzed through four consecutive reactions in ER, namely,

condensation, reduction, dehydration, and secondary reduction; two

carbons atoms are added in each cycle (Leonard et al., 2004).

There are two types of non-homologous condensing enzymes

involved in fatty acid elongation in organisms: one of these is FAE1-

like 3-ketoacyl-CoA synthases (KCS-type enzymes), and the other is

ELONGATION DEFECTIVE-LIKE proteins (ELO-LIKEs). ELO-

LIKEs are found in many organisms such as humans, plants, and

yeasts, whereas KCSs are only found in plants and protists

(Stenback et al., 2022). Several studies have been performed on

the KCS gene family in plants. There are 21 KCS genes in

Arabidopsis thaliana (Joubès et al., 2008), 26 KCS genes in Zea

mays (Campbell et al., 2019), 30 KCS genes in Arachis hypogaea

(Huai et al., 2020), and 58 KCS genes in Gossypium hirsutum (Xiao

et al., 2016). In Arabidopsis thaliana, 21 members are divided into

four subfamilies according to the amino acid sequence homology:

KCS1-like, FDH-like, FAE1-like, and CER6 (Costaglioli et al.,

2005), and 21 members are classified into eight subclasses

according to their duplication history, genomic organization,

protein topology, and 3D modeling (Joubès et al., 2008).

KCS is not only the rate-limiting enzyme in the elongation

process of VLCFAs but also has substrate specificity and tissue

specificity, which determines the rate of product formation and the

carbon chain length of VLCFA. The function of KCS gene in

Arabidopsis thaliana has been thoroughly studied. For example,

KCS18/FAE1, which is specifically expressed in seeds, catalyzes the

elongation of C18 to C20 and C22 VLCFAs. KCS4 is involved in the

differential accumulation of polyunsaturated TAGs under stress

(Luzarowska et al., 2023). The mutants do not contain C20 and C22

VLCFAs and lead to C18 accumulation (James et al., 1995); KCS2

and KCS20 are highly expressed in root endothelium, mainly

producing C22 and C24 VLCFAs (Lee et al., 2009); KCS5 and

KCS6 (CER6) play important roles in C24–C28 VLCFAs (Millar
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et al., 1999), and KCS3–KCS6 module affects wax synthesis (Huang

et al., 2023); KCS9 was the highest expressed in Arabidopsis stem

epidermal cells, and the C24 VLCFA of the mutant was significantly

reduced (Kim et al., 2013). At present, there are few studies on the

function of KCS genes in rice. SD38 is involved in the elongation of

C24:0 VLCFA, and the mutant plants are semi-dwarf (Zhang et al.,

2022). Two KCS genes, ONI1 and ONI2, were specifically expressed

in the shoot apical meristem, and mutants with abnormal VLCFA

composition resulted in death of plant seedlings (Tsuda et al., 2013).

WSL1 is involved in wax biosynthesis in leaves and leaf sheaths (Yu

et al., 2008; Zhou et al., 2021). WSL4/HMS1 is involved in C22:0

VLCFA elongation; its functional deficiency leads to less wax in

leaves, shorter plants and fewer tillers, affecting the formation of

pollen walls (Gan et al., 2017; Chen et al., 2020).

Cadmium (Cd) is considered as one of the most toxic metals for

plant and can cause severe damage both to environment and

human. The contamination of Cd in Chinese agricultural soils is

quite prevalent, and about a quarter of the soil samples exceed

China’s national standard, which are mainly located in the Yangtze

River Delta (Cheng et al., 2023). The average of Cd content in

brown rice in a survey was slightly higher than milled rice samples

and rice Cd content in 35.1% of total 208 cultivars exceed the rice

Cd limit (0.2 mg/kg), which were collected in South China (Liu

et al., 2023). In many plants, one of the metabolic adaptions to Cd

tolerance is related to modifications of fatty acid; the elongation of

fatty acid is one way of modifications (Zhukov and Shumskaya,

2020). Similar effect of accumulation of VLCFAs was observed in

Noccaea caerulescens and tomato plants (Ben Ammar et al., 2008;

Zemanova et al., 2015).

Genome-wide identification of gene family provides the basis for

further functional analysis. Due to the extensive application of large-

scale plant genome sequencing and bioinformatics technology, KCS

gene families of many species have been identified, but the KCS gene

family members of rice have not yet been identified. More than 3.5

billion people in the world rely on rice as a staple food and livelihood

(Huang et al., 2017). Therefore, in this study, we systematically

identified and analyzed the characteristics of rice KCS gene family by

bioinformatics methods, and the expression levels of OsKCS in

different tissues were also investigated. Under Cd stress, the

expression profiles of OsKCS are different in japonica and indica.

This study provided useful information for further investigating the

molecular functions of KCS genes in rice.
Materials and methods

Plant materials and treatment

In this study, the rice variety is Nipponbare and 9311. Seeds

were rinsed with distilled water, and then germinated at 28°C under

dark conditions. After 48h, seedlings with a root length of

approximately 0.5 cm were moved to hydroponic culture boxes

(day/night temperatures of 28°C/22°C, light/dark photoperiod of

12h/12h, and light intensity of 18,000 Lx). At the one-leaf stage, the

seedlings were treated with nutrient solution. At the two-leaf stage,

Cd stress experiments were performed. The CdCl2 solutions (20
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mmol/L) prepared with nutrient solution were used to simulate Cd

stress, and nutrient solution without CdCl2 was used as the control.

After 3h and 6h of treatment, seedlings were selected for each

sample, and quickly stored at -80°C until analysis. The experiment

was performed in triplicate.
Identification of KCS genes in rice

In order to identify and characterize KCS gene family in rice

genome, gff3, proteins, CDS, and genome files were downloaded

from Ensembl Plants (http://plants.ensembl.org/Oryza_sativa/Info/

Index). Twenty-one identified KCS protein sequences of

Arabidopsis thaliana were downloaded from Arabidopsis genome

database TAIR (https://www.arabidopsis.org/). We performed two

methods, which are Basic Local Alignment Search Tool for proteins

(BLASTp) and Hidden Markov Models (HMMER) search tool, to

identify KCS genes in rice genome. The BLASTp (BLAST 2.7.1+)

was performed based on protein homologous alignment with

default mode using the Arabidopsis KCS protein sequences to

obtain the candidate KCS genes in rice genome (E-value < 10−10).

The Hidden Markov Model files corresponding to the conserved

domain (Accession No.: PF08392 and PF08541) were downloaded

from database Pfam (http://pfam.xfam.org/). HMMSEARCH was

used to retrieve rice candidate sequences (E-value < 10−20)

containing KCS conserved domains (FAE1_CUT1_RppA and

ACP_syn_III_C). Results of these two methods were checked and

merged, and the redundancies were manually removed to obtain the

candidate KCS genes in rice. The candidate sequences were

submitted into the NCBI Conserved Domains (https://

www.ncbi.nlm.nih.gov/Structure/bwrpsb/bwrpsb.cgi) and SMART

(http://smart.embl-heidelberg.de/) to confirm the domains in rice

KCS proteins (Letunic et al., 2012).
Physiochemical properties, alignment and
phylogenetic analysis

The OsKCS genes’ physical and chemical properties, namely,

molecular weight (M.W.), amino acid (aa) length, isoelectric point

(pl), instability index, aliphatic index (Ai), and grand average of

hydropathicity (GRAVY) were evaluated by using the ExPASY-Prot

(http://web.expasy.org/protparam/). The phylogenetic analysis was

performed by aligning the KCS protein sequences of rice by MEGA

software. The aligned sequences were subjected to neighbor-joining

(NJ) tree construction using theMEGA software with 1,000 bootstrap

replications and all other parameters were set to default (Hall, 2013).
Chromosome locations, gene structures,
and motif analysis

The chromosome locations and structures of OsKCS genes were

retrieved from rice genome annotation files, and the conserved

motifs of OsKCS protein sequences were predicted by using MEME

(MEME 5.1.0) (Bailey et al., 2009). The OsKCS gene structures,
Frontiers in Plant Science 03
chromosome locations, and conserved motifs were visualized by

TBtools software (Bailey et al., 2009).
Cis-regulatory element analysis
of promoters

The 2,000 bp genomic sequences upstream of the transcription

start site of OsKCS genes were extracted from the genomic DNA

sequences. Since the upstream regions of some genes overlap with

other genes, the upstream regions of these genes were shortened.

The promoter sequences were submitted to the PlantCARE

database (https://bioinformatics.psb.ugent.be/webtools/plantcare/

html/) to predict cis-regulatory elements (Lescot et al., 2002).
Synteny analysis and Ka/Ks
values calculation

The tandem and segmental duplication or whole-genome

duplication (WGD) provides new insights into genes development and

genome progression. The duplication events of OsKCS genes and the

syntenic relationships of KCS genes between rice and maize were

analyzed using MCScanX toolkit (Wang et al., 2012), and KCS

relationships between the target species were visualized by using

Circos (Krzywinski et al., 2009). Nonsynonymous (Ka) and

synonymous (Ks) values and the Ka/Ks ratios of gene pairs were

calculated by ParaAT 2.0 (Zhang et al., 2012) and KaKs_Calculator

(Zhang et al., 2006), Ks value could be used as molecular clock to reckon

the time after gene replication event, Ka/Ks ratio has been used to

determine the type of gene selection during evolution. Ka/Ks = 1,

Ka/Ks > 1, and Ka/Ks < 1 represent natural, positive, and purifying

selections, respectively (Hurst, 2002). The divergence time was calculated

with the formula: T = Ks/r; r = 6.5 × 10−9) (Quraishi et al., 2011).
Gene expression analysis based on
RNA-seq data

To examine the expression pattern of KCS genes under Cd

stress, three RNA samples of Nipponbare and 9311 were sequenced

on the HiSeq 4000 platform (Illumina) for transcriptome analysis

by Novogene Technology (Beijing, China) to obtain clean reads.

Differentially Expressed Genes (DEGs) were identified by a false

discovery rate ≤ 0.05 and an absolute value of the log2 ratio ≥ 1.

Using the RNA-seq data, the absolute FPKM of the OsKCS were

obtained, and the R software was used for statistics and

visualization. Gene Ontology (GO) and Kyoto Encyclopedia of

Genes and Genomes (KEGG) enrichment analysis were

performed by R packages: clusterProfiler.
RNA extraction and qRT–PCR analysis

Total RNA was extracted from different plant tissues using

Trizol reagents (Invitrogen, Carlsbad, CA, USA), RNA was reverse
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transcribed to cDNA using the ReverTra Ace qPCR-RT kit

(Toyobo, Osaka, Japan), and qPCR was performed using SYBR

Green Real-Time PCR Master Mix (Toyobo).
Results

Identification of KCS genes in rice

Twenty-two KCS genes in rice genome were identified after

removing redundant and repetitive sequences from BLASTp and

HMMER results. To explore the phylogenetic relationships of the

KCS family, an NJ phylogenetic tree was constructed using the full-

length protein sequences of 22 OsKCSs and 21 AtKCSs. Results

demonstrated that KCS proteins were classified into eight clades

based on phylogenetic relationship, whereas, KCS proteins in rice

were divided into six subclasses: a, g, d, ϵ, z and h (Figure 1). KCS

genes in rice genome were named OsKCS1 to OsKCS22 according to

their chromosomal locations. GO and KEGG annotation analysis of

the OsKCS genes was performed to further understand the possible

roles of OsKCS genes in molecular function, cellular component,

and biological process at the molecular levels. GO and KEGG

enrichment analysis showed that 22 OsKCS genes were all

enriched in fatty acid biosynthetic process and involved in fatty

acid elongation (Supplementary Table S1). Furthermore, the results

of physiochemical properties showed that OsKCS genes varied in

their properties such as the protein length varied from 271

(OsKCS5) to 542 aa (OsKCS7), as well as the molecular weights
Frontiers in Plant Science 04
ranged from 29.23 to 60.11 kD; the isoelectric point (pI) of OsKCS

proteins also varied ranged from 7.67 (OsKCS10) to 9.81

(OsKCS15), and the protein instability indexes of 11 OsKCS

proteins were smaller than 40, indicating that these proteins are

stable. The remaining OsKCS proteins’ instability indexes were

greater than 40; most KCS proteins are hydrophilic. The KCS genes

with the highest homology to the OsKCS genes and E-values were

obtained in Arabidopsis thaliana (Table 1).
Gene structures and conserved motif
analysis of OsKCS

OsKCS proteins were classified into four main groups

(KCS1-like, FAE1-like, CER6-like, and FDH-like) (Figure 2A).

Most of the OsKCS gene family members contained 1–2

exons, of which 11 OsKCS genes did not contain introns

(Figure 2B). With the exception of OsKCS5, which has only four

motifs, most of the conserved motifs of the OsKCS gene family

members have the same types, numbers, and orders (Figure 2C).

CDD and SMART search tools for domains verification was

used and found that OsKCS proteins contained two domains

such as FAE1_CUT1_RppA [(PF08392) FAE1/Type III polyketide

synthase-like protein domain] and ACP_syn_III_C [(PF08541) 3-

Oxoacyl-acyl-carrier protein (ACP) synthase III C terminal

domain], which were main conserved domains in KCS proteins

(Figure 2D), almost all genes contain these two domains except

for OsKCS12.
FIGURE 1

Phylogenetic analysis of the KCS genes in Oryza sativa (Os) and Arabidopsis thaliana (At) by the neighbor-joining method. The KCSs were clustered
into eight clades; each member of the KCSs was annotated by (★ for Os) and (▲ for At), respectively.
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Cis-regulatory element analysis of OsKCS

A total of 18 cis-regulatory elements were predicted in the

upstream 2,000 bp from the transcription start sites of OsKCSs

(Figure 3), which were widely involved in the growth biological

process, hormonal responsiveness, light responsiveness, and stress

response. A list of genomic location and names/annotations of 22

OsKCSs and the respective upstream genes will be provided to know

whether any of the KCS-upstream gene blocks are paralogous

(Supplementary Table S2). Among them, MYB transcription

factors involved in plant biological process were identified in all

OsKCSs. Four types of hormone-responsive elements were also

found, namely, auxin-responsive elements (TGA-elements) in

nine OsKCSs, MeJA-responsive elements (CGTCA-motif and

TGACG-motif) in 20 OsKCSs, salicylic acid–responsive elements

(TCA-element) in seven OsKCSs, and ABA-responsive elements

(ABRE) in 20 OsKCSs. Furthermore, there were meristem

expression-related elements (CAT-box) in seven OsKCSs and

gliadin metabolism-related elements in seven OsKCSs. The results
Frontiers in Plant Science 05
of cis-regulatory element analysis indicate that OsKCS may be

expressed in different growth environments, hormones, and stress

treatments. However, many motifs have not been functionally

verified, and whether these motifs confer unique functions on

OsKCS remains to be further studied.
Chromosome distribution and synteny
relationship of OsKCS

Except for chromosomes 7, 8, and 12, all of the OsKCS genes

were unevenly distributed on nine of 12 chromosomes (Figure 4A).

The largest number of OsKCS genes (OsKCS5–OsKCS11) appeared

on chromosome 3, followed by chromosomes 2 and 6 (three genes

each), chromosomes 5, 9, and 10 (two genes each). Synteny analysis

was used to understand the evolution and expansion mechanism of

OsKCS gene family in the rice genome and the genomes of other

species. The results of gene duplication analysis indicated that there

were only two OsKCS gene pairs (OsKCS2/OsKCS17 and OsKCS3/
TABLE 1 Characterization of the OsKCS genes and OsKCS proteins.

Gene Locus
Amino acids

(aa)
Molecular
weight (Da)

Isoelectric
point (pI)

Instability
index

Aliphatic
index
(Ai)

GRAVY

Arabidopsis
homologous gene

E-value
Accession

no.
Name

OsKCS1 LOC_Os01g34560 478 52280.7 8.16 35.55 98.18 0.113 AT1G68530 AtKCS6 1.49E-171

OsKCS2 LOC_Os02g11070 519 57689.1 8.96 43.58 93.93 −0.045 AT2G26640 AtKCS11 0.00E+00

OsKCS3 LOC_Os02g49920 501 55267.5 9.42 43.75 93.73 0.022 AT1G68530 AtKCS6 0.00E+00

OsKCS4 LOC_Os02g56860 463 50765.8 8.85 44.75 91.77 −0.028 AT2G28630 AtKCS12 3.51E-149

OsKCS5 LOC_Os03g06700 271 29227.4 9.32 45.95 92.62 0.13 AT2G26640 AtKCS11 2.09E-52

OsKCS6 LOC_Os03g06705 307 33803.3 9.31 40.67 83.88 −0.167 AT2G26640 AtKCS12 3.12E-123

OsKCS7 LOC_Os03g08360 542 60108.5 9.36 48.08 88.58 −0.061 AT2G26250 AtKCS10 0.00E+00

OsKCS8 LOC_Os03g12030 494 55786.5 9.45 43.92 94.74 −0.04 AT1G68530 AtKCS6 0.00E+00

OsKCS9 LOC_Os03g14170 532 59315.0 9.1 32.72 86.56 −0.102 AT1G01120 AtKCS1 0.00E+00

OsKCS10 LOC_Os03g26530 467 50907.7 7.67 38.66 90.54 −0.06 AT2G28630 AtKCS12 3.23E-176

OsKCS11 LOC_Os03g26620 472 52178.6 8.65 46.95 89.56 −0.106 AT2G28630 AtKCS12 5.85E-145

OsKCS12 LOC_Os04g02640 429 47007.9 9.33 38.36 98.41 0.128 AT1G68530 AtKCS6 3.62E-99

OsKCS13 LOC_Os05g49290 514 57427.1 9.23 36.45 95.04 −0.037 AT1G19440 AtKCS4 0.00E+00

OsKCS14 LOC_Os05g49900 520 58046.7 9.41 37.91 92.46 −0.1 AT2G26640 AtKCS11 0.00E+00

OsKCS15 LOC_Os06g14810 527 57414.2 9.81 38.98 87.27 −0.134 AT1G68530 AtKCS6 0.00E+00

OsKCS16 LOC_Os06g15170 494 54249.2 8.47 38.17 95.06 0.148 AT1G68530 AtKCS6 0.00E+00

OsKCS17 LOC_Os06g39750 519 58011.8 9.25 39.76 92.62 −0.088 AT2G26640 AtKCS11 0.00E+00

OsKCS18 LOC_Os09g19650 482 52636.1 9.78 47.99 85.46 0.034 AT4G34510 AtKCS17 8.63E-127

OsKCS19 LOC_Os09g34930 439 47175.6 8.94 28.85 82.73 −0.049 AT1G19440 AtKCS4 3.40E-97

OsKCS20 LOC_Os10g28060 523 56867.1 9.63 32.05 95.37 0.048 AT1G04220 AtKCS2 0.00E+00

OsKCS21 LOC_Os10g33370 465 51550.2 9.5 47.51 88.11 −0.131 AT2G28630 AtKCS12 1.56E-157

OsKCS22 LOC_Os11g37900 432 47165.7 9.15 42.25 86.34 −0.014 AT1G04220 AtKCS2 0.00E+00
fro
ntiersin.org

https://doi.org/10.3389/fpls.2023.1222288
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Yang et al. 10.3389/fpls.2023.1222288
FIGURE 2

The unrooted phylogenetic tree, conserved motifs, and gene structure of OsKCS. (A) The neighbor-joining tree on the left composed of 22 KCS
proteins from rice. (B) OsKCS genes structures: yellow color indicates the exons, the green color shows the untranslated 5′ and 3′ regions.
(C) Conserved motifs were represented via boxes and different colors represents different motifs. (D) The function conserved domains of OsKCS
genes. PF08392: FAE1_CUT1_RppA; PF08541: ACP_syn_III_C; PF08542: ACP_syn_III.
FIGURE 3

Cis-elements found in the promoter region of OsKCS genes. (Left): The number and function classification of cis-acting element in each OsKCS
genes. (Right): Distribution of 18 identified cis-acting elements in each OsKCS; elements are represented by the boxes in different colors.
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OsKCS15), both were segmentally duplicated on chromosomes 2

and 6 (Figure 4B). There were no tandem duplications in tight

regions on chromosomes 3 and 6. Ka/Ks value is used to evaluate

the evolution of coding sequences and determine the type of

selection pressure after duplication. The Ka/Ks values of the two

gene pairs were smaller than 0.05, indicating that these genes had

gone through purifying selection (Supplementary Table S3). The

results of the divergence time indicated that the duplication process

between the segmental OsKCS genes was estimated to be 6 million

years ago, and the evolutionary mechanism of OsKCS was

conserved during evolution. In order to further understand the

evolutionary origins and orthologous relationship of KCS gene

family, the synteny analysis was performed among four

representative plant species (two dicots: Arabidopsis and Glycine
Frontiers in Plant Science 07
max; two monocots: Zea mays and Triticum aestivum) (Figure 5).

Sixteen and 40 orthologous pairs were found between Zea mays and

Triticum aestivum, respectively. Two and 0 orthologous pairs were

found between Glycine max and Arabidopsis, respectively. The huge

differences in homologous gene pairs between dicots and monocots

suggested that KCS genes may be formed after the differentiation of

monocots and dicots.
Expression characteristics of OsKCS

To investigate the rice KCS genes expression patterns in

different tissues of rice plants, we analyzed rice transcript

expression (RNA-seq data) in four different tissues; this included
A

B

FIGURE 4

Chromosome distribution and synteny relationship of OsKCS gene family. (A) Chromosome location of 22 OsKCS genes in rice. (B) Circle map of the
duplication gene pairs of the OsKCS genes. The background gray lines show all the syntenic blocks in the rice genome, and the red lines show the
segmental duplication link regions among OsKCS genes.
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the expression in the root, leaf, panicle, and mature seed

(Supplementary Figure S1). In order to further investigate the

functions of OsKCS genes involved in different developing stages,

qRT-PCR was performed on all KCS gene members (Figure 6).

These results indicated that the predictions of expression profiles of

most KCS genes were consistent with the qPCR data. KCS genes

were specifically expressed in leaves (two genes), stem (six genes),

panicle (three genes), and seeds (11 genes), respectively, and most of

the KCS genes (OsKCS4, OsKCS6, OsKCS9, OsKCS13, OsKCS16,

OsKCS17, and OsKCS22) expressed in seeds were highly expressed

in the early stage of growth and development, suggesting that these

OsKCS genes played distinct roles during the development of grain.
Expression patterns of OsKCS under
cadmium stress based on RNA-seq

Based on the analysis of cis-elements in the promoter of OsKCS

genes, all of these genes were hypothesized to respond to stress.

Cadmium (Cd) is considered as one of the most toxic metals for

plant. In order to analyze OsKCS involved in the response to Cd

stress, we analyzed the RNA-seq data to evaluate the response of 22

OsKCS to Cd treatment in indica and japonica. All OsKCSs were

differently expressed under Cd stress. In japonica Nipponbare

background, after 3h treatment, the expression of 12 genes was

significantly down-regulated, and the expression of these genes was

different between 3h and 6h treatment (Figure 7). For example,

OsKCS8, OsKCS13, OsKCS14, and OsKCS17 were up-regulated after

3h treatment, the expression of these genes decreased gradually in

6h but was still higher than 0h (control). In indica 9311
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background, 15 genes were up-regulated and seven genes were

down-regulated continuously with the extension of treatment,

seven genes were down-regulated and two genes were up-

regulated under 6h of Cd treatment, 13 genes were up-regulated

under 3h of Cd treatment. Whether in indica or japonica, OsKCS2,

OsKCS5, OsKCS6, OsKCS8, OsKCS13, OsKCS17, OsKCS18, and

OsKCS21 were up-regulated gradually with the extension of

treatment time. The expression of OsKCS19 and OsKCS20 was

opposite in indica and japonica after Cd treatment. The results

showed that most OsKCSs were sensitive to the Cd.
Discussion

The b-ketoacyl-CoA synthase (KCS) family plays an important

role in regulating plant growth and development and resisting

abiotic stress (De Bigault Du Granrut and Cacas, 2016; Batsale

et al., 2021). The identification and analysis of the OsKCS gene

family at the genome level could provide a theoretical basis for

functional characterization. In the current study, a total of 22

OsKCS genes were identified in the rice genome; the number of

identified KCS genes in the rice genome was slightly higher

compared with Arabidopsis thaliana (21), but smaller than that of

Zea mays (26) and Brassica campestris (46), which may be due to

the differences in genome size and the time when the duplication

event occurred. The specific domain (FAE1_CUT1_RppA) was

conserved in OsKCS proteins and all of KCS genes have this

domain (Huai et al., 2020; Tong et al., 2021; Rizwan et al., 2022),

indicating that 22 KCS proteins of rice containing the active motif

involved in the elongation of VLCFAs.
FIGURE 5

Synteny analysis of KCS genes between rice and four representative plant species. The red lines highlight the syntenic KCS gene pairs; the gray lines
in the background represent the collinear blocks in rice that are orthologous to the other plant genomes.
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Using sequence alignment and phylogenetic tree construction, the

grouping and evolutionary relationships of the rice KCS gene family

were determined. The phylogenetic tree categorized the rice KCS gene

family into six subclasses. The grouping and clustering of KCS

proteins were caused by differences in protein sequences. Twenty-
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one KCSs in Arabidopsis thaliana are classified into eight subclasses:

a, b, g, d, ϵ, z, h and q (Joubès et al., 2008). The KCSs in subclasses a,
b, g, d and ϵ are known to possess catalytic activity, because they could
display activity in various heterologous yeast expression systems

(Blacklock and Jaworski, 2006; Paul et al., 2006). However, the
FIGURE 6

Expression of 22 OsKCS genes in different rice tissues using qRT-PCR.
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KCS3 in Arabidopsis thaliana belongs to subclass q, and it plays a

negative regulator of wax metabolism by reducing the enzymatic

activity of KCS6, a key KCS involved in wax production (Huang et al.,

2023). KCSs in Oryza sativa were not classified into b and q; it is
possible that most of the KCS in rice have catalytic activity, which

needs further experimental verification. There were some differences

in the conserved motifs of OsKCS proteins among different

subclasses. The differences in the distribution of these conserved

motifs indicated the different functions of OsKCS genes. The

differences in gene structure might play a role in gene evolution.

The intron–exon structure of the 22 OsKCS genes is different, and the

differences in structure will lead to different functions (Xu et al., 2012).

Cis-regulatory elements play an essential role in gene’s

spatiotemporal expression, and further in regulating plant growth

and development, as well as in coordination and adaptation to the

environment (Priest et al., 2009). The cis-regulatory element

analysis in OsKCS genes was performed and found that MYB

transcription factor binding sites existed in the promoter regions

of its members. Previous studies have also shown that MYB

transcription factors may regulate KCS and further regulate

VLCFA and plant function in growth and development (Raffaele

et al., 2008; Xu et al., 2022; Yang et al., 2023).
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The KCS gene family in plants has formed a huge gene family

through duplication and has accumulated many mutations after a

long evolution, leading to the differentiation of gene functions.

Some studies believed that the KCS genes in plants are the results of

large-scale duplication events such as WGDs or segmental

chromosomal duplications (Guo et al., 2016). The rice genome

did not contain any tandem KCS genes but contained four

segmental duplication genes. The large-scale duplication events of

KCS genes in rice are smaller than that in Arabidopsis and Passiflora

(Rizwan et al., 2022). Therefore, the dominating duplication mode

of KCS genes in rice appeared to be WGDs or segmental

duplications. The number of orthologous pairs of KCS genes

between Grapevine and Arabidopsis is more than that between

Oryza and Arabidopsis(Zheng et al., 2023).

Measurements of the adverse effects of heavy metal on plants

generally are related with seed germination, root length, and

morphologic growth. A study showed that the fatty acid

composition (C18) of leaves was also correlated with heavy

metals accumulation in soils, and the fatty acid composition of

leaves could be used as an indicator of the adverse effects of heavy

metals on plants. (Verdoni et al., 2001). Under heavy metal stress,

HMA3 overexpressing transgenic plants displayed a higher quantity
A B

FIGURE 7

Expression patterns of OsKCS genes in shoots under exogenous cadmium treatment. (A, B) Heatmaps of gene expression levels treated with 20 mM
Cd in japonica Nipponbare and indica 9311.
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of fatty acids (C18-20)s in seed (Park et al., 2015). These studies

indicated that the fatty acid composition was altered after metal

stress. VLCFAs are synthesized in the ER through C18 via FAE

complex. The expression levels of eight genes (OsKCS2, OsKCS5,

OsKCS6, OsKCS8, OsKCS13, OsKCS17, OsKCS18, and OsKCS21)

were gradually up-regulated with the extension of treatment time

and were higher in leaves and seeds compared with other tissues.

The OsKCS with high expression in leaves and seeds might play a

role in cadmium stress.
Conclusions

In this study, a total of 22 OsKCS genes were identified in the

rice genome. OsKCS is divided into six subclasses, and the

physiochemical features of KCS protein were different. OsKCS

gene family has undergone purification selection. The qRT-PCR

based expression suggested that OsKCS genes are specifically

expressed in different tissues. The KCS genes in indica and

japonica with high expression in leaves and seeds might play

roles under Cd stress. These findings provide a basis for further

studies on the functions of KCS genes in rice. In future studies, we

will further explore the role of OsKCS genes in VLCFA.
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