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Southern corn rust (SCR) caused by Puccinia polysora Underw is a major disease

leading to severe yield losses in China Summer Corn Belt. Using six multi-locus

GWASmethods, we identified a set of SCR resistance QTNs from a diversity panel

of 140 inbred lines collected from China Summer Corn Belt. Thirteen QTNs on

chromosomes 1, 2, 4, 5, 6, and 8 were grouped into three types of allele effects

and their associations with SCR phenotypes were verified by post-GWAS case-

control sampling, allele/haplotype effect analysis. Relative resistance (RRR) and

relative susceptibility (RRs) catering to its inbred carrier were estimated from

single QTN and QTN-QTN combos and epistatitic effects were estimated for

QTN-QTN combos. By transcriptomic annotation, a set of candidate genes were

predicted to be involved in transcriptional regulation (S5_145, Zm00001d01613,

transcription factor GTE4), phosphorylation (S8_123, Zm00001d010672, Pgk2-

phosphoglycerate kinase 2), and temperature stress response (S6_164a/

S6_164b, Zm00001d038806, hsp101, and S5_211, Zm00001d017978,

cellulase25). The breeding implications of the above findings were discussed.

KEYWORDS

maize, multi-locus GWAS, QTNs, post-gwas, case-control, disease resistance gene,
southern corn rust (SCR), Puccinia polysora
Introduction

Southern corn rust (SCR), caused by the fungus P. polysoraUnderw., is a major disease that

leads to significant grain yield loss in maize (Zea mays L.). SCR is common in warm-temperate

and tropical regions of the world, and is a severe maize disease in regions such as China’s

Summer Corn Belt (SCB, also known as the Huanghuaihai Summer Corn Region), the SCB of
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fpls.2023.1221395/full
https://www.frontiersin.org/articles/10.3389/fpls.2023.1221395/full
https://www.frontiersin.org/articles/10.3389/fpls.2023.1221395/full
https://www.frontiersin.org/articles/10.3389/fpls.2023.1221395/full
https://www.frontiersin.org/articles/10.3389/fpls.2023.1221395/full
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2023.1221395&domain=pdf&date_stamp=2023-09-21
mailto:xugp2011@163.com
mailto:chigohut@163.com
https://doi.org/10.3389/fpls.2023.1221395
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2023.1221395
https://www.frontiersin.org/journals/plant-science


Shu et al. 10.3389/fpls.2023.1221395
the United States, and Africa (Storey and Ryland, 1954; Dong et al.,

2010; Brewbaker et al., 2011; Wang et al., 2014; Zhao et al., 2018; Duan

et al., 2020; Wang et al., 2020b; Sun et al., 2021b). In China, SCR was

first identified in Sanya and Ledong, Hainan Province, in early 1972

(Duan and He, 1984) and has gradually spread to high-latitude areas

because of global climate change (Wang et al., 2020b). A major

outbreak of SCR in China’s SCB occurs every 2–3 years and has

resulted in grain yield losses of up to 50% (Zhou et al., 2008; Wang

et al., 2014; Lv et al., 2020). A lack of resistance genes and a narrow

germplasm basis are the main reasons for SCR epidemics (Brewbaker

et al., 2011; Chen et al., 2018; Chen et al., 2019; Deng et al., 2022).

Recent surveys of Chinese maize germplasm have shown that only a

small number of varieties (less than 15% of commercial maize varieties

and newly released varieties) have high resistance to SCR, and the

majority of commercial maize hybrids are susceptible (Wang, 2005;

Wang et al., 2014; Sun et al., 2021b), including somemajor commercial

varieties cultivated in China’s SCB, such as Zhengdan 958 and Xianyu

335. It is not only desirable but also urgent to identify more resistance

genes from diverse germplasm resources.

Genetic improvement is the most important strategy for reducing

maize yield losses caused by SCR in China (Ali and Yan, 2012; Wang

et al., 2014). A number of genes and QTLs with major phenotypic effects

have been identified using linkage-based genetic mapping populations,

including Rpp1, Rpp9, RppP25, RppM, RppK, and RppCML496 (Zhou

et al., 2017; Deng et al., 2019; Deng et al., 2020; Lv et al., 2020;Wang et al.,

2020a); these loci are all located at the short arm of chromosome 10, are

believed to be race-specific, and the associated resistance is easily lost with

a change in the P. polysoraUnderw. fungus (Xiao et al., 2017; Sun et al.,

2021b). Mining of genes with a broad resistance spectrum has not been

very successful using linkage-based genetic mapping populations, either

with temporary segregation populations (Mu et al., 2022; Li et al., 2023b)

or with permanent segregation populations such as RILs (Wanlayaporn

et al., 2013). The genome-wide association study (GWAS) approach is

widely used in identifying small-effect loci of a complex trait in human

genetics (Uffelmann et al., 2021) and has also been used for other maize

diseases (Shikha et al., 2021; Sun et al., 2021b). However, this approach

has not been widely used in genetic mapping of SCR resistance (Zhou

et al., 2017; De Souza Camacho et al., 2019; Li et al., 2023b). GWAS is

also known to generate a large proportion of false positive signals.

In this report, we identify a set of SCR-resistance QTNs based

on multi-locus GWAS from a diversity panel of 140 inbred maize

lines that include most of the parental lines of major commercial

hybrids in the China Summer Corn Belt. The SCR-resistance QTNs

identified were further verified by two post-GWAS analyses: case–

control sampling and allele/haplotype effect analysis. Resistant and

susceptible alleles were then evaluated for relative resistance and

relative susceptibility, with the goal of employing them in molecular

breeding of SCR-resistant varieties of maize.
Materials and methods

Genetic materials and SCR phenotyping

In a previous study (Shu et al., 2021), 490 inbred lines collected

from maize breeders at China Summer Corn Belt were genotyped
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via genotyping-by-sequencing (GBS); among these, 140 inbred lines

that can grow and mature normally in both the summer corn region

and Sanya winter nursery in Hainan Province were scored for

resistance to southern corn rust (SCR). All 140 of these inbred

maize lines were planted in a complete randomized design at

Nanbin Station (N18°21′7′′, E109°10′20′′), Sanya, Hainan

province, China, in November 2013, in two-row plots of 5 m

length and spaced 0.60 m apart, with 25 plants per row. Standard

crop management practices were followed throughout the growing

season to ensure normal growth without weed or insect damage.

Natural infection with airborne uredospores of P. polysora was

employed to induce the disease phenotype. To provide an abundant

supply of the SCR pathogen, highly SCR-susceptible inbred lines

Ye478 and Lx9801 were planted in a rectangular lattice across the

field surrounding the SCR-phenotyping plots; this controlled field

test plot design has been confirmed as an effective way to ensure

efficient spread of the pathogen to neighboring plants in fields (Jines

et al., 2007; Zhao et al., 2013) and has been adopted as the standard

method of SCR phenotyping in maize breeding and genetic research

in China (Zhao et al., 2013; Deng et al., 2020; Lv et al., 2020; Wang

et al., 2020b). Disease scores were recorded at 30 days post-

pollination. The degree of infection on each plant was visually

scored on a scale of 1 to 9 using the Stakman infection type scale

with 1 = HR (highly resistant, almost free of rust pustules), 3 = R

(resistant, infection covering 6% to 10% of leaf area), 5 = MR

(moderately resistant, infection covering 11% to 30% of leaf area),

7 = S (susceptible, infection covering 31% to 70% of leaf area), and

9 = HS (highly susceptible, nearly completely covered with rust

pustules) (Wang et al., 2014; Deng et al., 2019; Deng et al., 2020; Li

et al., 2021). The scores for each plot, based on the average of all

plants in the plot, were used as the phenotype scores for each

inbred line.
DNA sequencing and genotyping

A leaf sample from each inbred line was used for DNA

extraction via a CTAB procedure. The protocol reported by

Elshire et al. (2011) was followed for DNA sequencing. Briefly,

genomic DNA was digested with the restriction enzyme ApeK1, and

genotyping-by-sequencing (GBS) libraries were then constructed in

96-plex and sequenced on an Illumina HiSeq 2000. SNP calling was

performed using the TASSEL-GBS pipeline (Glaubitz et al., 2014),

with B73 RefGen V2.0 as the reference genome. Initially, 87,6297

SNPs were filtered with minor allele frequency (MAF) > 5%,

missing rate< 20%, and heterozygosity rate< 25% (Shu et al.,

2021); data on 68,768 high-quality SNP loci were retained for

entry into all analyses conducted in this study.
Population structure, linkage
disequilibrium, and multi-locus GWAS

ADMIXTURE 1.3.0 (http://dalexander.github.io/admixture/

download.html) was used to determine the population structure

among all 140 inbred maize lines using 68,768 SNPs (Alexander and
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Lange, 2011), and the “Expectation Maximization” clustering

algorithm was run with cluster numbers ranging from K = 1 to K

= 12 in order to determine the optimum number of clusters K

producing the smallest cross-validation error. Linkage

disequilibrium (LD) analyses were carried out using TASSEL

5.2.25 (https://www.maizegenetics.net/tassel) (Bradbury et al.,

2007; Glaubitz et al., 2014). The following six multi-locus GWAS

methods from the R software package mrMLM.GUI V4.0.2 (Zhang

et al., 2019; Zhang et al., 2020) were used to detect significant QTNs

for SCR resistance: (1) mrMLM (https://cran.r-project.org/web/

packages/mrMLM/index.html, Wang et al . , 2016); (2)

FASTmrEMMA (Wen et al., 2018); (3) ISIS EM BLASSO (Tamba

et al., 2017); (4) pLARmEB (Zhang et al., 2017a); (5) pKWmEB

(Ren et al., 2018); and (6) FASTmrMLM (Tamba & Zhang, 2018,

bioRxiv). Q-matrices generated using ADMIXTURE 1.3.0 and K-

matrices generated using mrMLM.GUI V4.0.2 were applied to

correct the population structure and polygenic backgrounds. An

intermediate result file and a final result file were generated.

Manhattan plots were generated based on the intermediate and

final results files using mrMLM.GUI V4.0.2.
Case control sampling

Case–control sampling is a common design in human genetic

mapping, in which cases and controls are defined based on the

presence or absence of a certain phenotype, respectively (Uffelmann

et al., 2021). In this study, case–control sampling was employed to

verify the phenotype–SNP association detected in GWAS. Briefly,

10 inbred lines with the highest SCR disease phenotype scores (all

with phenotype score 9) were sampled as cases, and 10 inbred lines

with the lowest SCR disease phenotype scores (all with phenotype

score 1) were sampled as controls; the SNP allele genotype and the

mean phenotypic value for the corresponding allele for each QTN

identified in multi-locus GWAS were compared between the case

sample and the control sample for consistency. The phenotypes are

visualized on a color scale in (with phenotype values from 1–9

expressed on a color scale from blue to red).
Allele/haplotype effect analysis,
QTN/combo performance estimates,
and epistasis

Allele/haplotype effect estimates
The phenotype effect of an allele of a single QTN or a haplotype

of combos generated from two QTNs, called the allele/haplotype

effect, was estimated using the average SCR score of their carrier

inbred lines: allele/haplotype effect = average SCR score of

resistance allele/haplotype carriers (SCRR) – average SCR score of

susceptible allele/haplotype carriers (SCRS).
Allele/haplotype effect type assignment
The allele/haplotype effect type of each QTN was categorized as

HR, R, MR, S, or HS. Here, these labels corresponded to allele/
Frontiers in Plant Science 03
haplotype phenotypic values of 1.0–1.9, 2.0–3.9, 4.0–5.9, 6.0–7.9,

and 8.0–9.0, respectively.
QTN/combo performance estimate
For each QTN, the relative risk statistic (RR) was calculated as a

measure of the performance (in terms of relative resistance, RRR) of

its resistant allele/haplotype over its susceptible allele/haplotype,

and the relative susceptibility (RRS) of its susceptible allele/

haplotype over its resistant allele/haplotype; these statistics were

calculated using the following equations:

(1) Relative resistance of resistant allele/haplotype over

susceptible allele/haplotype:

RRR = (N11=(N11 + N12))=(N21=(N21 + N22)) (1)

(2) Relative susceptibility of susceptible allele/haplotype over

resistant allele/haplotype:

RRS = (N22=(N21 + N22))=(N12=(N11 + N12)) (2)

In this case, the total inbred lines (N) from the GWAS analysis

were divided into resistance allele carriers (N1) and susceptible allele

carriers (N2); among N1 carriers, N11 and N12 represent the number

of resistant allele carriers that have the resistant and susceptible

phenotypes, respectively; similarly, among N2 carriers, N21 and N22

represent the number of susceptible allele carriers that have the

resistant and susceptible phenotypes, respectively.
Epistasis
Epistasis (also known as the epistatic effect or modifying effect)

was estimated for each QTN pair or combo using the –epistasis

function of PLINK v1.07 (Purcell et al., 2007) by executing the

following commands at the command line: > plink –file “input

filename” –pheno phenoq.txt –epistasis –epi1 1 –noweb–out

“output filename”. The use of –epi1 1 enabled the generation and

output of epistatic effect estimates for all QTN pairs, shown in

Table S1.
Identification of candidate genes and
tissue-specific and stress-induced
transcriptomic analysis

FASTA sequences containing significant QTNs were re-aligned

to the B73 v4 reference genome in order to obtain a more accurate

physical localization for improved gene annotations (https://

www.maizegdb.org/gbrowse). For each statistically significant

QTN identified via multi-locus GWAS, the annotated genes

within ±300kb of the chromosome region (based on B73

Reference V4) were considered as candidate genes, as described in

Ahmed et al. (2022). The location of a QTN in a gene and its effect

were analyzed using the ANNOVAR software package (Wang et al.,

2010). The polymorphic SNPs surrounding key significant QTNs,

their SCR phenotype associations, and their association with gene

structures were explored using scatter plots and gene structure

diagrams. The expression profiles for each candidate gene in
frontiersin.org
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different organs and tissues at different developmental stages and

under exposure to different biotic and abiotic stresses were extracted

from the transcriptomic databases at MaizeGDB (https://

www.maizegdb.org/). The relationship between expression of each

candidate gene and resistance to southern corn rust was analyzed.
Results

SNP genotype data characterization

Using the control procedure of the Tassel pipline (see Materials

and Methods section), the quality of the genotype data of the set of 140

inbred lines was improved by filtering out SNPs with minor allele

frequency (MAF)< 5% and SNPs with more than 20% of the

genotyping data missing (Figure S1). The filtered genotype data of

68,769 SNP loci were evaluated for LD decay on all 10 maize

chromosomes (Figure 1A); the mean LD decay distance across all

chromosomes for this diversity panel was r2 = 0.1, or approximately

200~300 kb (Figure 1A). The 140 inbred lines were evaluated for

population structure using the SNP data (see Material and Methods

section). ADMIXTURE 1.3.0 was used to detect population structure;

the cross-validation error was smallest at K=6 (Figure 1B), indicating

there were 6 subgroups. This population structure is visualized

in Figure 1C.
Multi-locus GWAS and QTN identification

Genome-wide association study (GWAS) was conducted using

SCR phenotype data, SNP genotype data from the diversity panel of

140 inbred lines, and the population structure information through

use of a multi-locus GWAS R package that offers six different
Frontiers in Plant Science 04
statistical and computational models (see Material and Methods

section). All statistically significant QTNs, including 21 QTNs

identified by GWAS (defined as a LOD score greater than 3.00),

are reported in Supplementary Table S1; among these, 13 QTN loci

associated with putative candidate genes are listed in Table 1.

Pairwise LD values among 10 QTNs are shown in Supplementary

Figure S2. Among the 21 QTNs identified by GWAS

(Supplementary Table S1), eight QTNs were located on exons, six

in intergenic regions, three in the upstream regions of genes, two on

introns, one in the UTR3 region, and one in the UTR5 region.

Among the eight QTNs located on exons, three variants located on

Zm00001d032244, Zm00001d033259, and Zm00001d052781 were

identified as nonsynonymous SNVs causing an amino acid change,

whereas 5 variants were identified as synonymous SNVs not causing

an amino acid change (Table S1).

The map positions of the 13 QTNs reported in Table 1 were also

labeled on a Manhattan plot (Figure 2) produced using the R

software package mrMLM.GUI V4.0.2 (see Materials and

Methods section). As shown in Table 1; Supplementary Table S1;

Figure 2, the 13 significant QTNs were located on Chromosomes 1,

2, 4, 5, 6, and 8; some chromosomal regions were found to contain

multiple tightly linked QTNs, such as bin1.11 (QTNs S1_299a and

S1_299b (nbcs4)), bin5.06 (QTNs S5_210 (Fcf2) and S5_211(cel25)),

and bin6.07 (QTN S6_164a (hsp101) and S6_164b (hsp101)). Three

QTNs that were found to explain more than 10% of the phenotypic

variation (r2%) are shown in Table 1; these are S1_299b (nbcs4),

S5_145 (GTE4), and S5_211 (cel25).
Allele effect type assignment

As shown in Table 2, the two alleles from each QTN were

associated with significantly different phenotypic effects on their
B

C

A

FIGURE 1

Linkage disequilibrium decay and population structure in the diversity panel of 140 inbred lines. (A) Linkage disequilibrium decay across all 10 maize
chromosomes. (B) Cross-validation error values for K = 1–12 in population structure analysis. (C) Population structure of the 140 inbred lines at K =
6. NUS, new US germplasm; P, P78599; M-Reid: modified-Reid; TSPT_HZS, TangSiPingTou_Huangzaosi; TSPT_C72, TangSiPingTou_Chang7-2; SS,
stiff stalk.
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TABLE 1 QTNs for southern corn rust (SCR) resistance identified by multi-locus GWAS models and annotations.

r2 (%)
Candidate
genes

Location of
SNPs in genes

Gene
symbol

Description

8.10
Zm00001d032240,
Zm00001d032244

Exon/non-synonymous myb146
MYB-transcription factor 146, probable
inactive receptor kinase

18.13 Zm00001d034678 UTR5 nbcs4 nucleobase-cation symporter 4

4.06 Zm00001d002447 Intergenic rlk12 receptor-like protein kinase 12

5.13 - Intergenic - –

3.94 Zm00001d051812 Intronic hk6 histidine kinase 6

4.15 Zm00001d052781 Exon/non-synonymous cct23
CO CO-LIKE TIMING OF CAB1 protein
domain 23

11.16 Zm00001d016131 Synonymous GTE4 Transcription factor GTE4

9.28 Zm00001d017927 Upstream Fcf2 Fcf2 pre-rRNA processing protein

11.69 Zm00001d017978 Exon/synonymous cel25 cellulase 25

4.09
Zm00001d038791,
Zm00001d038806

Exon/synonymous rlk10, hsp101
receptor-like protein kinase 10, heat-shock
protein 101

5.09
Zm00001d038791,
Zm00001d038806

UTR3 rlk10, hsp101
receptor-like protein kinase 10, heat-shock
protein 101

4.62 Zm00001d038843 Intergenic wrky82 WRKY-transcription factor 82

6.71
Zm00001d010672,
Zm00001d010673

Intergenic pgk2
pgk2 - phosphoglycerate kinase 2 (also
known as metacaspase type II)

M, pKWmEB, and pLARmEB, respectively.
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QTN
ID

Chr
#

Position (B73
RefGen V4.0)

Bin
GWAS
model

QTN
effect

LOD
score

S1_218 1 218619398 1.07 4, 6 1.16 4.58

S1_299b 1 299623487 1.11 3 -1.20 8.58

S2_12 2 12916090 2.01 2, 6 -0.81 5.07

S2_220 2 220613149 2.08 6 -0.73 3.98

S4_170 4 170324384 4.06 2, 3, 6 -0.53 3.99

S4_200 4 200738088 4.08 3 0.55 4.82

S5_145 5 145816043 5.04 4 1.36 3.47

S5_210 5 210212211 5.06 2, 6 1.09 5.92

S5_211 5 211183684 5.06 1, 3, 4 1.26 6.81

S6_164a 6 164808768 6.07 4 0.63 3.47

S6_164b 6 164811804 6.07 2 1.63 4.47

S6_165 6 165682422 6.07 6 0.60 5.22

S8_123 8 123503579 8.04 2, 6 0.70 4.13

GWAS Models 1, 2, 3, 4, 5, and 6 refer to multi-locus models FASTmrEMMA, FASTmrMLM, ISIS EM-BSSO, mrM
R2 represents phenotypic variation explained.
L
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carriers. Based on measures of the difference in allelic effect, the 13

QTNs fell into four different categories or allele effect types: (1) type

A, or HR/S type: one allele is associated with high resistance (HR)

and the other with susceptibility (S); (2) type B, or MR/S type: the

two alleles are associated with moderate resistance (MR) and

susceptibility (S), respectively; (3) type C, or MR/HS type: the two

alleles are associated with moderate resistance (MR) and high

susceptibility (HS), respectively; and (4) type D, or S/HS type: the

two alleles are associated with susceptibility (S) and high

susceptibility (HS), respectively. From Table 2, it can be seen that

most of the highly resistant (HR) inbred lines, such as Qi319, X178,

P138, CT01, and CT1251, carry not only HR alleles of type A QTNs

(S5_145, S5_210), but also either MR alleles of type B and type C

QTNs or S alleles of type D QTNs; in contrast, most of the highly

susceptible (HS) inbred lines, such as Zong3, Zheng58, 478, and

Xun926, carriers of the HS alleles of type D QTNs (Tables 2, 3).
Allelic and haplotype effect analysis

The allele phenotypic effect of each single QTN (Table 3) and

the joint phenotypic effects of haplotypes from two QTNs (known

as a QTN combo) were estimated via allele/haplotype effect

analysis (Table 3); these effects were also visualized using

boxplots, two examples of which are shown in Figure 3. QTN

S6_164a and S6_164b (Table 3, combo 1) were two tightly linked

QTN loci with D′= 0.93 (Supplementary Figure S1), and

physically were only 3036 bp apart on Chr6 (see B73 RefGen V4

position in Table 2); both were type D QTN loci (S/HS allele effect

type), and both were found to have AA and GG alleles (Figures 3-

A2, 3-A3). In order to evaluate their joint phenotype effects, the

haplotype effects for all four observed haplotypes (GGGG, AAGG,

GGAA, AAAA), in the form of the average SCR score of their

carrier inbred lines, were plotted as shown in Figure 3-A1. The

haplotypes GGGG and AAAA were found have an almost

identical SCR phenotypic effect to that of the GG and AA alleles

of a single QTN alone (Figures 3-A2, 3-A3); the haplotype AAGG

and GGAA had very few counts, indicating that these are likely

recombinant types, and the GGGG and AAAA are likely parental

types. The joint phenotypic effects of combo 2 (S6_165.S8_123)

are shown in Table 3 and in Figure 3-B1, 3-B2, 3-B3. S6_165 (MR/
Frontiers in Plant Science 06
S) and S8_123 (MR/HS) were found to be two almost completely

independent QTNs (D′= 0.28, Figure S1), producing four

observed haplotypes (AATT, GGTT, AAGG, GGGG); as shown

in Figure 3-B1 and Table 3, the haplotype AATT carriers were

found to have an SCR phenotypic effect of 2.4, and were more

likely to be resistant (R) inbred lines than either the AA allele

carriers of QTN S6_165 (5.1, Figure 3-B2; Table 3) or the TT allele

carrier of S8_123 (4.4, Figure 3-B3; Table 3), both of which were

found to have an SCR phenotypic effect of around 5.0. Similarly,

the GGGG haplotype was found to be a better predictor of an HS

phenotype in its carriers than the GG allele of S6_165 or the GG

allele of S8_123 alone (Figure 3-B1, 3-B2, 3-B3, Table 3). As shown

in Table 3, the maximum haplotype effect of combo 2

(S6_165.S8_123, AATT vs GGGG) was -6.0, much larger than

the allele effect of QTN S8_123 (AA vs GG, -3.6) or QTN S6_165

(TT vs GG, -2.7) alone by absolute value. In comparing the two

combos, it is clear that combo 2 has much better predictive value,

because the two QTNs have low LD and they can freely shuffle to

generate a more advantageous allele combination or haplotype

than combo 1.
Case–control sampling

To verify the significant association between the SCR phenotype

and QTN genotype that we had observed in multi-locus GWAS, a

case–control sampling study was conducted (see Materials and

Methods section). Specifically, 10 case inbred lines and 10 control

inbred lines were genotyped for 10 QTN loci; the results are

summarized in Figure 4, where rows represent inbred carrier,

columns represent QTNs, and the letters and the color of each

cell Cij represent the SNP genotype and the allelic phenotypic value

of QTN j of inbred carrier i, respectively. The allelic effect type (A,

B, C, or D, from Table 2) for each QTN are indicated in the top

margin of Figure 4. Based on Figure 4; Table 2, our findings were as

follows: (1) at type A QTNs, all case inbred lines carried S alleles in

type A and type B QTNs and had a susceptible allelic effect

phenotype (shown by the orange color), whereas all control

inbred lines carried HR alleles and had a highly resistant allelic

effect phenotype (shown by the blue color) at type A QTNs, with the

exception of Xun248, which was found to carry only S alleles of type
FIGURE 2

Manhattan plot of QTNs for resistance to southern corn rust (SCR) detected by GWAS in 140 inbred lines of maize. QTNs identified by multiple
models are indicated by pink dots with vertical lines; QTNs identified by a single model are indicated by light green or blue dots with vertical lines.
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A, and CT019-21, for which genotype data were missing; (2) all case

inbred lines carried HS alleles and had highly susceptible allelic

effect phenotype (shown by the red color) at two type C QTNs and

at one or more type D QTNs, while none of the control inbred lines
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carried HS alleles of type D QTNs. As shown in Figure 4, the

associations between the allelic genotypes carried by the case and

control inbred lines and the phenotypes observed were highly

consistent across different QTNs.
TABLE 2 Resistant and susceptible alleles of significant QTNs and their inbred carriers.

QTN
type

QTN
ID

Chr#
Position
(B73
V4.0)

Effect
type

Allele
(R/S)

Allele
effect
(R/S)

N1/
N2

Resistant allele car-
riers

Susceptible allele
carriers

Type A S5_145 5 145816043 HR/S GG/AA 1.8/7.6
10/
125

Qi319, X178, P138, CT1251,
PT46, L19-SSS

CT01, Xun248, F06, Chang7-2,
581, Jing24, 9801H, TSPT,
Huangzaosi, CT201-1S111,
Xun926, Huangyesi, Ji853

Type A S5_210 5 210212211 HR/S GG/CC 1.8/7.6
10/
120

Qi319, X178, P138, CT01,
CT1251, L19-SSS, F06

PT46, Xun248, Chang7-2, 581,
Jing24, 9801H, TSPT,
Huangzaosi, CT201-1S111,
Xun926, Huangyesi, Ji853

Type B S1_218 1 218619398 MR/S AA/GG 4.3/7.3
8/
125

CT1251, CT01, Xun248,
DH351, CT02

Zong3, Ji868, Zheng58, WK858,
Yuanwu02

Type B S6_165 6 165682422 MR/S AA/GG 5.1/7.8
27/
101

Qi319, PT46, CT019-21,
L19-SSS, F06

CT01, CT1251, Xun248,
Chang7-2, 581, Jing24, 9801H,
TSPT, Huangzaosi, CT201-
1S111, Xun926, Huangyesi,
Ji853

Type C S5_211 5 211183684 MR/HS GG/TT 5.3/8.0
42/
88

Qi319, X178, P138, CT01,
CT1251, CT019-21, L19-SSS

PT46, Xun248, Chang7-2, 581,
Jing24, 9801H, TSPT,
Huangzaosi, CT201-1S111,
Xun926, Huangyesi, Ji853

Type C S8_123 8 123503579 MR/HS TT/GG 4.4/8.0
16/
95

Qi319, PT46, L19-SSS
F06, 581, Jing24, 9801H, TSPT,
Huangzaosi, CT201-1S111,
Xun926, Huangyesi, Ji853

Type D S1_299b 1 299623487 S/HS GG/TT 6.8/8.3
102/
12

Qi319, X178, CT01,
CT1251, PT46, CT019-21,
L19-SSS, Xun248

NC20, 6WC, NH60, LN287,
09B, PHW52, SNNdN, Ye515,
Ji868, H446, Ye8112, Tie7922

Type D S2_12 2 12916090 S/HS AA/GG 6.9/9.0
125/
10

Qi319, X178, P138, CT01,
CT1251, PT46, CT019-21,
L19-SSS, Xun248, F06

L811, DHuang212, Zong3,
PC7-23111S111, 207,
Yuanwu02, Huangyesi,
K7M129, LDA801, Dan360

Type D S2_220 2 220613149 S/HS GG/AA 7.0/9.0
114/
6

X178, P138, CT01, CT1251,
PT46, CT019-21, Xun248,
F06

Jing7H, Jing24, 478, WNxNN,
S7M114, K7M129

Type D S4_170 4 170324384 S/HS TT/AA 6.9/8.0
93/
16

Qi319, X178, CT01,
CT1251, PT46, CT019-21,
Xun248, F06

w6k8y8F, Ji53, HuangC,
Zh7922, Ye488, L189, Xun9058,
Jing724, Hu803, E28, Lvjiuk,
478, 54-0, Zheng22, S7M114,
Dan360

Type D S4_200 4 200738088 S/HS GG/CC 6.6/8.1
89/
44

Qi319, X178, CT01,
CT1251, PT46, CT019-21,
Xun248, F06

Jing724, Ji853, Dan340, Zong3,
WK858

Type D S6_164a 6 164808768 S/HS GG/AA 6.6/8.5
83/
29

Qi319, X178, P138, CT01,
CT1251, PT46, CT019-21,
Xun248, F06, Jing24, TSPT,
Huangzaosi, Huangyesi,
Ji853

581, 9801H, CT201-1S111,
Xun926, Zheng58, Jing92,
Jing724

Type D S6_164b 6 164811804 S/HS GG/AA 6.8/8.2
103/
25

Qi319, X178, P138, CT01,
CT1251, PT46, CT019-21,
Xun248, F06, Jing24, TSPT,
Huangzaosi, Huangyesi,
Ji853

581, 9801H, CT201-1S111,
Xun926, Zheng58, Jing92,
Jing724
N1, number of resistant allele carriers, N2, number of susceptible allele carriers.
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Resistance performance and disease
risk analysis

For each of the 13 QTNs and the 8 combos of two QTNs, the

allelic (haplotype) effect, expressed as the difference between its

resistant alleles (or haplotypes) and its susceptible alleles (or

haplotypes) in terms of average SCR phenotype score is reported

in Table 3; a negative value indicates that the resistant alleles (or

haplotypes) can reduce the SCR score of their carriers, thereby

enhancing the carrier’s disease resistance performance. Among

single QTNs, the two type A QTNs had the largest allele effect by

absolute value, with a value of -5.8. Type D QTNs had the smallest

allelic effect by absolute value (ranging from -2.1 to -1.1; Table 3).

Among combos of two QTNs, the combo of two type A QTNs

(combo 3) had an effect of -6.5, larger than any single type A QTN,

while the combo of one type D QTN and one type A QTN (combo

8, S2_12.S5.210) had the largest allele effect, -7.2. For each QTN, the

relative performance of its resistant allele over its susceptible allele

was measured in the form of RRR, and the relative performance of

its susceptible allele over its resistant allele was measured in the

form of RRS. As shown in Table 3, for any QTN, its resistant allele

significantly enhanced disease resistance performance over its
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susceptible allele, with RRR values ranging from 2.89- to 9.65-

fold, and its susceptible alleles significantly increased disease risk

over its resistant allele, with RRS values ranging from 1.25- to 17.64-

fold. For combos of two QTNs, RRR values ranged from 6.09- to

56.45-fold, significantly greater than values for a single QTN, and

RRS values ranged from 1.39- to 19.38-fold, only slightly greater

than values for a single QTN. The above results suggest that the

disease resistant haplotype arising from a combo of two QTNs

could significantly increase resistance performance without

significantly increasing the disease risk of its carriers.
QTN–QTN interaction and epistasis

According to the QTN–QTN interaction estimates calculated

using Plink v1.07 (see Supplementary Table S2), among the 78

QTN–QTN pairs generated from the 13 QTNs shown in Table 3 (1/

2(13×12)), six pairs showed very significant epistatic effects

(p<0.01) and nine pairs showed significant epistatic effects

(0.01≤p<0.05). Among the eight combos (QTN–QTN pairs) listed

in Table 3, three showed epistatic effects (0.01≤p<0.05), and the

absolute SCRR value was little greater than that of the more resistant
TABLE 3 QTN type, allele/haplotype effect, and relative resistance and relative susceptibility performance.

QTN type QTN ID Allele_R/S SCRR SCRS Allele/haplotype effect N11 N12 N21 N22 RRR RRS

Type A S5_145 GG/AA 1.8 7.6 -5.8 10 0.5 20 105 5.95 17.64

Type A S5_210 GG/CC 1.8 7.6 -5.8 10 0.5 21 99 5.44 17.33

Type B S6_165 AA/GG 5.1 7.8 -2.7 15 12 14 87 4.01 1.94

Type B S1_218 AA/GG 4.3 7.3 -3.0 5 3 27 98 2.89 2.09

Type C S8_123 TT/GG 4.4 8.0 -3.6 13 3 8 87 9.65 4.88

Type C S5_211 GG/TT 5.3 8.0 -2.7 23 19 9 79 5.35 1.98

Type D S1_299b GG/TT 6.8 8.3 -1.5 30 72 0.5 12 7.35 1.36

Type D S2_12 AA/GG 6.9 9.0 -2.1 34 91 0.5 10 5.71 1.31

Type D S2_220 GG/AA 7.0 9.0 -2.0 30 84 0.5 6 3.42 1.25

Type D S4_170 TT/AA 6.9 8.0 -1.1 26 67 1 15 4.47 1.3

Type D S4_200 GG/CC 6.6 8.1 -1.5 29 60 4 40 3.58 1.35

Type D S6_164a GG/AA 6.6 8.5 -1.9 27 56 1 28 9.43 1.43

Type D S6_164b GG/AA 6.8 8.2 -1.4 29 74 2 23 3.52 1.28

Combo 1 S6_164a.S6_164b GGGG/AAAA 6.6 8.4 -1.8 25 53 1 18 6.09 1.39

Combo 2 S6_165.S8_123 AATT/GGGG 2.4 8.4 -6.0 7 0.5 2 70 33.6 14.58

Combo 3 S5_145.S5_210 GGGG/AACC 1.3 7.8 -6.5 6 0.5 15 99 7.02 11.29

Combo 4 S5_211.S8_123 GGTT/TTGG 4.5 8.4 -3.9 9 2 1 68 56.45 5.42

Combo 5 S6_165.S6_164a AAGG/GGAA 4.8 8.4 -3.6 13 9 1 23 14.18 2.34

Combo 6 S6_165.S6_164b AAGG/GGAA 4.7 8.2 -3.5 13 9 1 19 11.82 2.32

Combo 7 S5_211.S6_165 GGAA/TTGG 4.5 8.3 -3.8 8 5 3 69 14.77 2.49

Combo 8 S2_12.S5_210 AAGG/GGCC 1.8 9.0 -7.2 10 0.5 0.5 6 12.38 19.38
frontier
see Materials and Methods section for further details on calculations. N11, number of resistance allele carriers with resistance phenotype; N12, number of resistance allele carriers with disease
phenotype; N21, number of susceptible allele carriers with resistance phenotype; N22, number of susceptible allele carriers with disease phenotype. RRR and RRS are the relative resistance of the
resistant allele over the susceptible allele and the relative susceptibility of the susceptible allele over the resistant allele, respectively. If N=0, it was replaced with 0.5 for the purpose of calculations.
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B

A

FIGURE 3

Allele and haplotype phenotypic effects of a single QTN and multi-QTN combos with low and high LD. (A) Combo 1: S6_164a.S6_164b(A1), S6_164a
(A2) and S6_164b(A3). (B) Combo 2: S6_165.S8_123(B1), S6_165 (B2) and S8_123(B3).
B C DA

FIGURE 4

The allele genotypes (letters) and allele effect phenotypes (colors) of 10 QTNs, as observed in case–control sampling. (A) QTNs of type A. (B) QTN of
type B. (C) QTNs of type C. (D) QTNs of type D.
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QTN in the pair in each case, with differences of -0.1 (SCRR of

S5_211.S8_123minus S8_123), 0.3 (SCRR of S6_165.S6_164aminus

S6_165), and 0.5 (SCRR of S5_145.S5_210minus S5_145 or S5_210).

Combo 2 (S6_165.S8_123), with SCRR=2.4, showed no significant

epistatic effect (p = 0.1273). These findings indicate that epistasis or

gene modification is quite common in the gene regulation network,

but other types of interaction, such as additive effects, likely also

play important roles in enhancing SCR resistance.
Genomic and transcriptomic annotation
of QTNs

The associations between resistance to southern corn rust (SCR)

and the polymorphic SNPs surrounding key significant QTNs were

further examined using the intermediate results file via a scatter

diagram. The relationships between associations and gene

structures were studied using a gene structure diagram (Figure 5).

The transcriptomic profiles of the candidate genes were obtained

from maize transcriptomic databases via MaizeGDB (see Material

and Methods section, Supplementary Figures S3A-L, S4A-L).

Supplementary Figure S2 shows the expression profiles of these

candidate genes in different tissues, as obtained from MaizeGBD,

and Supplementary Figure S3 shows an organ-specific and stress-

induced gene expression atlas for them, also retrieved from

MaizeGDB. Here, we only list a select set of QTNs and putative

candidate genes for further scrutiny.

(1) QTN S1_218 (Table 1, V4: chr1:218619398, bin 1.07) was

identified as significant by two GWAS models, with an LOD score of

4.58 and phenotype contribution of 8.1%. S1_218 was located in the

CDS region of Zm00001d032244 (probable inactive receptor kinase)

and A MYB-transcription factor 146 (Zm00001d032240) was located

110kb upstream; Zm00001d032240 is notably upregulated after

infection by Cercospora zeina (Supplementary Figure S4A) (Hoopes
B

C

A

FIGURE 5

The polymorphic SNPs surrounding four significant QTNs and their SCR pheno
(A) Zm00001d034678 (nbcs4, near S1_299b); (B) Zm00001d016131 (GTE4, nea
(hsp101, near S6_164b). Red dots represent -log10(PValue.QE) >2.
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et al., 2019). MYB transcription factors have been reported to function

as negative regulators of plant immunity (Wang et al., 2021) and

positive regulators of the defensive response to stripe rust in wheat

(Zhu et al., 2021), and have also been found to be associated with

resistance to rust disease in foxtail millet (Bai et al., 2019).

(2) QTN S1_299b (Figure 5A, V4: chr1:299623487, bin 1.11):

with an LOD score of 8.58 and phenotype contribution of 18.13%,

this encodes a permease I (Zm00001d034678, nbcs4, nucleobase-

cation symporter4). According to the results of genome scanning of

the genome region of Zm00001d034678 (nbcs4) (Figure 5A), three

SNPs (Chr1: 299623551, 299623552, 299623554) with -log10
(Pvalue.Q)< 2 were located on the 5 ’ UTR region of

Zm00001d034678 (nbcs4); a high level of gene expression in

leaves was also reported (Supplementary Figure S3B). One of the

nucleobase-cation symporters (NBCS), named MdNAT7, has been

reported to transport xanthine and uric acid, which enable more

efficient scavenging of ROS by enhancing H2O2-scavenging

enzymes in apple (Sun et al., 2021a).

(3) QTN S2_12 (Table 1, V4: chr2:12916090, bin 2.01) was

identified by two GWAS models, with an LOD score of 5.07 and

phenotype contribution of 4.06%; an rlk12 gene (Zm00001d002447,

receptor-like protein kinase 12) was located 11kb upstream, and has

been found to be a fungal resistance-related gene (Zhang et al.,

2017b; Yang et al., 2019), with Zm00001d002447 having been found

to express in mature leaves and its level of expression to be elevated

by fungal infection (Supplementary Figure S3C; Supplementary

Figure S4C) (Hoopes et al., 2019).

(4) QTN S5_145 (Figure 5B,V4: chr5:145816043, bin 5.04): with an

LOD score of 3.47 and phenotype contribution of 11.16%, two SNPs

(Chr5:145816043, 145817495) with -log10 (Pvalue.Q) > 2 were located

on the CDS regions (the SNP chr5:145816043 is a synonymous SNV,

and the SNP chr5:145817495 is a nonsynonymous SNV;

Supplementary Table S3) of Zm00001d016131 (Transcription factor

GTE4); Zm00001d016131 has been found to express in leaves, and its
D

type associations, distributions, and structure of candidate genes.
r S5_145); (C) Zm00001d017978 (EG1, near S5_211); (D) Zm00001d038806
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expression is elevated by fungal infection (Supplementary Figure S3F,

Figure S4F) (Hoopes et al., 2019).

(5) QTN S5_211 (Figure 5C, V4: chr5:211183684, bin 5.06) was

identified by three GWAS models, with an LOD score 6.81 and

phenotype contribution 11.69%. S5_211 was located in the CDS

region (synonymous SNV, Supplementary Table S3) of

Zm00001d017978 (cellulase25). An immediate-to-early fungal

elicitor protein (CMPG1) encoding gene, Zm00001d017976, was

located 280kb upstream; expression of Zm00001d017976 was

significantly elevated by Colletotrichum graminicola infection

(Supplementary Figure S4H) (Hoopes et al., 2019).

(6) QTN S6_164a (V4: chr6:164808768, bin 6.07) and QTN

S6_164b (V4: chr6:164811804, bin 6.07) were two QTNs found to

be only 3036bp apart and tightly linked with high LD

(Supplementary Figure S1). The two significant QTNs S6_164a

(Chr6:164808768) and S6_164b (Chr6:164811804) were located in

the CDS (synonymous SNV, Supplementary Table S3) and 3′UTR
regions of Zm00001d038806 (hsp101), respectively (Figure 5D); the

expression of Zm00001d038806 (hsp101) is notably upregulated

when the temperature increases (Figure S4K) (Hoopes et al., 2019).

Another gene named rlk10 (Zm00001d038791, receptor-like protein

kinase 10) was located 410kb upstream; the expression of

Zm00001d038791(rlk10) has been found to be significantly

elevated by Colletotrichum graminicola infection (Supplementary

Figure S4J) (Hoopes et al., 2019). Overall, Zm00001d038806

(hsp101) and Zm00001d038791(rlk10) are two potential candidate

genes for these two QTNs.

(7) QTN S8_123 (V4:chr8:123503579, bin 8.06) was identified

by two GWAS models; two genes encoding Pgk2- phosphoglycerate

kinase 2 (also known as Metacaspase type II, Zm00001d010672,

Zm00001d010673) were located 300kb downstream and might be

related to SCR resistance (Luan et al., 2020). Zm00001d010672 has

been found to be expressed in mature leaves and its expression is

elevated by fungal infection (Supplementary Figures S3K, L;

Supplementary Figure S4L) (Hoopes et al., 2019).
Discussion

Genetic mapping and genetic
variant verification

Genetic mapping, either by linkage-based mapping or

association-based mapping, mainly provides information on

associations between DNA markers and trait phenotypic

variation; further verification is required to establish that the

association represents a causal relationship between underlying

genetic variants and phenotypic variation. Traditional QTL

mapping using linkage-based F2-derived populations is limited by

a low frequency of chromosome recombination and low density of

molecular markers; the QTLs identified are far away from the causal

DNA variants, and intensive fine mapping is required to further

pinpoint the precise chromosome location. A large number of SCR-

related genetic loci have been reported since the 1960s, including

some major effect QTLs on chromosome 10S: RppM (Wang et al.,

2020a; Wang et al., 2022), RppS/RppK (Wu et al., 2015; Chen et al.,
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2022), RppQ (Chen et al., 2004), RppC (Deng et al., 2022), RppP25

(Liu et al., 2003), RppD (Zhang et al., 2009), and RppCML496 (Lv

et al., 2020). Only a small number of QTLs, such as RppC, RppK,

and RppM, have been verified by further genetic fine mapping and

molecular studies (Chen et al., 2022; Deng et al., 2022; Wang et al.,

2022). A set of genes/QTLs including ZmREM1.3 (Wang et al.,

2019b), qSCR4.01 (Deng et al., 2020), qSCR4.08 (Deng et al., 2019),

qSCR6.01(Lu et al., 2020), ZmMM1(Wang et al., 2021), and

qSCR9.04 (Deng et al., 2019; Deng et al., 2020; Li et al., 2023b)

have also been reported on chromosomes 2, 4, 6, 7, 8, and 9, but

most of these have been identified based on preliminary linkage-

based mapping data or comparative proteomic analysis.

Association-based mapping strategies, such as GWAS, with a

large mapping population and high-density SNP markers, have

been shown to be very powerful in locating causal chromosome

variation and precise DNA variants without further fine mapping,

but are also more likely to generate a large number of false positive

signals, and thus require extensive post-GWAS verification (Wen

et al., 2018; Xiao et al., 2017; Wang et al., 2019a; Zhang et al., 2020;

Li and Ritchie, 2021; Shikha et al., 2021). GWAS has been employed

to identify SCR-related QTNs in several studies (Zhou et al., 2017;

De Souza Camacho et al., 2019; Sun et al., 2022; Li et al., 2023b). The

QTNs Chr4:173,863,109 and Chr6:169,030,253, identified by Sun

et al. (2022), are approximately 4Mb away from the QTNs reported

in this GWAS study: QTNs S4_170 (Chr4:170324384) and S6_164a

(Chr6:164808768), and QTNs S6_164b(Chr6:164811804) and

S6_165 (Chr6:165682422), respectively. Zm00001d029980 (mca1 -

metacaspase 1, Chr1:97331766-97337093) and Zm00001d047078

(mca2 - metacaspase 2, Chr9:117546061-117551091) are genes

related to disease resistance in the NLR (Rp1-D21)-mediated

defense response (Luan et al., 2020). The NLR protein Rp1-D21

is coded by Zm00001d023317 (rp1-resistance to Puccinia sorghi 1,

Chr10:2861471-2865816). Zm00001d010672 and Zm00001d010673,

as candidate genes of QTN S8_123 in our study, encode

phosphoglycerate kinase 2, which is also known as metacaspase.

Most of the QTNs identified on chromosomes 1, 2, 4, 5, 6, and 8

were found to be type B, type C, and type DQTNs with small effects.

To minimize the risk of reporting false positive QTNs, six different

multi-locus GWAS models from Zhang et al. (2020) were applied to

generate a shortlist of significant QTNs; two association-based post-

GWAS procedures (case–control sampling and allele/haplotype

effect analysis) were then followed for verification. For ultimate

confirmation that a statistical association represents a true causal

relationship between the QTNs identified and the SCR-related

phenotypes observed, additional molecular genetic tools, such as

transgenic studies and genome-editing, or signal transduction

cascade verification, are needed (Zhu et al., 2021; Chen et al.,

2022; Deng et al., 2022; Wang et al., 2022).
Genotyping and genotype data

One critical component for successful application of GWAS is

genotyping. DNA markers with sufficient density and low LD are

important for association mapping. Due to multiple occurrences of

historical chromosomal recombination, the LD block in diversity
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panel of inbred lines is expected to be much shorter than in linage-

based F2-derived populations; low LD together with high marker

density render GWAS with a diversity panel an effective approach

to genetic mapping. In the past, the trade-off between genotyping

cost and marker density had always been an issue: although SSR and

SNP-chip platforms are more cost-effective than complete

sequencing methods such as NGS, they yield fewer markers and a

lower marker density on chromosomes, and thus have lower

mapping resolution. In this study, we solved this dilemma by

using an NGS platform known as Genotyping by Sequencing

(GBS), which uses the DNA methylation-sensitive enzyme ApeK1

to cut maize chromosomes. Because ApeK1 cuts more frequently at

less methylated, gene-rich regions of the maize chromosomes, it

generates more short DNA fragments and thus more DNA

sequencing reads and more SNP calls. In this project, even

though the GBS method only achieves 5X genome coverage on

average, the real genome coverage can reach over 30X in gene-rich

chromosomal regions and may yield over 700K SNP loci (Bradbury

et al., 2007; Elshire et al., 2011; Glaubitz et al., 2014; Shu et al., 2021).
Multi-locus GWAS models

The selection of appropriate statistical models to detect and

measure association is critical to the success of GWAS. The models

should be able to deal with various features of phenotypic and

genotype data, such as continuity and normality of phenotypic data,

population structure and kinship information in genotype data, and

confounding from other covariables. The R software package

provided by Zhang’s group, mrMLM.GUI V4.0.2 (Zhang et al.,

2020), includes six multi-locus GWAS statistical models and a

multiple-step algorithm for dealing with different data types and

reducing false positives. Under the framework of multi-locus

random-SNP-effect mixed linear modeling, each marker on the

maize chromosome was first scanned for statistical significance and

a less stringent Bonforroni correction was adopted in the statistical

test. The significant marker loci identified were then incorporated

into a newmulti-locus genetic model; their effects were estimated by

an empirical Bayes method, and all non-zero effects were further

evaluated by the likelihood ratio test. Comparative studies have

shown that this R package is more powerful than other methods

both in terms of the detection of both strong and weak signals and

in terms of lower output of false-positive signals (Wang et al., 2016;

Tamba et al., 2017; Wen et al., 2018; Zhang et al., 2017a; Ren et al.,

2018; Tamba and Zhang, 2018; Wang et al., 2019a; Zhang et al.,

2020; Uffelmann et al., 2021; Park et al., 2022; Li et al., 2023a). As

shown in Table 1; Supplementary Table S1, a large portion of QTNs

were detected by more than one models, indicating that these QTNs

have strong associations with the SCR trait.
Post-GWAS analysis

As reported in other GWAS projects in human and maize, our

GWAS also identified a large number of statistically significant SNP
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variants or QTNs (Table 1; Supplementary Table S1), and the

majority of the QTNs were located in non-coding regions of a

putative gene or maize genome regions of unknown biological

function. Verification of QTNs identified by GWAS has always

represented a major challenge, but great progress has recently been

made, with various post-GWAS methods of analysis having been

developed and some important genes for complex human diseases

having been successfully identified (Li and Ritchie, 2021; Uffelmann

et al., 2021). In this study, two association-based post-GWAS

procedures were conducted: first, case–control sampling was

performed to verify the QTNs identified by GWAS and to check

the expected QTN genotype predicted by the phenotype for

consistency; and second, the SNPs near the QTNs were collected,

their haplotypes were generated, and haplotype–trait associations

were examined (see Figures 3–5). Additionally, putative genes

within a 300kb neighborhood of the QTN were taken as

candidate genes, and their transcriptomic profiles and biological

functions were examined. The genome-wide transcriptomic

association study (TWAS) approach has gained in popularity over

the years due to its distinct ability to connect SNP variants with

expressed genes and complex trait phenotypes (Li and Ritchie, 2021;

Uffelmann et al., 2021). However, the majority of QTNs identified

in this study were located in non-coding regions of putative genes or

non-genic regions of chromosomes; similar findings have also been

reported in a number of studies of humans, rice, and maize, where

the majority of trait-associated DNA markers are located in non-

genic regions, and their genetic effects are generally greater than

those in genic regions (Li et al., 2012; Rodgers-Melnick et al., 2016;

Wei et al., 2020). Many studies have shown that complex cis- and

trans-transcriptional regulatory mechanisms do not take effect

within the coding regions of genes and more likely reside in the

non-coding genomic neighborhood of identified QTNs (Li and

Ritchie, 2021); thus additional approaches for post-GWAS analysis,

such as transgenic validation, genome editing, and molecular

function analysis, are necessary.
Connection between QTNs and
molecular breeding

In this study, we attempted to connect the QTNs identified by

GWAS with molecular breeding practice. Firstly, the allele of each

QTN or a haplotype of a QTN combo was assigned to one of the five

categories HR, R, MR, S, or HS based on the value of its allelic (or

haplotype) effect; subsequently, thirteen QTNs were grouped into

four allelic effect types (A, B, C, and D) according to their

combination of allele types. The two type A QTNs, S5_145 and

S5_210, both located on chromosome 5, were found to have large

allelic effects; each contributed approximately 10% of SCR-related

phenotypic variation (r2%), and their highly resistant (HR) alleles

were present in all major SCR-resistant inbred lines in the diversity

panel. The two type B, two type C, and 7 type D loci, located on

chromosomes 1, 2, 4, 5, 6, and 8, were found to have small allelic

effects, and likely provide a broad spectrum of SCR resistance to
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resistant inbred lines. Following this analysis, the phenotypic impact

of each QTN (and its alleles) on its carrier was measured in terms of

two statistics, relative resistance (RRR) and relative susceptibility

(RRS; see Materials and Methods for definitions); these measure the

resistance efficacy and disease risk conferred on the carrier by a

resistant allele or a susceptible allele, enabling maize breeders to easily

understand the benefits and risks of integrating a particular allele or

QTN into their breeding materials or into new maize varieties.

GWAS has been shown to be effective in identifying QTLs with

small effects or conferring broad resistance (Xu et al., 2014; Zhou

et al., 2017; Xu et al., 2018; De Souza Camacho et al., 2019; Zhang

et al., 2019; Sun et al., 2022). Most published SCR-related QTL-

mapping projects have used F2-derived segregated populations or

their permanent versions, such as DHs and RILs from a genetic cross

of a highly resistant (HR) parent × a highly susceptible (HS) parent;

such studies have identified a number of QTLs associated with major

effects on the short arm of chromosome 10, but very few small-effect

QTLs have been reported and verified (Zhao et al., 2013; Lv et al.,

2020; Wang et al., 2020a), indicating that linkage-based QTL-

mapping using the HR × HS genetic cross method is less effective

in identifying small-effect resistance genetic loci for broad resistance.

Large-scale GWAS using a large, well-designed diversity panel of

breeding lines and high-density SNP markers is likely to be a more

effective way of discovering small-effect, broad SCR-resistance

genetic loci.
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