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Accurate estimation of fractional vegetation cover (FVC) is essential for crop

growth monitoring. Currently, satellite remote sensing monitoring remains one

of the most effective methods for the estimation of crop FVC. However, due to

the significant difference in scale between the coarse resolution of satellite

images and the scale of measurable data on the ground, there are significant

uncertainties and errors in estimating crop FVC. Here, we adopt a Strategy of

Upscaling-Downscaling operations for unmanned aerial systems (UAS) and

satellite data collected during 2 growing seasons of winter wheat, respectively,

using backpropagation neural networks (BPNN) as support to fully bridge this

scale gap using highly accurate the UAS-derived FVC (FVCUAS) to obtain wheat

accurate FVC. Through validation with an independent dataset, the BPNN model

predicted FVC with an RMSE of 0.059, which is 11.9% to 25.3% lower than

commonly used Long Short-Term Memory (LSTM), Random Forest Regression

(RFR), and traditional Normalized Difference Vegetation Index-based method

(NDVI-based) models. Moreover, all those models achieved improved estimation

accuracy with the Strategy of Upscaling-Downscaling, as compared to only

upscaling UAS data. Our results demonstrate that: (1) establishing a nonlinear

relationship between FVCUAS and satellite data enables accurate estimation of

FVC over larger regions, with the strong support of machine learning capabilities.

(2) Employing the Strategy of Upscaling-Downscaling is an effective strategy that

can improve the accuracy of FVC estimation, in the collaborative use of UAS and

satellite data, especially in the boundary area of the wheat field. This has

significant implications for accurate FVC estimation for winter wheat, providing

a reference for the estimation of other surface parameters and the collaborative

application of multisource data.
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1 Introduction

Wheat is one of the main cereal crops in China, with its

cultivated area and yield accounting for more than one-fourth of

the total grain production (http://www.stats.gov.cn/). Timely and

accurate acquisition of vegetation cover in2formation is particularly

important for monitoring the growth status of wheat (Cheng, 2020;

Wan et al., 2021; Abdelbaki and Udelhoven, 2022). Fractional

vegetation cover (hereafter FVC) is usually defined as the vertical

projection area of aboveground vegetation elements per unit of

horizontal ground surface area (Li et al., 2023). It is a biophysical

parameter related to the morphological structure and physiological

characteristics of crops. To simulate regional or global wheat

growth, crop canopy water content, biomass, and yield

estimation, accurate FVC can directly calibrate crop models and

hydrological models (Squire et al., 2021; Li et al., 2022b; Tenreiro

et al., 2021; Wang et al., 2019; Zhu et al., 2019). It can also replace

complex measurements of light interception capacity. It can also be

used as an important parameter to determine other key physical

quantities and plant chemical concentrations (De la Casa et al.,

2018), for example, changes in leaf chlorophyll can cause significant

differences in the canopy reflectance and transmittance spectra, and

high-precision FVC can help to analyze changes in the canopy

reflectance and improve estimates of chlorophyll content

(Thenkabail and Lyon, 2016). As a holistic phenotypic

characteristic that can investigate the vegetation status and

farmland surface conditions across a range of scales, there is a

widespread interest within the plant science and agronomy

communities to attain high-throughput and precise quantification

of FVC within a high spatiotemporal domain.

Satellite remote sensing has the advantages of long-time series,

large scale (even global scale), and multi-scale (spatial and spectral

scales), making it a common means of estimating FVC (Yu et al.,

2021). Researchers have developed numerous FVC estimation

methods based on coarse and medium spatial resolution satellite

remote sensing data, including empirical models (Maurya et al.,

2018; Riihimäki et al., 2019), linear unmixing models(Wang et al.,

2020b; Wu et al., 2021), physical-based models (Jia et al., 2016; Tu

et al., 2019), and machine learning (hereafter ML) methods

(Graenzig et al., 2021; Maurya et al., 2022; Song et al., 2022).

Among them, empirical models are generally considered easy to

implement but have a limited scope of application (Niu et al., 2021),

while linear unmixing models face challenges in extracting pure

endmembers of different classes (Gao et al., 2020). Nowadays,

through ML algorithms, even under the condition of unclear data

distribution, nonlinear relationships between remote sensing

images and vegetation information can be obtained (Zhang et al.,

2022), which fits well with the complex characteristics of surface

process remote sensing and is particularly suitable for research on

remote sensing inversion (Ballesteros et al., 2020), fusion (Li et al.,

2022a), downscaling (Liu et al., 2021) and other problems involving

complex or unknown processes (Wang et al., 2019; Wang et al.,

2020a; Lin et al., 2021; Xu et al., 2021).

Due to the limited number of spectral bands and high

acquisition cost (Alvarez-Vanhard et al., 2021), high spatial

resolution satellite data is still rarely used for estimating FVC in
Frontiers in Plant Science 02
wheat. Therefore, there are currently two key challenges in

estimating FVC based on low and medium-high spatial resolution

satellite remote sensing data. Challenge 1 mainly refers to the need

to improve spatial resolution while ensuring that the satellite remote

sensing image has an appropriate number of spectral bands. For

crops like wheat, whose growth activity mostly occurs in small

areas, reliable FVC data with high temporal and spatial resolution is

needed (Tao et al., 2021). Challenge 2 is that the current surface

parameter inversion often requires field-measured data as reference,

which often have a scale difference from the satellite images. The

size of the vegetation survey plot usually ranges from 1 to 104m2

(Walker et al., 2016; Riihimäki et al., 2019; Gu et al., 2021). Even

with the acquisition of reference data for a single pixel, it typically

necessitates sampling and numerous field observations, and

frequently, it proves challenging to acquire copious ground

samples while also avoiding destructive sampling.

In recent years, the swift progress of unmanned aerial systems

(hereafter UAS) and photogrammetric techniques have unlocked fresh

avenues for exploration in various research domains (Li et al., 2018;

Riihimäki et al., 2019; Yan et al., 2019). Researchers have keenly

discovered the powerful collaborative potential between UAS and

satellite systems, which are widely used in the applications of ecology

and precision agriculture (Yinka-Banjo and Ajayi, 2019; Alvarez-

Vanhard et al., 2021). For example, in quantitative remote sensing

research, numerical data obtained directly from UAS are utilized to

calibrate a satellite-based model. Typically, the extracted values are

surface (biophysical) parameters such as chlorophyll content or

aboveground biomass, derived from spectral measurements (Zhang

et al., 2019). Specifically in FVC estimation, UAS data are often used as

sub-pixels to validate the satellite-derived FVC (hereafter FVCsatellite),

such as aiding in the enhancement of flood area estimates(Xia et al.,

2017), observing the vegetation coverage of tundra under climate

change (Riihimäki et al., 2019) or in the detection of invasive species

(Graenzig et al., 2021). The strategy of mapping high spatial resolution

images to coarse spatial resolution images through upscaling is also

applied in satellite-to-satellite collaborative applications, such as

accurately estimating the composition of shrub ecosystems by

combining WorldView-2 (2m) and Landsat 8 (30m) images (Xian

et al., 2015), and constructing regression models using GF-2 images

(1m) and Landsat 8 surface reflectance as inputs to produce 30m

spatial resolution FVC products (Song et al., 2022). Currently, some

studies use coarse spatial resolution data to assist in the production of

high spatial resolution FVC products, such as down-sampling Landsat

FVC products using the random forest regression method(hereafter

RFR) and using the UAS-derived FVC (hereafter FVCUAS) to

accurately predict photosynthetic vegetation cover (Melville et al.,

2019), using a recurrent neural network to increase the spatial

resolution of GLASS FVC products from 500m to 250m (Liu et al.,

2021), and using multi-resolution trees to produce spatiotemporal 30m

spatial resolution FVC products by assisting Landsat 8 with MODIS

data (500m) (Wang et al., 2020a).

In this paper, an accurate estimation of winter wheat FVC

within the study region via ML techniques is proposed using

medium spatial resolution satellite images and UAS images. The

primary impetus driving this research is to bridge the scale gap

between field and satellite images while advancing crop monitoring
frontiersin.org
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techniques through remote sensing methods. Our objective is to

develop and assess a data-driven workflow. Firstly, based on

preliminary experimental observations, two growth stages of

wheat were chosen with the fast change stages in wheat coverage

namely the Jointing Stage and the Booting Stage, to conduct

“Ground-UAS-Satellite” synchronous experiments. Secondly, a

strategy of Upscaling -Downscaling was applied to UAS and

satellite data, respectively, to resample the scales to the ground

sample level of 2 meters. Subsequently, conducted to UAS

resampled images to generate the label data, which was then

paired with the scaled satellite data to generate a training dataset.

Finally, an ML model is conducted to accurately estimate the

FVCsatellite of winter wheat. Finally, the FVCsatellite is evaluated by

field-measurement data and analyses and discussion of the results.
2 Materials and methods

2.1 Study area

The study area is located within the Xiaotangshan National

Precision Agriculture Research Demonstration Base in Changping

District, Beijing (40°10’N, 116°26’E, 39 m). The terrain of the base is

flat, and the climate is a warm temperate continental monsoon

climate, with an average annual precipitation of 500-600 mm, which

is a typical climate of the winter wheat area in the north. The total

area of the base is 153.33 hectares (ha), and the area for winter

wheat cultivation is 64.98 ha (Figure 1). Due to local regulations, the

use of UAS is limited to a small area within the base (Purple and

blue box in Figure 1), and accurate FVC estimation for the entire

base or even larger areas requires satellite data support.
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The study area is divided into six sections, labeled A to F in

Figure 1. Plot A covers an area of 6.10 ha, and within it, experiments

involving different water and fertilizer treatments, seeding densities,

and irrigation methods were conducted. A section of the plot, in

Plot A, was also designated as a no-intervention zone for winter

wheat growth, which greatly increased the FVC diversity in the

same period for winter wheat in the local area. Plots B to F represent

normal winter wheat growth. Based on monitoring in previous

years at the base, the growth stage for winter wheat was determined

to be the jointing-booting stage when the variation of FVC is the

greatest. As a result, there were two temporal phases to the

“Ground-UAS-Satellite” synchronous observation experiments

that were carried out for this study. The area covered by the UAS

and satellite images on April 8 (Jointing Stage) and the location of

the ground samples is marked in purple, while those on April 29

(Booting Stage) are marked in blue (Figure 1).
2.2 Data collection

2.2.1 Unmanned aerial systems data
and pre-processing

The UAS data were collected approach on April 8th and 29th,

2022. Upon confirming the revisit schedule of the Sentinel-2A/B

satellite via SPECTATOR-EARTH (https://spectator.earth/), we

carried out a synchronous ‘Ground-UAS-Satellite’ observational

experiment in the presence of clear weather conditions.

The Parrot Sequoia agricultural multispectral camera, carried

by both drone flights, was used to collect data. The camera consists

of a multispectral sensor and an RGB sensor, which includes four

1.2 million-pixel single-band cameras and one 16 million-pixel
FIGURE 1

Geographic location of the study area. The topographical map at the upper left shows the location of the base in Beijing, China. The yellow boxes
are winter wheat growing areas. The purple and blue boxes are the UAS image coverage, and the purple and blue points represent the locations of
field sampling sites in the study area.
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RGB camera. The spectral parameters of the multispectral camera

are shown in Table 1.

The UAS was equipped with a high-precision Real Time

Kinematic module to provide real-time and centimeter-level

positioning data, which were incorporated into the image metadata.

We used a low, 40m flying altitude to achieve ultrahigh resolution

imagery (RGB< 2.2 cm; Mul< 5.5cm), and an 85% frontal overlap

between the image footprints (Riihimäki et al., 2019). We used the

Pix4D Mapper (v. 4.5.6), which completes all the main structure-

from-motion steps; including orthogonalizing the image and then

correcting to surface reflectance using a standard whiteboard.

2.2.2 Satellite data and pre-processing
With its multiple spectral channels, high revisit rates, and wide

swath, Sentinel-2 provides real-time dynamic monitoring of the

global environment and security (Li et al., 2022b; Putzenlechner

et al., 2022). The Sentinel-2 images were gained from the Google

Earth Engine of bottom-of-atmosphere reflectance that had been

atmospherically corrected. In the visible spectral band, the spectral

characteristics of wheat before maturity are dominated by various

pigments in the leaves and stalks, with absorption valleys in the red

band centered at 0.67 mm where chlorophyll strongly absorbs

radiant energy. In the near-infrared (NIR) spectral band, the

spectral characteristics depend on the cellular structure inside the

leaf, and therefore, the NIR spectral band is often considered to be

of high value for plant or non-plant differentiation. We chose three

spectral bands of the Red, Red Edge, and NIR of Sentinel-2 as the

data source to obtain the richest possible spatial information while

meeting the spectral band requirements. The blue band (Band 2)

data was not used because the blue band was considered easily

contaminated by residual atmospheric effects (Jia et al., 2016), and

the green band contributes to the biophysical change of vegetation

and is beneficial to the remote sensing inversion of FVC. Due to

partial cloud cover in the study area on 29 April, we finally chose

two periods of data for the experiment, 8 April, and 2 May 2022.

2.2.3 Field-measured data and pre-processing
The use of digital photography is the simplest and most reliable

technique for testing and validating remote sensing information

extraction (Liang and Wang, 2019), and it is widely used in crops

ground measured FVC (hereafter FVCreal) extraction (De la Casa

et al., 2018; Wang et al., 2020a; Yu et al., 2021).

The ground sample point design used a five-point sampling

method (Figure 2) (Yu et al., 2021). Five photographs (2m scale

samples) were taken using a digital camera along two diagonals of

the sampling point and their average was used as the FVC sample
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with a spatial resolution of 10m FVCreal, while the FVC sample with

a spatial resolution of 2m was only used for the middle of the 10m

sample. So, 2m and 10m FVCreal have equal numbers. The choice of

scales at 10m and 2m, respectively, was made based on their

correspondence to the scales of satellite pixels and ground sample

plots. The tool used to record the geographic coordinates of the

center measurement point in each photo was the Tibbo A8

handheld GPS receiver, which achieved a positioning accuracy of

1m using the Satellite-Based Augmentation System. To further

improve the positioning accuracy, we created a square polygon

(2m) around the central coordinates in ArcMap 10.6 and used the

Georeferencing tool to manually align it with the RGB data from the

UAS to obtain the final positioning accuracy (<0.41m). The number

of ground samples collected in each of the two time periods is

shown in Table 2.

In this manuscript, Gaussian fitting and segmentation

algorithms are utilized to extract FVC from the image (Liu et al.,

2012; Yu et al., 2021). The core of the algorithm is to convert the

color space of a digital image from RGB to CIE L*a*b*. At this

point, the histogram of the a* channel presents two approximate

Gaussian distributions, and the following function is employed to

analyze the distribution of the transformation values:

f (x) =
w1ffiffiffiffiffiffi
2p

p
d1

e
(x−b1)

2

−2d2
1 +

w2ffiffiffiffiffiffi
2p

p
d2

e
(x−b2)

2

−2d2
2 (1)

where b1 and b2 are the means of the winter wheat and the

background, respectively; d1 and d2 are the standard deviations of the

winter wheat and the background, respectively; and w1 and w2 are

the weights of the winter wheat and the background, respectively.

Finally, a threshold is determined to segment the two Gaussian

distributions and fit the curves of the two parts for unbiased

estimation of FVC. The original digital photograph (left) and the

algorithmically processed segmentation map are shown in Figure 3,

resulting in the FVC in this 2m sample. It is worth noting that in

practice it is difficult to determine the threshold for plots that

appear to be wet with water, and often a customized threshold is
TABLE 1 Band parameters of multispectral sensor.

Band name Wavelength (nm) FWHM (nm)

Green 550 40

Red 660 40

Red edge 735 10

NIR 790 40
FIGURE 2

Strategies for measuring ground vegetation cover using digital
cameras in 10m and 2m scale samples.
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required by visual judgment. The Gaussian fitting and segmentation

algorithms were implemented entirely in MATLAB 1.6.
2.3 Methodology

2.3.1 Workflow for accurate estimation of winter
wheat FVC

To accurately estimate FVC for winter wheat, we integrated UAS,

and satellite imagery based on the ML algorithm. First, conduct

ground, UAS, and satellite experiments simultaneously to collect data

(Figures 4A–C, F). Use the Strategy of Upscaling-Downscaling to

perform scale conversion operations on UAS and satellite reflectance

data (Figures 4D, E), completing data preprocessing. Then, use the

optimized regression models to estimate FVCUAS (Figure 4H) using

UAS data and field-measured data in plot A (Figure 1). Evaluate the

model with the highest accuracy using independent validation data

and obtain a large amount of labeled data. Finally, pair the

downscaled satellite data with the labeled data to obtain training

data (Figure 4G), train the BPNN model, and obtain accurate FVC

for wheat based on satellite data (Figure 4I).

2.3.2 Fine-scale conversion
Scale is one of the fundamental and important issues in remote

sensing (Li and Wang, 2013; Liu et al., 2018), Establishing the

conversion relationship of surface parameters from one scale to

another, including both upscaling and downscaling aspects.

However, existing research on FVC space scale conversion is

mainly focused on upscaling (Riihimäki et al., 2019; Lin et al.,

2021; Song et al., 2022). To obtain more accurate FVC, we adopt a

strategy of unifying satellite and UAS images to the ground plot (2m)
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scale, supported by the high spatial resolution of UAS imagery and

the powerful learning capability of machine learning. Based on the

findings of other researchers and our observations of the winter

wheat growth process in experiments, the canopy characteristic scale

(Tang and Liu, 2014) of winter wheat at different FVC stages is not

consistent, which leads to a continuously changing appropriate

observation scale (Jones and Vaughan, 2010). The canopy

characteristic scale is the basis of research object linear and non-

linear mixed, and it is the premise of the optimal scale of observation

objects. From the perspective of ray radiation transport, there is a

characteristic scale nonlinear mixed into the linear mixed transition.

Incident radiation between the transition characteristic scales of the

object is independent of the optical properties, and it can more

effectively describe the canopy group. By selecting the right scale, one

can produce remote sensing data with a twofold increase in efficiency.

Since the average wheat row spacing in actual observations is 0.151m

( ± 0.003m) and considered the accuracy after GPS registration, we

subjectively defined the target scale as 2m. In fact, the 2 m scale is not

set in stone, and it is interesting to investigate the best observational

scale for a particular crop. As a result, we may improve our scaling

research in future studies.

Downscaling of satellite images

A common method of downsizing images involves reducing the

resolution of high-resolution images to low-resolution images,

followed by using an interpolation method to reconstruct high-

resolution images. Popular interpolation methods include nearest

neighbor (Jiang and Wang, 2015), bilinear (Kirkland and Kirkland,

2010), and bicubic interpolation (Keys, 1981). The cubic

convolution interpolation algorithm is a widely used method,

which constructs the interpolation basis function by operating on

the gray values of the 16 adjacent points within a 4 � 4
TABLE 2 Ground sampling of the experiments.

Date Total

Number of samples in the area covered by UAS
images

Number of samples in the area not covered by UAS
images

Plot A Plot B Plot C Plot D Plot A Plot B Plot C Plot D Plot E/F

4-8 210 52 0 6 1 0 22 24 23 82

4-29 77 34 17 0 0 5 7 6 0 8
FIGURE 3

The examples of extracting FVC from the field-measured images.
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neighborhood of the target point and then uses the function to

reconstruct the coarse-resolution image. W(x), the interpolation

basis function, is the best theoretical cubic approximation in

theoretical of function inc(x) = (sinx)=x, and is shown in (2).

W(x) =

xj j3−2 xj j2+1,                           for xj j < 1          

− xj j3+5 xj j2−8 xj j + 4,   for   1 ≤ xj j ≤ 2

0,                                                       others                  

8>><
>>: (2)

which x is the raw pixel value (the reflectance value of Sentinel-2

L2A data) of the target point.
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f (i + u, j + v) represents the pixel value of the target point (i +

u, j + v) in the source image, and the interpolation formula is as follows:

f (i + u, j + v) = ABC (3)

The forms of matrix A,B,C are as follows:

A = ½W(u + 1)W(u)W(u − 1)W(u − 2)� (4)

B = f (i − 1 : i + 2, j − 1 : j + 2) (5)

C = ½W(v + 1)W(v)W(v − 1)W(v − 2)� (6)
FIGURE 4

Workflow for inversion of winter wheat FVC using Ground-UAS- Satellite data and ML models. (A) satellite image from the region of interest. (B) UAS
image from the region of interest. (C) ground measurement photograph.(D) downscaled satellite image. (E) upscaled UAS image. (F) Field-measured
FVC. (G) FVCUAS extracted from UAS. (H) training data pair consisting of downscaled satellite images and FVCUAS. (I) predicted FVCsatellite of the
region of interest. where (A, B, D, E, H, I), and (I) show images of the same location.
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where the distances between the target point and the nearest

point (i, j) of the source image are u and v, respectively.

The cubic convolution interpolation algorithm can not only

maintain good image details but also effectively suppress artifacts

and noise, which is why it is widely used in image downsampling

reconstruction (Lepcha et al., 2023). The antialiasing attribute of

tricubes convolution interpolation is also a mainstream method for

constructing super-resolution training sets, which is widely used in

pre-up sampling super-resolution models or directly for satellite

surface reflectivity reconstruction (Li et al., 2020; Lepcha et al.,

2023). Here, Sentinel-2 images were processed by cubic convolution

interpolation algorithm to achieve fine-scale conversion scale

conversion (Figures 4A, D).

Upscaling of UAS images

Downscaled satellite images were used to build a raster in

ArcMap 10.6 and used the Zonal tool to aggregate the UAS

multispectral imagery to achieve the upscaling of UAS data

(Riihimäki et al., 2019) (Figure 4E). It is worth mentioning that

after resampling the 10m pixels to 2m pixels using cubic

convolution, the original pixel values (10m) are preserved in the

middle of the resampled 2m pixels.
2.3.3 Extract FVCUAS using UAS data
To obtain label data with the highest possible accuracy, we have

improved the four methods for extracting FVCUAS, which are the

RFR (Breiman, 2001), the Normalized Difference Vegetation Index

image-based dichotomous model (hereafter NDVI-based) (Xiao

and Moody, 2005), and the support vector regression (hereafter

SVR) (Lin et al., 2021) using multispectral data, and a half-Gaussian

fitting method (hereafter HAGFVC) (Li et al., 2018) using RGB

data, respectively.

Random forest regression model

RFR is an ensemble learning algorithm composed of multiple

regression trees, which models the relationship between band

reflectance and FVC using a set of decision rules using RFR. Each

regression tree generates a prediction value, and the final predicted

value of RFR is the average response value of all regression trees.

The core algorithm of RFR is as follows:

min|{z}
M, s

min|{z}
N1

o
Xi∈ K1 (M, s)

(yi − N1)
2 + min|{z}

N2

o
Xi∈ K2 (M, s)

(yi − N2)
2

2
4

3
5
(7)

Where N1 and N2 is the sample output mean of K1 and K2 data

set, M is the division feature and s is the division point, yi the i-th

sample point.

Two parameters need to be optimized in RFR: the number of

trees in the random forest (Ntree) and the number of bands

randomly extracted at each node (Mtry). The range of Mtry is set

from 1 to 31 with a step size of 1, and the range of Ntree is set from

100 to 2,000 with a step size of 100. After 10-fold cross-validation,

the optimal Mtry and Ntree values were found to be 2 and 350,

respectively. To enhance the model’s generalization ability, ground

measurement data from two temporal phases were used together to
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train and test the model, with a training-to-validation data ratio of

8:2, as was done for the SVR and NDVI-based methods.

Support vector regression model

SVR is an ML regression algorithm that is derived from the idea

of support vector machines (SVM) by introducing insensitive loss

coefficients. Given the kernel function K(xi, xj), SVM can be solved

using the method of solving linear problems to solve non-linear

problems in the original input space. Here, we are using the Radial

basis kernel function. The optimal hyperplane is defined in the

space spanned by the kernel function of the support vectors xi:

f (x) =o
n

i=1
(aiK(xi, xj)) + w0 (8)

In the equation, xi represent the support vector, n is the number

of support vectors, ai is the basic coefficient corresponding to the

support vector, which is mainly affected by the penalty coefficient,

and w0 is the absolute coefficient.

Similar to the optimization method in the reference literature,

the grid search method is used to optimize the kernel parameter

(gamma) that reflects the distribution of samples in the feature

space, and the penalty coefficient(cost) that affects the complexity

and stability of the model (Lin et al., 2021). After 10 rounds of cross-

validation, the optimal gamma and cost values were determined to

be 0.8 and 3, respectively.

Pixel dichotomy model

The binary pixel model is currently the most widely used

method for estimating FVC. It postulates that the pixel

information received by satellite sensors is composed of

vegetation and soil, with FVC representing the percentage of

vegetation-occupied pixels. NDVI is considered to be a good

indicator of FVC. Therefore, this study utilizes a pixel binary

model with NDVI as the input parameter to estimate FVC in

wheat. The formula is as follows:

FVC =
NDVI − NDVIS
NDVIV − NDVIS

(9)

where NDVIS, and NDVIV are NDVI values in the area that

were completely covered by soil and vegetation, respectively.

HAGFVC model

The principle behind HAGFVC is to fit two half-Gaussian

distributions in the International Commission on Illumination

(CIE) Lab* color space, and then determine the threshold based

on the parameters of the Gaussian distribution to generate a more

accurate FVC estimate. As it directly extracts FVC using UASs’

RGB data, its workflow first extracts FVC and then performs a scale

transformation into a 2m upscaling operation, and finally evaluates

the extracted FVC results using the field measurement data of plots

B, C, and D.

h(x) =
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

(2p)s
p exp −

x − m
s

� �2
2

          x ≥ mb, x ≤ mv (10)

Where h(x) is the half-Gaussian distribution function; m and s
are the mean value and standard deviation, respectively; subscripts v

and b refer to vegetation and background.
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After using this method to separate vegetation from the

background, evaluate the model accuracy using the square

polygons established in ground measurement data in ArcMap

10.6. A MATLAB GUI tool developed by the authors of the

method was used for implementing the HAGFVC method.

FVCUAS accuracy verification

The independent validation dataset for the FVCUAS estimation

model was composed of FVCreal from plots B, C, and D that had

UAS data coverage (Figure 1). To evaluate the accuracy of the FVC

estimation model, the study uses the coefficient of determination

decision factor (R2) and root mean square error (RMSE) to measure

the model’s predictive performance. The formulas for calculating R2

and RMSE are as follows:

R2 =
SSR
SST

(11)

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
no

n

i=1
(y

0
i − yi)

2

s
(12)
2.3.4 Accurate FVCsatellite estimation based on
neural networks

The neural network learns from a training dataset by imitating

human learning capabilities to establish relationships between

variables that are robust to noisy data and can approximate

multivariate nonlinear relationships (Rumelhart et al., 1986). Back

propagation neural network (hereafter BPNN) is one of the most

widely used models in artificial neural networks. It has been applied

to estimate basic vegetation variables such as FVC (Jia et al., 2016),

FAPAR (Putzenlechner et al., 2022), and aboveground biomass

(Zhu et al., 2019), and has been proven to be an effective algorithm.

BPNN consists of three parts: input layer, hidden layer, and output

layer, with its core being the adjustment of synaptic weights to

achieve overall error below the expected threshold. Therefore, this

study has selected BPNN to construct an FVC estimation algorithm.

BPNN can learn from the training dataset and create relationships

between reflectance under different surface conditions and FVC.

The trained BPNN can then provide the optimal FVC estimate

based on the actual reflectance of remote sensing data.

The BPNN used in this study took three Sentinel-2 surface

reflectance bands, specifically green (Band 3), red (Band 4), and

NIR (Band 8), as input. The output of the model was the
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corresponding FVC values for the three surface reflectance bands.

The hidden layer of the BPNN contained 6 nodes, with “sigmoid”

and “linear” functions used as activation functions for the hidden

and output nodes, respectively. The Levenberg-Marquardt

minimization algorithm was used to calibrate the synaptic weights

during the training process. The learning dataset consisting of

input-output pairs from FVCUAS, and satellite data were

randomly divided into three parts: 80% of the training data was

used to train the BPNN, and 20% of the training data was used to

test the convergence process of the model. The performance

threshold was set at RMSE with a value of 0.06 as the indicator

during the training process, with a maximum iteration of 5000

times. Eventually, the expected goal was achieved after 727

iterations in the 2m-scale training, while the performance did not

reach the predetermined goal in the 10m-scale training. Therefore,

the model that showed RMSE continuously for 15 iterations

without further changes was selected as the final training model.

Traditional and advanced estimation methods, including the

NDVI-based method, the optimized ML method RFR, and the deep

learning method LSTM (Yu et al., 2021) were used to compare with

the BPNN method, where the optimization strategy of RFR is

consistent with that in the FVCUAS estimation process, and the

optimization strategy of LSTM model was to adjust the number of

hidden layers, learning rate, and batch size.

FVCsatellite accuracy verification

The independent validation dataset for the 2m scale FVCsatellite

estimation model was composed of ground-truth data from plots B

to F and FVCreal from plot A during the tasselling stage that was not

covered by UAS data, while the validation method in the 10m scale

FVC estimation is tenfold cross-validation instead of independent

validation. Here, the model’s predictive performance was still

measured using the coefficient of determination decision factor

and root mean square error.
3 Results and discussion

3.1 Accuracy assessment of FVCUAS

As FVCUAS serves as an input for neural network models

estimating FVC derived from satellite data, the FVCUAS must be

of the highest possible accuracy. The inversion results of the four
FIGURE 5

Comparisons of the RMSE and R2 of different FVCUAS estimation models.
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FVCUAS extraction models indicate that the RFR model driven by

UAS multispectral data has the highest accuracy at the 2m and 10m

scales. The ten-fold cross-validation average prediction values of the

model are highly fitted with the reference values, with an R2 index of

0.9359 and an RMSE of 0.0544 (Figure 5). In comparison, the

commonly used NDVI-based method has an R2 of 0.8405 and an

RMSE of 0.0765, representing an 11% increase in R2 and a 29%

decrease in RMSE. The other two models performed poorly.

From Figure 6, it can be observed that during the jointing and

booting stages, the RFR and NDVI-based inversion results are

consistent with the distribution of NDVI. This is consistent with

previous research which found a strong correlation between FVC

and NDVI (Jia et al., 2016; Gao et al., 2020; Song et al., 2022).

Moreover, during the jointing stage, RFR is still able to accurately

retrieve FVC in areas with high FVC, while NDVI-based and NDVI

maps show a ‘saturation phenomenon’. During the booting stage,

when FVC is generally high, NDVI-based, SVR, and HAGFVC all

show varying degrees of overestimation. This further confirms the

characteristic of the decreased sensitivity of NDVI in areas with

high FVC. The HAGFVC and SVR models often estimate lower

FVC during the jointing stage and higher FVC during the booting

stage. The reason for this difference is different for the two models.

For HAGFVC, its principle is similar to that of the mixed pixel

decomposition model (Gao et al., 2020). However, the 2cm spatial

resolution of the UAS is still relatively coarse for wheat leaves,

resulting in overmuch mixed pixels and difficulties in extracting

pure pixels, which is often considered the main reason why such

models are limited in their use. The inversion results of HAGFVC at

the 10m scale are better than those at the 2m scale (Figure 7), and

this difference should be due to the accuracy of the GPS handheld

used in the FVCreal measurements. Finer scales should be equipped

with higher-precision positioning instruments. The performance of

SVR is not satisfactory, presumably due to insufficient optimization

of gamma and cost values. In addition, during the optimization

process of RFR, it was found that the absence of any one to three of

the four spectral bands of the UAS multispectral sensor or their

combinations would reduce the prediction accuracy. This suggests

that all four bands of the Parrot Sequoia have a strong positive

correlation with FVC.
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Overall, the inversion results of the RFR model were utilized for

label data production, generating a total of 27,817 2m-scale label

data and 1,076 10m-scale label data for winter wheat in the jointing

and booting stages, respectively, as shown in Table 3. The data from

both growth stages were used together to train an accurate FVC

estimation model to further enhance the robustness of the model.
3.2 Comparisons of different FVCsatellite
estimation models

3.2.1 Parameter settings for different FVCsatellite

estimation models
All FVCsatellite extraction models were optimized for optimal

performance. In the FVCsatellite estimation using the Strategy of

Upscaling-Downscaling, the optimized LSTM network had 3 layers

with 100 hidden neurons in each layer. The dropout rate for each

dropout layer was set to 0.3, the training epoch was set to 550, the

batch size was set to 128, and the learning rate was set to 0.0005. For

the LSTM and BPNN models, 27,817 sample data were divided into

training data, validation data, and testing data in an 8:1:1 ratio. The

key parameter NREE for the optimized RFR was set to 500, and Mtry

was set to 2. The training and testing data ratio for RFR and NDVI-

based methods was 8:2. It is worth noting that the reason why 10m

FVCsatellite was still available in this strategy is that we upscaled 2m

FVCsatellite to 10m (10m-RMSE, Figure 6) using the Zonal tool in

ArcMap. In the FVCsatellite estimation using the strategy of upscaled

operations onUAS data only, the parameters of the BPNNmodel and

the LSTM model remained unchanged, and the RFRs’ optimal Mtry

and Ntree values were found to be 1 and 300.

The neural network models’ network structure and multi-layer

learning mechanism can extract deep and abstract features of data.

However, because of this, these models are sensitive to the amount of

training samples. A large amount of training data can ensure the

model’s prediction accuracy, but too much data may bring problems

such as information redundancy and long training time. Therefore, a

quantitative analysis of the relationship between data volume and

model accuracy is needed to ensure both model accuracy and training

efficiency with sufficient data (Lin et al., 2021; Yu et al., 2021). In our
FIGURE 6

Comparison of accuracy among different FVC extraction models; The vertical axis is the RMSE value; The dashed line represents the results fitted by
2m FVCUAS and FVCreal.
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designed experiment, we randomly selected 0-27000 samples (with a

1000 interval) from 27817 sample data to test the performance of the

model. The results showed that BPNN and LSTM models converge

when the data volume is more than 12000. Meanwhile, because the

NDVI-based model’s prediction results are relatively stable when

inputting 12000 or more data, we took the average of the results of 10

repeated experiments as a reference (Figure 8, Gay line). The results

showed that when the training data volume reached 15000, the

prediction accuracy of both BPNN and LSTM models could stably

exceed that of the NDVI-based model. When the training data

volume reached 20000, the prediction accuracy of the BPNN model

tended to be stable. However, for the LSTM model, it seems that the

full performance of 27817 sample data cannot be explored. If more

sample data is input, there is still further improvement in its

prediction accuracy.

3.2.2 Comparison of accuracy of FVCsatellite

estimation models
The proposed method (BPNN) was evaluated using reliable 2m

FVCreal, 10m FVCreal and 2m FVCUAS. Compared to NDVI-based,
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RFR, and LSTMmodels, the average RMSE of BPNNmodels’ inversion

results were reduced by 25.3%, 24.4%, and 11.9%, respectively, after

fitting with 2m FVCreal (2m-RMSE, Figure 6). At the same time, the

BPNN inversion results were verified by 2m FVCUAS, showing the same

trend (UAS-RMSE). Interestingly, upscaling the prediction results from

a 2m scale to a 10m scale resulted in a general decrease in RMSE when

tested against the independent validation dataset of 10m FVCreal (10m-

RMSE). To further explore the differences between the two best-

performing methods, BPNN and LSTM, we tested their data

sensitivity. The results showed that when the training data volume

reached 20,000, the prediction accuracy of BPNN tended to stabilize.

However, for the LSTM model, 27,817 sample data seemed insufficient

to fully exploit its performance.

The average RMSE of the BPNN model (0.059) is significantly

close to the average RMSE of 2m FVCUAS (0.054) compared to other

models. The UAS-RMSE of all four models is lower than the 2m-

RMSE, which we believe is the result of error propagation because the

error between 2m FVCUAS and FVCreal is still preserved between 2m

FVCsatellite and FVCreal and cannot be eliminated with the current

amount of data. Similar examples of error propagation should be

avoided at the experimental design stage, such as direct validation

using UAS data (Riihimäki et al., 2019) or direct validation using high

spatial resolution data (Wang et al., 2020a; Song et al., 2022). The RFR

model can achieve good accuracy in predicting FVCUAS, but when

using FVCUAS and satellite data as training data and 2m FVCreal as

validation data, its RMSE is close to the fitting result of the NDVI-

based model, while when using 2m FVCUAS as validation data, its

RMSE is 5.4% lower than the fitting result of the NDVI-based model.

We believe that RFR can still effectively solve the problem of
FIGURE 7

The examples of extracting FVCUAS from the UAS images in plot A.
TABLE 3 Amount of tagging data for different growth periods of winter
wheat.

Growth periods
Number of UAS samples

2m 10m

Jointing Stage 15530 602

Booting Stage 12287 471
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multicollinearity between independent variables compared to

traditional NDVI-based models, but its learning ability is limited

when the relationship between input variables and the modeling target

is more complex. As many previous works have reported, the

performance of RFR in complex nonlinear relationships is not ideal

(Wang et al., 2019; Cheng et al., 2022; Hu et al., 2022). The main

reason why all 10m-RMSE are lower than 2m-RMSE is that the RMSE

of 10m FVCUAS is lower than that of 2m FVCUAS, which explains the

same trend even for the traditional NDVI-based model.

3.2.3 Comparison of estimation accuracy of
different models for uni-temporal FVCsatellite

The establishment of the model involved the use of two phases

of FVCUAS data, which not only enhances the robustness of the
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model but also enables the estimation of winter wheat FVC in a

single time phase. As shown in Figure 9, it can be observed that the

RMSE of the BPNN and LSTM models based on neural networks is

consistently lower during the jointing period than during the

booting period. This difference can be well explained by the

proportion of FVCreal (53:34) and FVCUAS (15530:12287) that

participated before. On the other hand, the NDVI-based model

shows better FVC inversion results during the booting period (R2 =

0.686; RMSE = 7.6%) than during the jointing period (R2 = 0.498;

RMSE = 8.0%). This may be mainly due to the generally low FVC

during the jointing period, as well as the existence of abundant

mixed pixels in the UAS images with a spatial resolution of 5 cm,

while the FVC during the booting period is relatively higher, and

pure pixels are more dominant in the wheat field. As we all know,
B C D

E F G H

A

FIGURE 9

Comparison of the accuracy of different FVCsatellite extraction models. (A–D) are the results of winter wheat at the Jointing Stage; (E–H) are the
results of the Booting Stage.
FIGURE 8

RMSE of the BPNN and the LSTM method on the field measured data under different data sizes of the simulated training dataset.
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pixel purity is an important factor affecting the accuracy of binary

models (Gao et al., 2020). This phenomenon is not only commonly

observed in the estimation of winter wheat FVC but also in the

estimation of FVC in soybeans (De la Casa et al., 2018), shrubs (Liu

et al., 2019), and broad-leaved forests (Wang et al., 2020b).

Therefore, we suggest that when using the NDVI-based model to

estimate FVC, the issue of the number of mixed pixels should be

carefully considered.
3.3 Analysis of results of different scale
conversion strategies

Compared to only upscaling UAS data, the Strategy of Upscaling-

Downscaling not only increases the spatial resolution of FVC from

satellite pixel level to sub-pixel level but also significantly improves the

prediction accuracy, especially in the wheat field boundary area. The

RMSE of the fitting between the predicted results and the FVCreal

decreased by 28.2% during the jointing period and 16.1% during the

booting period. When the strategy of this method was applied to other

FVC estimation models, it was found that the prediction accuracy of all

models during the booting period of winter wheat increased by 14.1%

to 16.5% (except for the LSTM model).

Deep learning models can accurately approximate the complex

nonlinear relationships between environmental parameters (Zhang

et al., 2022), but improving their accuracy often requires a large

amount of labeled training data. The amount of labeled data

extracted from the 10m scale in UAS (1073 samples) is not
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enough to meet this requirement (Table 4, Figure 10). For the

different performances of the NDVI-based model in the jointing

and booting stages, the main reason is the theoretical basis of its

algorithm, Beer-Lambert law and linear spectral mixture analysis,

which are used to estimate the green vegetation cover or fraction

cover of photosynthetic vegetation, based on the assumption that

pixels are composed of only two elements: green vegetation and soil

(Gao et al., 2020). However, NDVI is often influenced by soil

background effects (Tang et al., 2020). Therefore, when winter

wheat is in the jointing stage and FVC is around 0.50, the soil

background and winter wheat are approximately evenly distributed

in the study area, and changes in scale and labeled data volume will

not significantly affect the estimation accuracy of the NDVI-based

model. But when winter wheat is in the booting stage and FVC is

around 0.85, most of the vegetation covers the ground, and using

NDVI inappropriately to establish a model to estimate FVC results

in a large estimation error (Table 4) and an overall overestimation

of the estimation results (Figure 10), which is consistent with the

previous results of using NDVI to estimate FVC (Liu et al., 2019;

Tang et al., 2020). Therefore, we recommend that when ground

survey data or synchronized UAS data is lacking, the NDVI-based

model is still a good choice for vegetation with FVC around 0.50

The traditional upscaling strategy involves establishing auxiliary

models, including statistical models (De la Casa et al., 2018;

Riihimäki et al., 2019; Wang et al., 2020b)and machine learning

models [such as GBDT (Wang et al., 2019), RF (Zhu et al., 2019)], to

obtain high-precision FVC through classification or regression of

UAS data or high spatial resolution satellite data, which is then used
TABLE 4 RMSE for fitting the predictions of different models to reference values.

Growth periods Scale NDVI-based RFR LSTM BPNN

Jointing Stage
2m 0.080 0.079 0.065 0.056

10m 0.082 0.083 0.089 0.078

Booting Stage
2m 0.076 0.073 0.074 0.068

10m 0.091 0.085 0.129 0.081
The black font indicates the methods with larger FVC improvement after using the upscaling-downscaling strategy.
FIGURE 10

Box plots of the difference between the predicted results of different models and the reference value. (Among them, Dy = FVCsatellite − FVCreal).
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as labeled data for FVC estimation of coarser spatial resolution data.

The green box in Figure 10 represents this traditional approach,

which involves upscaling high spatial resolution data to obtain 10m

FVCsatellite; whereas our down sampling strategy in this paper

involves down sampling lower spatial resolution data to obtain

sub-pixel 2m FVCsatellite. We believe that the significant

improvement in accuracy resulting from the Strategy of

Upscaling-Downscaling shown in Table 4 and the gray box in

Figure 10 is primarily due to the coupling of the extensive and

accurate spectral information in UAS data and the powerful

learning ability of the ML model. Alvarez-Vanhard (Alvarez-

Vanhard et al., 2021) categorizes such a strategy as the strongest

synergistic effect of ‘data fusion’, and also point out that unmanned

aerial vehicles have the potential to provide greater benefits than

traditional approaches, while advancements in multi-source
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interoperability and machine learning will also contribute to

achieving stronger synergistic effects.

Figure 11 shows the estimated FVC of the four models after

using the proposed strategy for two growing periods compared to

the NDVI maps. The pathways and surrounding wheat fields are

represented by the two black rectangular patches A and B

respectively. As can be observed, spatial ambiguity is produced

when the NDVI-based FVC mapping is resampled from 10m to 2m

pixel size. At the Jointing Stage, some wheat fields along the field

path had higher NDVI values that were more vulnerable to non-

vegetation spectra and tended to be underestimated. In contrast,

when the winter wheat cover level is generally high at the Booting

Stage, the NDVI values of the pixels at the field path locations are

more likely to be affected by the vegetation spectra, and the FVC at

the wheat field boundary locations tends to be overestimated.
FIGURE 11

Comparison of density partition maps of FVCsatellite and NDVI derived from different models. The first column is a map of NDVI derived from
Sentinel-2 L2A data (Spatial resolution of 10m), and the others are maps of FVCsatellite density splits estimated by different models (Spatial resolution
of 2m); The bottom panel is an RGB plot corresponding to the growth period (Sentinel-2 L2A data).
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The FVC scatter plots for the wheat field boundary and

intermediate sample locations obtained using various techniques

are displayed in Figure 12. The estimation accuracy was evaluated

by randomly choosing 150 FVCUAS points from the middle and

border locations of the wheat field (the boundary location is defined

as the area within a 5 m radius of the boundary line). The majority

of the FVC-less than-0.2 sites in the NDVI-based model were

situated below the 1:1 line, indicating that the model’s estimation

resulted in an underestimating. At various FVC levels, the machine

learning system consistently estimates the value without appreciable

overestimation or underestimation. The RMSE-UAS findings based

on NDVI, RFR, LSTM, and BPNN are 7.8%, 7.8%, 6.2%, and 5.6%,

respectively, as shown in Figure 6. The RMSE in the center of each

model is rather near to its respective RMSE-UAS, as seen in

Figure 12. As a result, we think that the NDVI-based model’s

higher RMSE at the boundary location (8.0%) pulls up the RMSE at

the middle position (7.7%), resulting in an RMSE with an overall

estimation accuracy of 7.8%. It indicates that the BPNN model can

greatly increase the precision of wheat field boundary estimates.

Implementing the Upscaling-Downscaling technique provides

critical support for precise FVC estimates at the boundary regions

of wheat fields using the BPNN model owing to the support of UAS

imagery that offers Wheat coverage information with higher spatial

detail. In wheat fields with high geographical diversity, such as

family farms, river areas, urban or rural peripheries, etc., this is

essential for accurately measuring vegetation coverage.
4 Conclusions

Fractional vegetation cover (FVC) is a critical trait that

characterizes the growth status of crops and is of great interest in
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crop breeding and precision management. Here, we demonstrated a

novel methodology of integrating UAS and satellite imagery for

accurate estimation of winter wheat FVC.

(1) A random forest regression model with the support of

limited ground reference data can obtain a high-precision

FVCUAS (RMSE = 0.054). By substituting UAS for field

measurements, more abundant remote sensing information was

incorporated into the FVCsatellite estimation. Moreover, with the

powerful learning ability of the BPNN model, more accurate FVC

estimation over larger areas can be achieved. Validation with an

independent dataset showed that the RMSE of the BPNN model

(0.059) was 11.9% to 25.3% lower than that of other commonly used

FVC estimation models. In addition, the stable estimation can be

achieved with only 20,000 label data for the BPNN model.

(2) Compared to the strategy of only upscaling UAS data, the

strategy of both upscaling and downscaling UAS and satellite data

simultaneously not only obtained sub-pixel FVC but also improved

accuracy, especially on the border of the wheat field. Four commonly

used FVC estimation models estimated winter wheat FVC during

Jointing and Booting stages separately using the Strategy of

Upscaling-Downscaling, achieving a maximum reduction of 28.2%

and 16.5% in RMSE, while the traditional NDVI-based model was

even able to achieve the most significant reduction in RMSE during

the booting stage when FVC is higher. More importantly, the Strategy

of Upscaling-Downscaling provided sub-pixel FVC, which enriched

the spatial heterogeneity information.

The results demonstrate that the integration of UAS and

satellite imagery using machine learning algorithms can achieve

an accurate estimation of winter wheat FVC. Therefore, we

recommend collecting ‘Ground-UAS-Satellite’ data synchronously

during fieldwork and crop parameter inversion. Furthermore, the

proposed method framework can be applied to estimate other
B C D

E F G H

A

FIGURE 12

Scatterplots of estimated FVC for field boundary locations and intermediate locations under different strategies; (A–D) are field boundary locations;
(E–H) are intermediate field locations.
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surface parameters and synergistically utilize multiple sources

of data.
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