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Hybrid lethality is a type of reproductive isolation barrier observed in two

developmental stages, hybrid embryos (hybrid seeds) and hybrid seedlings.

Hybrid lethality has been reported in many plant species and limits distant

hybridization breeding including interspecific and intergeneric hybridization,

which increases genetic diversity and contributes to produce new germplasm

for agricultural purposes. Recent studies have provided molecular and genetic

evidence suggesting that underlying causes of hybrid lethality involve epistatic

interaction of one or more loci, as hypothesized by the Bateson–Dobzhansky–

Muller model, and effective ploidy or endosperm balance number. In this review,

we focus on the similarities and differences between hybrid seed lethality and

hybrid seedling lethality, as well as methods of recovering seed/seedling activity

to circumvent hybrid lethality. Current knowledge summarized in our article will

provides new insights into the mechanisms of hybrid lethality and effective

methods for circumventing hybrid lethality.

KEYWORDS

Bateson-Dobzhansky-Muller model, endosperm balance number, hybrid seed lethality,
hybrid seedling lethality, reproductive isolation
1 Introduction

Distant or wide hybridization including interspecific and intergeneric hybridization

increases genetic diversity and contributes to produce new germplasm by transferring

resistance to disease or novel and useful phenotypes for agricultural purposes. However, the

formation and evolution of reproductive isolation has prevented gene flow between species

through distant hybridization (Lafon-Placette et al., 2017; Kulmuni et al., 2020). Despite its

evolutionary importance, reproductive isolation is also an obstacle to distant hybridization

breeding in plants. Reproductive isolation involves various pre-mating, post-mating

prezygotic, and postzygotic isolating barriers in plants (Coyne and Orr, 2004; Savolainen
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fpls.2023.1219417/full
https://www.frontiersin.org/articles/10.3389/fpls.2023.1219417/full
https://www.frontiersin.org/articles/10.3389/fpls.2023.1219417/full
https://www.frontiersin.org/articles/10.3389/fpls.2023.1219417/full
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2023.1219417&domain=pdf&date_stamp=2023-07-05
mailto:tezuka@omu.ac.jp
https://doi.org/10.3389/fpls.2023.1219417
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2023.1219417
https://www.frontiersin.org/journals/plant-science


He et al. 10.3389/fpls.2023.1219417
et al., 2006; Rieseberg and Willis, 2007; Rieseberg and Blackman,

2010). Ecogeographic isolation and pollinator isolation (pollinator

fidelity in a natural mixed population) are typical examples of pre-

mating isolation barriers (Ramsey et al., 2003; Coyne and Orr, 2004;

Savolainen et al., 2006; Streisfeld and Kohn, 2007; Zhang et al.,

2022a), whereas interspecific pollen-pistil incompatibility,

conspecific pollen precedence, gametic incompatibility, and pistil-

length mismatch are examples of post-mating prezygotic isolating

barriers (Rieseberg and Willis, 2007; Lee et al., 2008; Rieseberg and

Blackman, 2010; Huang et al., 2023). Postzygotic isolation barriers

include hybrid seed lethality (Bikard et al., 2009; Dziasek et al.,

2021), immature fruit abscission (Gupta et al., 1996; He et al., 2019;

Kawaguchi et al., 2021), hybrid seedling lethality or inviability

(Tezuka et al., 2010; Tezuka, 2013; Xiao et al., 2017; Deng et al.,

2019; Mino et al., 2022), hybrid weakness (Ichitani et al., 2011;

Shiragaki et al., 2020b), hybrid sterility (Yamagata et al., 2010; Koide

et al., 2018; Li et al., 2020), and hybrid breakdown (Li et al., 1997;

Kubo and Yoshimura, 2005; Zhang et al., 2021).

Hybrid lethality has been widely studied in various plant

species, including genera Nicotiana (Tezuka et al., 2010; He et al.,

2019), Arabidopsis (Bomblies et al., 2007; Dilkes et al., 2008), Oryza

(Nadir et al., 2018), Triticum (Hermsen, 1963b; Tikhenko et al.,

2005), and Capsella (Dziasek et al., 2021). Hybrid lethality can be

observed in hybrid embryos during seed development and in hybrid

seedlings or plants during plant development without infection.

Hybrid lethality in embryo results in seed abortion and is often

called hybrid seed lethality. Regarding hybrid lethality in seedlings,

different terms, such as hybrid weakness, hybrid necrosis, or others,

are used depending on the severity of the symptom and plant

species. Because of the different growth and developmental stages

during which hybrid lethality is observed, the similarities and
Frontiers in Plant Science 02
differences between hybrid seed lethality and hybrid seedling

lethality are topics of interest for future research.

Recent evidence has shown that hybrid lethality is often caused

by epistatic gene interaction of two or more loci, as explained by the

Bateson–Dobzhansky–Muller (BDM) model (Figure 1A) (Johnson

and Porter, 2000; Johnson, 2002; Bomblies and Weigel, 2007;

Sweigart and Willis, 2012). In this model, hybrid lethality is

caused by genes that were present in an ancestral population but

evolved differences in isolated descendent populations. Hybrid

lethality in seeds and seedlings may be caused by developmental

defects due to genes encoding disease resistance proteins (Bomblies

et al., 2007; Chen et al., 2014; Deng et al., 2019), such as duplicate

copies of critical genes for development, which were formed during

divergent evolution, including photosynthetic gene (Zuellig and

Sweigart, 2018) and histidinol-phosphate amino-transferase gene

(HPA) (Bikard et al., 2009).

In this review, we focused on and summarized the current

knowledge on hybrid lethality in seeds and seedlings, particularly

but not exclusively in Nicotiana (tobacco) species. We also introduce

recent molecular advances for finding similarities and/or differences

in mechanisms between both types of hybrid lethality. Finally, we

discuss the methods to overcome or circumvent hybrid lethality and

the active application of hybrid lethality to prevent gene flow.
2 Hybrid seed lethality

2.1 Two categories of hybrid seed lethality

Hybrid seed lethality during seed development is observed after

successful fertilization in both interspecies and interploidy
A B

FIGURE 1

Overview of two theories explaining genetic incompatibilities. (A) Bateson–Dobzhansky–Muller model. An ancestral population showed the
genotype of aabb. Each lineage evolved to independent mutations (a to A and b to B). When hybridization occurs between the newly formed two
species, deleterious interaction of the two alleles, A and B, causes genetic incompatibilities. In this model, allelic interaction of a single locus as well
as two or more loci might be responsible for genetic incompatibilities. (B) Endosperm balance number (EBN) hypothesis. Balanced effective ploidy or
EBN between parents yields normal endosperm, leading to normal embryo development and thus normally germinable seeds. When EBN of parents
is unbalanced, the timing of endosperm cellularization or proliferation is disturbed, resulting in embryo arrest and hybrid seed lethality. This
hypothesis is applicable to both interspecific and interploidy hybridizations.
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hybridizations and has been well studied in Nicotiana (Kostoff,

1930; McCray, 1933; He et al., 2020), Arabidopsis (Bikard et al.,

2009; Lafon-Placette et al., 2018), Oryza (Ishikawa et al., 2011),

Triticum (Tikhenko et al., 2008; Tikhenko et al., 2017a), and

Mimulus (Coughlan et al., 2020). Hybrid seed lethality is

characterized by embryo arrest and/or endosperm defects. Based

on underlying causes, hybrid seed lethality is classified into two

main categories: (1) hybrid seed lethality with underlying causes in

embryo itself (impaired or arrested embryo development, but

normal endosperm development are observed), and (2) hybrid

seed lethality caused by defective endosperm development,

leading to embryo arrest (Table 1).

2.1.1 Hybrid seed lethality with underlying causes
in the embryo itself

Several studies have reported that early embryo abnormal

development is the main cause of hybrid seed lethality in

Arabidopsis (Bikard et al., 2009) and tribe Triticeae (Tikhenko

et al., 2008). In intergeneric hybridization between wheat

(Triticum durum) and rye (Secale cereale), both belonging to

tribe Triticeae, despite normal endosperm development, the

development of shoot apical meristem (SAM) in hybrid embryo is

arrested, leading to incompletely differentiated embryos and non-

germinating seeds (Tikhenko et al., 2005; Tikhenko et al., 2008).

Hybrid embryo lethality in this cross is caused by the interaction

between two alleles from two loci, i.e., wheat embryo lethality (Eml)-

A1 and rye Eml-R1, which are likely to be orthologous genes
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(Tikhenko et al., 2010; Tikhenko et al., 2011). Gene mapping

results implied that Eml-A1 is involved in SAM maintenance, and

thus, the underlying cause of hybrid seed lethality is the embryo

itself (Tikhenko et al., 2017a).

Similarly, in hybridization between Arabidopsis thaliana

accessions Columbia (Col) and Cape Verde Islands (Cvi), embryo

arrest, resulting in hybrid seed lethality, is caused by duplicate genes

LD1.1 and LD 1.5, which encode histidinol-phosphate amino-

transferase that catalyzes an important step in the biosynthetic

pathway leading to an essential amino acid histidine (Bikard et al.,

2009). Homozygous states for both silenced Col allele at the

LD1.1 locus and silenced Cvi allele at the LD1.5 locus causes

embryo lethality (Bikard et al., 2009). Hence, hybrid seed lethality

with underlying causes in embryo agrees with the BDM model

and, at least in some cases known so far, is caused by gene

functional alteration.

2.1.2 Hybrid seed lethality with underlying causes
in endosperm

Polyploidy is widely acknowledged in plant evolution. Although

several mechanisms are considered to be related to polyploidization,

the most likely mechanism is the participation of unreduced 2n

gametes. However, production of polyploids through combination

of n and 2n gametes is often prevented. Even if a few polyploids

survive, the polyploids have difficulty producing viable offspring in

hybridization with diploid progenitors. This reproductive barrier,

which is called the triploid block, often involves incompatibility in
TABLE 1 Summary of hybrid seed lethality described in this review.

Genus Phenotype Models
Methods to overcome or circumvent hybrid lethality

References
(A) (B) (C) (D) (E) (F)

Arabidopsis Embryo arrest BDM ND ND ND ND ND ND Bikard et al. (2009)

Triticum Embryo arrest BDM ND Ineffective ND ND ND ND Tikhenko et al. (2005); Tikhenko et al.
(2008); Tikhenko et al. (2010); Tikhenko
et al. (2011)

Arabidopsis Endosperm
failure

EBN ND ND Effective Effective Effective Effective Scott et al. (1998); Bushell et al. (2003);
Josefsson et al. (2006); Lafon-Placette
et al. (2017); Huc et al. (2022); Xu et al.
(2023)

Capsella Endosperm
failure

EBN ND ND Effective ND Effective ND Rebernig et al. (2015); Lafon-Placette
et al. (2018); Huc et al. (2022)

Solanum Endosperm
failure

EBN ND ND ND ND ND ND Roth et al. (2018)

Mimulus Endosperm
failure

EBN ND ND ND ND ND ND Oneal et al. (2016); Garner et al. (2016);
Coughlan et al. (2020)

Nicotiana Endosperm
failure

EBN ND Effective or ineffective
(depending on types

of hybrid seed
lethality)

Effective ND ND ND Iwai et al. (1986); Subhashini et al.
(1986);
He et al. (2019); He et al. (2020)

Oryza Endosperm
failure

EBN ND ND Effective Effective ND ND Köhler et al. (2010); Ishikawa et al.
(2011); Schatlowski and Köhler (2012);
Sekine et al. (2013); Tonosaki et al.
(2018)
ND, no data; BDM, Bateson–Dobzhansky–Muller; EBN, endosperm balance number.
(A), Irradiation; (B), Tissue culture; (C), Ploidy manipulation; (D), Modification of gene expression; (E), Application of methyltransferase inhibitor; (F), Abscisic acid.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1219417
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


He et al. 10.3389/fpls.2023.1219417
the endosperm or hybrid seed lethality and is considered to act as an

instant reproductive barrier (Köhler et al., 2010; Schatlowski and

Köhler, 2012).

Research to date has implicated that in many cases, hybrid seed

lethality is caused by abnormal endosperm development (Scott

et al., 1998; Bushell et al., 2003; Ishikawa et al., 2011; Rebernig

et al., 2015; Lafon-Placette et al., 2017). In angiosperms, endosperm

is essentially a triploid tissue developed after the fusion of two polar

nuclei with a sperm nucleus and is mainly responsible for providing

nutrition for embryo growth and germination. Based on differences

in its developmental patterns, endosperm is classified into three

types: free nuclear, ab initio cellular, and helobial (Vijayaraghavan

and Prabhakar, 1984; Floyd and Friedman, 2000). Hybrid seed

lethality has been studied in plants with free nuclear or ab initio

cellular endosperm. In free nuclear endosperm, fertilized triploid

endosperm nucleus divides without formation of cell wall and later

become cellularized, whereas the cell wall is coordinately formed

with every endosperm nucleus division in ab initio cellular

endosperm. In plants with free nuclear endosperm, hybrid seed

lethality is characterized by a disturbance in the timing of

endosperm cellularization, which is an important developmental

transition stage for embryo development in this type of endosperm

(Ishikawa et al., 2011; Sekine et al., 2013; Lafon-Placette et al., 2017;

Il̇tas ̧ et al., 2021). In the ab initio cellular endosperm, hybrid seed

lethality shows impaired endosperm cell proliferation (Oneal et al.,

2016; Roth et al., 2018).

2.1.2.1 Endosperm balance number is involved in hybrid
seed lethality

Hybrid seed lethality caused by defective endosperm

development is well explained by effective ploidy or endosperm

balance number (EBN) hypothesis proposed by Johnston et al.

(1980) (Figure 1B). EBN is an arbitrary number allocated

to each species and the normal development of endosperm

requires a relative maternal (m):paternal (p) EBN ratio of 2:1

(Johnston et al., 1980; Städler et al., 2021). In intraspecies-

interploidy hybridization, m:p genome ratio deviates from 2:1;

thus, EBN ratio also deviates from 2:1, resulting in endosperm

developmental failure. Maternal EBN excess generally results in

precocious developmental transition in the endosperm and the

production of smaller seeds compared to self-pollinated parental

seeds, whereas paternal EBN excess generally results in delayed or

failed endosperm development and the production of bigger seeds.

Such examples that can be explained by the EBN hypothesis have

been reported in many plant species including Arabidopsis (Scott

et al., 1998), Oryza (Sekine et al., 2013), and Mimulus (Coughlan

et al., 2020). Similarly, the EBN hypothesis fits well with hybrid seed

lethality in interspecies hybridizations, even if the parental species

have the same ploidy level (Scott et al., 1998; Rebernig et al., 2015;

Garner et al., 2016). Therefore, differences in parental EBN rather

than differences in parental ploidy levels are assumed to be

responsible for hybrid seed lethality.

Nicotiana species have ab initio cellular endosperm (Sehgal and

Gifford, 1979). In this genus, hybrid seed lethality is widely observed

in interspecies hybridizations (McCray, 1933; Reed and Collins,

1978; Subhashini et al., 1985; Iwai et al., 1986; Subhashini et al.,
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1986; He et al., 2020). Recently, two types of hybrid seed lethality,

types I and II hybrid seed lethality, which show different severity of

symptoms dependent on the maternal accessions, were reported in

hybridizations between octoploid Nicotiana suaveolens and

allotetraploid N. tabacum (He et al., 2020). Type I seed lethality

occurs in hybridization between N. suaveolens PI 555561 (8x) and

N. tabacum (4x) and is characterized by precocious developmental

transition and subsequent developmental arrest of the endosperm

and abnormal hypertrophy of the embryo remaining in globular

state. In contrast, type II seed lethality occurs in another

hybridization between N. suaveolens accession PI 555565 (8x) and

N. tabacum (4x) and is characterized by symptoms more severe

than those of type I seed lethality, such as precocious developmental

transition of the endosperm and subsequent narrowing of the

endosperm region as if pressed by surrounding cells, and embryo

growth arrest in the early globular stage. Both type I and type II seed

lethality are related to maternal ploidy level as witnessed by the

experiments using ploidy manipulated lines. Even in the case of

hybridization producing normal seeds, phased increase of ploidy

levels in maternal plants subsequently causes type I and type II seed

lethality in both interspecies and interploidy hybridizations. The

two types of hybrid seed lethality are reversed by an increase in

ploidy levels of paternal parents. Thus, hybrid seed lethality in

Nicotiana is well explained by EBN hypothesis and higher ploidy

levels in maternal parents than in paternal parents cause type I or

type II seed lethality (He et al., 2020; He et al., 2022).

Previous studies have demonstrated that parent-of-origin

specific hybrid endosperm defect is observed in hybrid seed

lethality in reciprocal hybridizations and have implied that

genomic imprinting is involved in the endosperm defect (Bushell

et al., 2003; Josefsson et al., 2006; Lafon-Placette et al., 2017).

Genomic imprinting is the epigenetic phenomenon modifying the

expression of genes in a parent-of-origin manner. Genomic

imprinting mainly includes DNA methylation, histone

modification, and non-coding RNA regulation, and disturbed

balance of these modification is expected to cause hybrid seed

lethality (Lauria et al., 2004; Erdmann et al., 2017; Jiang et al., 2017;

Martinez et al., 2018; Dziasek et al., 2021). Current epigenetic

analysis in plants suggested that the regulation of imprinting in

plants is likely to be explained through a combination of several

different epigenetic mechanisms, and these mainly include DNA

methylation and trimethylation of lysine 27 of histone H3

(H3K27me3) (reviewed by Batista and Köhler (2020)).

EBN might be related to parental conflict hypothesis, where

maternal and paternal genomes have opposite effects on offspring

development: the maternal parent is equally related to all of their

progeny and thus should allocate equally, whereas the paternal

parents are only related to their own progeny, but not to the

competing half-siblings, and thus should somehow direct the

maternal parent to allocate differentially (Haig and Westoby,

1989; Haig and Westoby, 1991). In plants, the parental conflict

hypothesis predicts that the maternal genome excess or maternally

expressed genes (MEGs) lead to reduced nutrient flow to the

embryo, reduced seed size, and potentially reduced seed set under

unfavorable conditions. Conversely, the paternal genome excess or

paternally expressed genes (PEGs) promotes nutrient flow to the
frontiersin.org
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embryo and increases seed size and seed set (Schatlowski and

Köhler, 2012; Bai and Settles, 2015). This is consistent with the

endosperm and embryo observation in interploidy hybridizations

using parental plants with stepwise changes in EBN (Scott et al.,

1998; He et al., 2022).

Several key genes for EBN-based hybrid seed lethality have been

identified, suggesting that BDM-type mechanism might be related to

endosperm of incompatible species (Köhler et al., 2010). Hybrid seed

lethality in paternal excess hybridization can be circumvented by using

PEG mutants, such as PICKLE RELATED 2 (PKR2 which encodes a

CHD3 chromatin remodeler), PHERES1 (PHE1, the type I MADS-box

transcription factor), and ADMETOS (ADM which encodes a protein

belonging to the diverse family of molecular chaperones called J-

domain proteins) (Kradolfer et al., 2013b; Huang et al., 2017; Batista

et al., 2019). In contrast, MEG mutants, such as MEDEA (MEA, the

Polycomb group gene), are effective for circumventing hybrid seed

lethality in maternal excess hybridization (Kradolfer et al., 2013a).

Additionally, the mutant for TRANSPARENT TESTA GLABRA2

(TTG2; which encodes a WRKY transcription factor controlling

epidermal cell fate with pleiotropic effects on seed development and

trichome production) has also been reported to partially rescue hybrid

seeds from lethality through reduced integument cell elongation and

precocious endosperm cellularization in paternal excess hybridization

(Garcia et al., 2005; Dilkes et al., 2008). Similarly, the mutant for

TRANSPARENT TESTA 4 (TT4; which encodes the enzyme chalcone

synthase) has also been reported to rescue hybrid seeds in paternal

excess hybridization (Scott et al., 2013; Doughty et al., 2014). The ttg2

and tt4 mutants are characterized by the lack of flavonoid seed

pigmentation in the seed coat because they do not accumulate

proanthocyanidins, suggesting the involvement of flavonoid

biosynthesis pathway in hybrid seed lethality (Scott et al., 2013). A

recent study demonstrated that mutants of other genes in the flavonoid

biosynthesis pathway also rescued hybrid seeds from lethality; in

particular, tt8 mutants completely rescued hybrid seeds unlike

mutants of other genes, suggesting that auxin flux and signaling,

rather than flavonoid biosynthesis pathway, might be involved in

hybrid seed lethality because TT8 interacts with genes expressed in

seed coat including the repressor IAA27/PAP2, a canonical Aux/IAA

(Zumajo-Cardona et al., 2023). However, despite these extensive

studies, underlying molecular mechanisms of EBN differences are

largely unknown. Hence, elucidating the detailed mechanism of

hybrid seed lethality caused by endosperm defect in interspecific and

interploidy hybridizations remains challenging.

2.1.2.2 Immature fruit abscissions caused by hybrid seed
lethality

Plants have evolved sophisticated organ abscission to respond

to seed/fruit dispersal, pathogen attack, and environment stress.

Abscission is a universal and physiological process in plant

development that occurs through loosening of adjacent cell walls

within the abscission zone (AZ) and subsequent cell separation

(Addicott, 1982; Taylor and Whitelaw, 2001). It takes place under

various developmental signals, such as fertilization, senescence, and

ripening, and environmental signals, such as light, pathogen, and

temperature (reviewed by Sawicki et al. (2015)). Abscission is also

observed in developing ovaries (immature fruits) in interspecies and
Frontiers in Plant Science 05
interploidy hybridizations inNicotiana, which exhibit type II hybrid

seed lethality (He et al., 2020; He et al., 2022). The post-pollination

developing fruit or pod abscission has also been reported in other

interspecific crosses of the genera Cicer (Mallikarjuna, 1999),

Lupinus (Gupta et al., 1996), Phaseolus (Mok et al., 1978), and

Vigna (Barone et al., 1992), all of which belong to the Fabaceae

family. Studies in Nicotiana have clearly demonstrated that

manipulation of parental ploidy levels not only affects hybrid seed

lethality (type II, not type I, in the Nicotiana case) but also affects

immature fruit abscission in interspecies and interploidy

hybridizations (He et al., 2020; He et al., 2022). This implies that

the parental conflict hypothesis could also be applied to fruit

maturation and abscission, which are maternal processes.

However, the detailed process by which hybrid seed lethality

causes immature fruit abscission is unclear.

Failure of embryo development (seed abortion) may cause ovary

or fruit abscission during plant reproduction (Sawicki et al., 2015). In

general, plant hormones, such as auxin, ethylene, gibberellins (GAs),

and abscisic acid (ABA), play important roles in organ abscission.

Ethylene and ABA act as abscission-accelerating hormones (Vernieri

et al., 1992; Zacarias et al., 1995; Taylor and Whitelaw, 2001; Zhu

et al., 2010), whereas auxin and GAs are well-known inhibitors of

abscission (Mahouachi et al., 2009; Basu et al., 2013; Liang et al.,

2020). In particular, the interaction between auxin and ethylene plays

important roles in regulation of abscission (Taylor and Whitelaw,

2001). A basipetal auxin flux through AZ is considered to prevent

abscission by rendering the AZ insensitive to ethylene. When seed

abortion occurs, the auxin flux is suppressed, leading to the

enhancement of the AZ sensitivity to ethylene and activation of AZ

(Sawicki et al., 2015). Similarly, it has been demonstrated that auxin is

a trigger of seed development in many plant species; auxin

biosynthesis genes are activated after fertilization, then auxin is

accumulated and auxin signaling is activated in seed tissues

(reviewed by Figueiredo and Kohler (2018)). Fruit abscission occurs

when only small number of seeds are contained in the fruit owing to

the insufficient supply of auxin from seeds or ovary (Din et al., 2019).

Therefore, immature fruit abscission in interspecies and interploidy

hybridizations may also be controlled by auxin and ethylene. In the

case of Nicotiana, when the ovary was occupied by seeds exhibiting

type I hybrid seed lethality, a sufficient amount of auxin to prevent

immature fruit abscission might be somehow transported to the AZ.

On the other hand, when the ovary was occupied by seeds exhibiting

type II hybrid seed lethality, the supply of auxin from seeds or ovary

might be insufficient, leading to immature fruit abscission. Although

involvement of auxin in immature fruit abscission has been suggested

because immature fruit abscission, but not type II hybrid seed

lethality, was suppressed by exogenous auxin treatments (He et al.,

2022), further studies are needed to validate this hypothesis.
2.2 Methods of recovering seed activity to
circumvent hybrid seed lethality

Circumventing hybrid seed lethality is valuable in achieving

distant hybridization to transfer desirable genes to crop germplasm.

For example, genes of rye (S. cereale) have been introduced into
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wheat (T. durum) germlines to improve resistance to pathogens

and pests (reviewed by Crespo-Herrera et al. (2017)). Hence, to

circumvent hybrid seed lethality, several methods have been

developed, including (1) hybrid embryo rescue technique, and (2)

restoration of endosperm development to indirectly rescue the

hybrid embryo (Figure 2, Table 1).

2.2.1 Hybrid seed rescue through the embryo
rescue technique

Before hybrid embryos become defective, the immature

embryos are isolated and cultured on the medium for their

recovery and growth. This embryo rescue technique is effective to

rescue embryos from the endosperm defective hybrid seeds and has

been widely used in various plant species, including wheat (Polgári

et al., 2014) and melon (Nuñez-Palenius et al., 2006). When

embryos are too small to isolate, ovule or ovary culture is

available for hybrid embryo rescue (Figure 2B). For example, in

several interspecific hybridizations in Nicotiana, ovule culture was

successful to obtain hybrid seedlings by circumvent hybrid seed

lethality (Reed and Collins, 1978; Shizukuda and Nakajima, 1982;

Subhashini et al., 1985; Iwai et al., 1986; Subhashini et al., 1986;

Chung et al., 1988). In interspecific hybridization of Lilium, embryo

rescue by ovary culture was effective to obtain hybrid seedlings

(Fernandez et al., 1998). Effectiveness of embryo rescue appears to

depend on the severity of hybrid seed lethality because ovule culture

was successful in type I hybrid seed lethality but not in type II

hybrid seed lethality in Nicotiana interspecific-interploidy

hybridizations (He et al., 2020). Based on the nutritional

requirements of developing embryo, embryonic development is

divided into two phases, a heterotrophic phase and autotrophic

phase. The embryo is still heterotrophic at the globular stage, and

only in the late heart-shaped stage, along with the beginning of
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cotyledonary development and the consequent internal

differentiation, the embryo becomes autotrophic (Raghavan,

1966). Embryo rescue is usually conducted in the heterotrophic

phase, where the young embryo still depends at the expense of the

endosperm, and can be accomplished in vitro by providing, through

culture medium, the complex nutritional factors, including amino

acids, carbohydrates, vitamins, and other growth factors that would

normally be supplied by endosperm. Hence, embryo rescue

technique is an effective way to circumvent hybrid seed lethality

due to endosperm defective.

In the case where the causal genes are directly involved in

embryo development, embryo rescue might not be effective. When

embryo rescue was applied to circumvent hybrid seed lethality

caused by Eml-A1 and Eml-R1 in hybridization between wheat

(T. aestivum) and rye (S. cereale), no positive effect was observed on

embryo development (Tikhenko et al., 2008). This further implies

that embryo rescue technique is only effective when used to

complement the role of the endosperm in supporting the

developing embryo.

2.2.2 Hybrid seed rescue through endosperm
restoration

Restoration of endosperm development to recover the embryo

viability is widely applied in the interploidy and interspecific

hybridization. Endosperm developmental defect can be bypassed

by altering the EBN of parental species by ploidy manipulation

(Figure 2C) (Johnston and Hanneman, 1982; Bushell et al., 2003;

Lafon-Placette et al., 2017). In interspecific-interploidy

hybridization between N. suaveolens (8x) and N. tabacum (4x)

(ab initio cellular endosperm), type I and type II seed lethality could

be overcome through restoring endosperm and embryo

development by increasing paternal N. tabacum ploidy from 4x to
FIGURE 2

Model of hybrid seed lethality and methods to overcome or circumvent hybrid seed lethality. Two pathways are involved in the induction of hybrid
seed lethality: (1) epistatic interaction between causal genes of hybrid seed lethality directly affecting hybrid embryos, and (2) unbalanced parental
EBN, which causes endosperm arrest, leading to hybrid embryo arrest. Irradiation (A) and tissue culture (embryo rescue technique, (B) may be
effective to overcome hybrid seed lethality caused by epistatic interaction between causal genes. Tissue culture and ploidy manipulation (C) are
widely used to overcome or circumvent EBN-based hybrid seed lethality. Additionally, modification of gene expression (D), increase in endogenous
ABA levels (F), application of methyltransferase inhibitor (E) and exogenous ABA, and possibly irradiation may be effective in some hybridization
combinations at least. Black thunderbolt icons represent induction of mutations. Possible methods to overcome hybrid seed lethality are
represented by red thunderbolt icons. EBN, endosperm balance number; ABA, abscisic acid.
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8x (He et al., 2020). Another study provides evidence that

decreasing maternal EBN can also restore endosperm

development and hybrid seed lethality inNicotiana (He et al., 2022).

As described above, endosperm abnormal development

responsible for hybrid seed lethality in nuclear endosperm is well

studied in Arabidopsis and Oryza. In this endosperm developmental

mode, a disturbance in the timing of endosperm cellularization is

the primary cause observed histologically (Ishikawa et al., 2011;

Sekine et al., 2013; Lafon-Placette et al., 2017; Il̇tas ̧ et al., 2021).
Hence, recovering the endosperm development by manipulation of

parental ploidy levels is effective to support nutrition for embryo

growth and germination. In interspecific hybridization between

diploid species O. sativa and O. longistaminata, the manipulation

to increase the O. sativa ploidy levels restored the endosperm

cellularization and hybrid seed viability (Ishikawa et al., 2011;

Tonosaki et al., 2018). Additionally, several mutants producing

unreduced gametes have been identified (Köhler et al., 2010;

Schatlowski and Köhler, 2012). Such a mutants might also be

effective to circumvent hybrid seed lethality by balancing EBN

ratio in endosperm.

In polyploidization, another mechanism for bypassing triploid

block may be polyspermy, a fertilization of one egg with two sperm.

In A. thaliana, triploid block can be circumvented by polyspermy

because polyspermy selectively polyploidizes the egg cell while

rendering the genome size of endosperm unaffected (Mao

et al., 2020).

Besides ploidy manipulation, chemical treatment can also restore

endosperm development. Recent study showed that epimutagenesis

chemically induced by treatment with DNA methyltransferase

inhibitor 5-azacytidine was successful in circumventing hybrid seed

lethality in Arabidopsis interploidy hybridization and Capsella

interspecific hybridization (Figure 2E) (Huc et al., 2022). In

Arabidopsis interploidy hybridization, endosperm cellularization

could be restored by increasing endogenous ABA levels using

mutants for ABA hydroxylase-encoding gene CYP707A2 or by

exogenous application of ABA, leading to suppression of the

triploid block and hybrid embryo arrest (Figure 2F) (Xu et al.,

2023). Hence, endosperm defects can be restored by ploidy

alteration or specific reagent treatment, leading to recovery of

embryo viability and circumventing hybrid seed lethality.

Additionally, temperature might influence hybrid seed lethality.

In interspecies hybridizations in Arabidopsis, hybridizations using

parental plants growing at low temperatures resulted in suppression

of endosperm-based hybrid seed lethality (Bjerkan et al., 2020). This

low temperature effect may be attributed to the increased levels of

ABA (Xu et al., 2023).
3 Hybrid seedling lethality

3.1 Mechanisms of hybrid seedling lethality

Hybrid lethality in seedlings has been reported for over 100

years in many plant species, such as Triticum-Aegilops complex
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(Sax, 1921), Nicotiana (Malloch and Malloch, 1924; Christoff, 1928;

Kostoff, 1930), Crepis (Hollingshead, 1930), Gossypium (Gerstel,

1954), Oryza (Oka, 1957), Solanum (Day, 1958; Sawant, 1958),

Cucurbita (Whitaker and Bemis, 1964), Capsicum (Hirose et al.,

1960; Pickersgill, 1971), Papaver (Mcnaughton and Harper, 1960),

Hordeum (Takahashi et al., 1970), Phaseolus (Shii et al., 1980; Gepts

and Bliss, 1985), and Camellia (Nadamitsu et al., 1986). Several

terms representing hybrid lethality or developmental defects of

hybrid seedlings are used by researchers. Although these terms are

used differently according to plant species, they seem to be mainly

used according to the severity of phenotypic symptoms. The general

symptoms of hybrid lethality are apparent death of seedlings and

are typically observed in interspecific hybridizations in Nicotiana

(Yamada et al., 1999; Tezuka, 2012; Tezuka, 2013). Hybrid

weakness is characterized by the weak growth of seedlings

compared to both parents and is typically observed in Oryza

(Chu and Oka, 1972; Chen et al., 2013; Nadir et al., 2019;

Shiragaki et al., 2019), Capsicum (Shiragaki et al., 2020b;

Shiragaki et al., 2021; Shiragaki et al., 2022), and Phaseolus

(Koinange and Gepts, 1992; Reiber and Neuman, 1999a). Hybrid

necrosis may refer to both types and is mainly used for the

Triticum-Aegilops complex (Tsunewaki and Kihara, 1962;

Toxopeus and Hermsen, 1964; Mizuno et al., 2010; Zhang et al.,

2022b) and Arabidopsis (Bomblies et al., 2007; Świadek et al., 2017).

Such hybrid seedling lethality and other similar phenomena are

observed in F1 hybrid seedlings. When F1 hybrids are normal but

their F2 and later progeny contain individuals showing seedling

lethality, this phenomenon is called hybrid breakdown (hybrid

breakdown is also used to refer sterility in such a generation)

(Fukuoka et al., 1998; Plötner et al., 2017; Matsubara, 2020). The

molecular mechanism of hybrid seedling lethality has been

unknown for a long time and has only recently become

somewhat clear. Recent research has revealed that developmental

defects of seedlings, which has referred to using several terms, could

also be a phenomenon with a similar mechanism.

3.1.1 Epistatic interaction causing hybrid
seedling lethality

Hybrid seedling lethality is generally genetically simple. In

many cases, hybrid seedling lethality is caused by deleterious

epistatic interaction of two dominant alleles of different loci as

proposed by the BDM model (Hollingshead, 1930; Sawant, 1956;

Oka, 1957; Tsunewaki, 1960; Hermsen, 1963a; Takahashi et al.,

1970; Chu and Oka, 1972; Shii et al., 1980; Lee, 1981; Hu et al.,

2016). Several reports have stated that epistatic interaction of alleles

at a single locus causes hybrid seedling lethality as hypothesized by

the BDMmodel (Smith et al., 2011; Chae et al., 2014; Todesco et al.,

2014). Similarly, seedling lethality in hybrid breakdown are also

caused by epistatic interaction of recessive alleles (Oka, 1957;

Matsubara, 2020). Additionally, nuclear-cytoplasmic interaction

has been reported to cause hybrid seedling lethality (Inai et al.,

1993), but no further data are available. Studies to date have isolated

several genes and allowed us to understand hybrid seedling lethality

from their functions.
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3.1.2 Hybrid seedling lethality related to
autoimmune response

Hybrid seedling lethality is observed in many interspecific

hybridizations in Nicotiana (Tezuka, 2012; Tezuka, 2013). In this

genus, five types of hybrid lethality, which exhibit different

phenotypic abnormalities, have been recognized (Yamada et al.,

1999; Tezuka and Marubashi, 2012). Among the lethality types,

type II hybrid seedling lethality has been extensively studied using

interspecies hybridizations between cultivated tobacco species N.

tabacum and its wild relatives. The type II hybrid seedling lethality

is characterized by browning of hypocotyl and roots in hybrid

seedlings during early growth stages, and the hybrid seedlings

eventually die. A series of studies have demonstrated that the type

II hybrid seedling lethality is accompanied by vacuole-mediated

programmed cell death with features of apoptotic cell death and

autophagy (Yamada et al., 2000; Tezuka and Marubashi, 2004; Mino

et al., 2005; Tezuka and Marubashi, 2006a; Mino et al., 2007b; Ueno

et al., 2016) and is related to ethylene (Yamada andMarubashi, 2003),

reactive oxygen species (Mino et al., 2002; Mino et al., 2004), and

nitrogen oxide (Yamamoto et al., 2017). Taken together, type II

hybrid seedling lethality resembles hypersensitive response or cell

death, a type of plant defense response with a rapid localized cell

death that occurs at the position of pathogen infection (Balint-Kurti,

2019; Salguero-Linares and Coll, 2019). A mitogen-activated protein

kinase (MAPK) cascade that functions in plant immunity is reported

to be involved in the type II hybrid seedling lethality (Mino et al.,

2007a). Furthermore, it has been revealed that several genes related to

disease resistance are involved in the type II hybrid seedling lethality

(Mino et al., 2002; Masuda et al., 2007; Shiragaki et al., 2020a).

Identification of the causal gene provides further evidence of the

involvement of resistance and immune responses in the type II

hybrid seedling lethality in Nicotiana. N. tabacum, an allotetraploid

species with S and T genomes, has an allele at theHybrid Lethality 1

(NtHL1) locus on chromosome H (Ma et al., 2020) of the T genome,

or more likely, on chromosome Q of the S genome (based on the

analysis using simple sequence repeat (SSR) markers in the N.

tabacum linkage map) (Marubashi and Onosato, 2002; Tezuka and

Marubashi, 2006b; Tezuka et al., 2007; Tezuka et al., 2010; Tezuka

et al., 2012), whereas its wild relatives have Hla1-1 or other alleles at

the Hybrid Lethality A1 (HLA1) locus (Iizuka et al., 2012). Epistatic

interaction of the two alleles at the two loci causes the type II hybrid

seedling lethality. Recently, NtHL1 was isolated by transposon

tagging; this gene codes a coiled-coil nucleotide-binding site-

leucine-rich repeat (CC-NBS-LRR) protein, which is probably

involved in disease resistance (Ma et al., 2020). Its counterpart,

HLA1, has been mapped by the linkage analysis (Tezuka et al.,

2021). Identification of the HLA1 will enable a deeper

understanding of the interaction between NtHL1 and HLA1.

Another interesting aspect of the involvement of immune

response in type II hybrid seedling lethality has been reported by

Katsuyama et al. (2021). The molecular chaperone, heat shock

protein 90 (HSP90), and two interacting co-chaperons, required

for Mla12 resistance (RAR1) and suppressor of G2 allele of skp1

(SGT1), form a complex that interacts with many NBS-LRRs, also

known as NLRs (Kadota et al., 2010; Kadota and Shirasu, 2012;

Balint-Kurti, 2019). Agrobacterium-mediated transient expression
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of RAR1 as well as SGT1 derived from N. gossei (a wild relative of N.

tabacum) induced cell death in N. tabacum, whereas the transient

expression of those genes derived from N. tabacum did not

(Katsuyama et al., 2021). Additionally, a specific inhibitor of

HSP90, geldanamycin, suppressed cell death in type II hybrid

seedling lethality. These findings suggest the involvement of

HSP90-SGT1-RAR1 complex in type II hybrid seedling lethality.

Because each species has established an appropriate set of

chaperons, the chaperons may be incompatible with those from

other species (Katsuyama et al., 2021; Mino et al., 2022).

Similar to Nicotiana, hybrid seedling lethality in other genera is

often associated with autoimmune response (Table 2). In hybrid

seedling lethality under a two-locus model, at least one causal gene

encodes NLR or leucine-rich repeat receptor-like kinase (LRR-RLK)

involved in plant immunity (Bomblies et al., 2007; Chen et al., 2014;

Sicard et al., 2015; Deng et al., 2019; Si et al., 2021). In hybrid seedling

lethality under a one-locus model, the causal gene also encodes NLR

or RLK (Smith et al., 2011; Chae et al., 2014). Physiological and

molecular studies have also indicated the involvement of plant

defense response in hybrid seedling lethality (Mizuno et al., 2010;

Shiragaki et al., 2019; Shiragaki et al., 2020b; Shiragaki et al., 2021;

Xiao et al., 2021). Therefore, it is apparent that plant defense systems

play an important role in the establishment of hybrid seedling

lethality systems, which act as reproductive isolation barriers.

3.1.3 Hybrid seedling lethality not resulting from
autoimmune response

Although studies on hybrid seedling lethality other than that

involving autoimmune response are less advanced, some studies

have been reported. As mentioned above, embryo lethality (hybrid

breakdown) is caused by duplicate genes LD1.1 and LD 1.5 in

hybridization between Arabidopsis thaliana accessions (Bikard

et al., 2009). Epistatic interaction of these genes also causes weak

growth of seedlings in case of the homozygous for Col allele at the

LD1.1 locus and heterozygous (Col and Cvi alleles) at the LD1.5

locus. This is due to the reduced histidine quantity in the seedlings

because they have only a single functional copy of histidinol-

phosphate amino-transferase gene, and the weak phenotype is

restored by supplementation of the histidine (Bikard et al., 2009).

In interspecies hybridization inMimulus, F2 hybrid seedlings show

lethality (hybrid breakdown) owing to a complete lack of chlorophyll

production. The lethality is caused by two duplicate genes of PLASTID

TRANSCRIPTIONALLY ACTIVE CHROMOSOME 14 (pTAC14), a

gene critical for chloroplast development, and F2 hybrid seedlings die

when they lack a functional copy of pTAC14 (Zuellig and Sweigart,

2018). In rice intersubspecific hybridizations, weak growth by hybrid

breakdown is caused by duplicate recessive genes hwe1 and hwe2.

HWE1 andHWE2 encode the Esa1-associated factor 6 (EAF6) protein,

which is a component of histone acetyltransferase complexes and

possibly plays a pivotal role in the transcriptional regulation of essential

genes for plant development. hwe1 and hwe2 alleles lack the function

and cause hybrid breakdown not resulting from autoimmune response

(Kubo et al., 2022).

Relationships between plant growth and hybrid seedling

lethality has also been reported in another hybridization.

Chrysanthemum morifolium and Leucanthemum paludosum have
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different flowering seasons. Intergeneric hybrids of the two species

flowered at the two seasons by compound expression of

FLOWERING LOCUS T (FT)-like genes derived from both

parents, which leads to short vegetative growth. However, the

continuous flowering appeared to cause hybrid weakness (Li

et al., 2023). Collectively, lack of key genes or a complex

combination of genes for plant growth and development could

cause hybrid seedling lethality; however, accumulation of more data

is necessary to systematize other mechanisms of hybrid seedling

lethality than the autoimmune response mechanism.
3.2 Methods to overcome or circumvent
hybrid seedling lethality

It seems that when hybrid seedling lethality is caused by lack of

important elements for plant growth, supplementing the elements,
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seedling lethality. However, other methods would be needed to

overcome or circumvent hybrid seedling lethality related to

autoimmune response. Although several methods have been

reported to date, the mechanisms underlying these methods have

not been fully elucidated. Here, we introduce the methods to

overcome or circumvent hybrid seedling lethality and discuss why

these methods are effective.

In some methods, hybrid seedling lethality may be suppressed

during the crosstalk between defense and growth responses in

plants (Figure 3, Table 2). Elevated temperatures compared with

normal growth temperatures suppress hybrid seedling lethality in

many cases (Phillips, 1977; Dhaliwal et al., 1986; Tezuka and

Marubashi, 2004; Bomblies et al., 2007; Saito et al., 2007; Jeuken

et al., 2009; Deng et al., 2019; Shiragaki et al., 2021; Yan et al., 2021);

however, in a certain case, low temperature suppressed hybrid

seedling lethality in rice (Chen et al., 2014). Several disease
TABLE 2 Summary of hybrid seedling lethality described in this review.

Genus Autoimmune
response Model

Methods to overcome or circumvent hybrid lethality
References

(A) (B) (C) (D) (E) (F)

Arabidopsis Related BDM ND ND ND Effective ND ND Bomblies et al. (2007); Smith et al. (2011);
Chae et al. (2014); Todesco et al. (2014)

Arabidopsis Unrelated BDM ND ND ND ND ND ND Bikard et al. (2009)

Brassica Related BDM ND ND ND ND ND ND Hu et al. (2016)

Capsicum Related BDM ND ND ND Effective ND ND Inai et al. (1993); Sawada et al. (2004);
Shiragaki et al. (2020b); Shiragaki et al.
(2021)

Chrysanthemum/
Leucanthemum

Unrelated ND ND ND ND ND ND ND Li et al. (2023)

Gossypium Related BDM ND ND ND Effective ND ND Lee (1981); Deng et al. (2019)

Mimulus Unrelated BDM ND ND ND ND ND ND Zuellig and Sweigart (2018)

Nicotiana Related BDM Effective Effective Effective Effective Effective Effective Ternovskii et al. (1972); Lloyd (1975);
Ternovskii et al. (1976); Iwai et al. (1985);
Deverna et al. (1987); Shintaku et al.
(1988); Shintaku et al. (1989); Zhou et al.
(1991); Inoue et al. (1994); Inoue et al.
(1997); Yamada et al. (1999); Mino et al.
(2002); Kitamura et al. (2003); Yamada
and Marubashi (2003); Tezuka and
Marubashi (2004); Kobori et al. (2007);
Masuda et al. (2007); Tezuka (2012); Ma
et al. (2020); Shiragaki et al. (2020a);
Katsuyama et al. (2021)

Oryza Related BDM ND ND ND Effective ND ND Oka (1957); Saito et al. (2007); Chen et al.
(2014); Shiragaki et al. (2019); Matsubara
(2020)

Oryza Unrelated BDM ND ND ND ND ND ND Kubo et al. (2022)

Phaseolus Related BDM ND ND ND Effective ND Effective Shii et al. (1980); Shii et al. (1981); Reiber
and Neuman (1999b); Hannah et al.
(2007)

Triticum/
Aegilops

Related BDM Effective Effective ND Effective ND ND Sharma (1969); Dhaliwal et al. (1986);
Chen et al. (1989); Mizuno et al. (2010);
Zhang et al. (2022b)
ND, no data; BDM, Bateson–Dobzhansky–Muller.
(A), Irradiation; (B), Tissue culture; (C), Defense factor inhibitor; (D), High temperature; (E), Auxin (F), Cytokinin.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1219417
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


He et al. 10.3389/fpls.2023.1219417
resistance responses are temperature-sensitive and suppressed at

high temperatures (Figure 3D) (Samuel, 1931; Erickson et al., 1999;

Sawada et al., 2004). Phytochrome B acting as a temperature sensor

is biologically active by high temperature and can activate the

expression of PHYTOCHROME INTERACTING FACTOR 4,

which promotes growth and suppresses defense response

(Gangappa et al., 2017). Therefore, it is possible that elevated

temperatures may suppress excessive defense response in hybrid

seedling lethality through such a mechanism.

The permanent application of auxin (Figure 3E) (Zhou et al.,

1991) or temporary application of cytokinin (Figure 3F) (Inoue

et al., 1994; Inoue et al., 1997; Kobori et al., 2007) suppresses or

overcomes hybrid seedling lethality in Nicotiana, respectively;

however, their suppression mechanisms remain unclear.

Treatment of hybrid seedlings with an inhibitor of phenylalanine

ammonia-lyase, L-2-aminooxy-3-phenylpropionic acid, suppressed

hybrid lethality in Nicotiana, most likely via the inactivation of the

salicylic acid pathway involved in defense response (Figure 3C)

(Shiragaki et al., 2020a). Similarly, treatment of Nicotiana hybrid

seedlings with inhibitors of ethylene biosynthesis, amino-oxyacetic

acid, and amino-ethoxy vinyl glycine suppressed hybrid seedling

lethality via the inactivation of the ethylene pathway involved in

defense response (Yamada and Marubashi, 2003). Considering the

tight involvement of defense response in hybrid seedling lethality,

we predict that auxin and cytokinin activate the growth pathway

(Vega et al., 2019), and defense responses in hybrid seedling

lethality are suppressed by the crosstalk between growth and

defense responses (Figure 3). In hybridizations between Phaseolus

vulgaris cultivars, hybrid seedling lethality involving defense

responses can be suppressed by application of cytokinin using

hydroponic culture as well as by grafting of hybrid seedlings onto

the parents as rootstock (Hannah et al., 2007). This may be effective

because cytokinins transported from roots of the rootstocks to
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shoots influence growth of hybrid seedlings (Shii et al., 1981; Reiber

and Neuman, 1999b). Additionally, Inoue et al. (1997) suggested

other possibilities: cytokinin induces mutations in causal genes for

hybrid seedling lethality or enables the screening of variant cells that

carry a spontaneous mutation in the causal genes.

Irradiation with g-rays and ion beams has been used to

overcome hybrid seedling lethality (Figure 3A). Viable hybrid

seedlings were obtained using irradiated pollen or egg cells of

parents in Nicotiana (Shintaku et al., 1988; Shintaku et al., 1989;

Kitamura et al., 2003); by irradiation of hybrid seeds in Triticum

(Sharma, 1969) and by irradiation of hybrid shoots from the

hybridization between Japanese pear and apple (Gonai et al.,

2006). The tissue culture method is also effective to overcome

hybrid seedling lethality (Figure 3B). Viable hybrid seedlings were

obtained via calli after culture of germinated seeds, cotyledons, or

leaves in Nicotiana (Ternovskii et al., 1972; Lloyd, 1975; Ternovskii

et al., 1976; Iwai et al., 1985; Deverna et al., 1987). In Triticum,

hybrid seedling lethality was overcome through regeneration from

calli obtained by culture of immature hybrid embryos (Chen et al.,

1989). Although mechanisms of overcoming hybrid seedling

lethality by irradiation and tissue culture methods are not well

understood, these methods may give rise to mutations or deletions

of causal genes for hybrid seedling lethality or important genes in

defense response during hybrid seedling lethality (Figure 3).

In some hybridization combinations, viable hybrids have been

obtained at very low frequency without overcome and circumvent

methods (Burk et al., 1979; Tezuka and Marubashi, 2006a; Tezuka

et al., 2010; He et al., 2019). In some cases, this can be attributed to

the deletion of the entire chromosome or certain regions of the

chromosome where causal genes for hybrid lethality are located

(Tezuka et al., 2010; Tezuka et al., 2012; Hancock et al., 2015). In

hybridization between N. suaveolens and N. tabacum, deletion of

the chromosomal region containing a hybrid seedling lethality
FIGURE 3

Hypothetical model for the crosstalk between defense and growth pathway in hybrid seedling lethality related to autoimmune response. Known
factors or methods to overcome hybrid seedling lethality are shown on the crosstalk diagram. Irradiation (A) and tissue culture (B) can induce
mutations or deletions of causal genes for hybrid seedling lethality or important genes in defense response during hybrid seedling lethality.
Application of defense factor inhibitors (C), such as those for phenylalanine ammonia-lyase and ethylene biosynthesis, may be effective to suppress
hybrid seedling lethality because these suppress defense response. On the other hand, high temperature (D) may suppress defense response and
promote seedling growth, and auxin (E) and cytokinin (F) may activate the growth pathway of seedlings. Effective methods to overcome hybrid seed
lethality by irradiation and tissue culture are represented by red (potential induction of mutations) and black (induction of mutations) thunderbolt
icons, respectively.
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gene could be caused by reciprocal translocations between

homoeologous chromosomes of N. tabacum in viable hybrid

seedlings obtained spontaneously very rarely as well as those

obtained by tissue-culture (Nakata et al., 2021). Nevertheless,

other mechanisms may also be involved in the spontaneous

generation of very rare viable hybrid seedlings.
4 Comparison of hybrid lethality in
seeds and seedlings

It would be interesting to see whether hybrid lethality in seeds

and seedlings can be induced by similar mechanisms. Although

much remains unknown about the genetic basis of hybrid lethality,

one case shows obvious link between hybrid seed lethality and

hybrid seedling lethality, i.e., hybrid lethality associated with

duplicate LD1.1 and LD1.5 loci, leading to lack of histidine, as

summarized above (Bikard et al., 2009). This indicates that both

types of hybrid lethality are induced when the causal genes are

involved in both seed and seedling stages.

However, it seems that there are no similarities in hybrid

lethality between seeds and seedlings for other mechanisms.

Current studies have demonstrated that in many cases,

autoimmune responses are involved in hybrid seedling lethality.

Nevertheless, such a mechanism has not yet been reported in hybrid

seed lethality, although some cases may involve epistatic interaction

as explained by BDM model. This might be attributed to the

behavior of the autoimmune responses, which usually function in

seedlings. The situation is similar for EBN-based hybrid seed

lethality; there have been no reports stating that EBN is involved

in hybrid seedling lethality. In hybridizations between N. suaveolens

and N. tabacum, the use of N. suaveolens accessions with different

EBNs did not change the severity of hybrid seedling lethality (He

et al., 2019). Parental EBNs directly and indirectly affect endosperm

and embryo development, respectively, in hybrid seeds but do not

affect hybrid seedling development.
5 Possible methods to overcome or
circumvent hybrid seed lethality and
hybrid seedling lethality

Although several methods have been developed to overcome or

circumvent EBN-based hybrid lethality caused by endosperm

defects, fewer effective methods have been reported for

overcoming lethality caused by defects in embryo itself. To

overcome this situation, it may be possible to apply methods

developed for hybrid seedling lethality (Figure 2). Considering

that hybrid seedling lethality can be overcome by regeneration

from calli formed on explants, it may be possible to overcome

hybrid seed lethality through regeneration from calli induced by

culture of immature hybrid embryos. In fact, hybrid seed lethality

due to epistatic interaction of Eml-A1 and Eml-R1 can be overcome

by such a method (Tikhenko et al., 2017b); however, whether this

method is effective for other hybridizations remains to be
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investigated. Additionally, irradiation which causes DNA damage

led to mutations may be effective for hybrid seed lethality as in the

case of hybrid seedling lethality (Figure 2A). These two methods,

which possibly induce new mutations, may also be effective to

overcome EBN-based hybrid seed lethality because several reports

have indicated that modification of the MEG or PEG expression

can partially or completely rescue hybrid seeds from lethality

as mentioned above. Fleming and Burrows (2023) discussed

the relationships between epigenetics and mutagenesis and

indicated that epigenetic modifications require DNA repair

pathways for erasure, and oxidative DNA damage can alter and

affect gene expression.

Several methods have been developed to overcome or

circumvent hybrid seedling lethality related to autoimmune

response, some of which can be effective possibly by crosstalk

between defense and growth responses (Figure 3). Meanwhile,

fewer effective methods have been reported for overcoming

lethality caused by mechanisms other than autoimmune response.

Hybrid seedling lethality can occur when important genes for life,

such as metabolism-related genes, are redundantly copied, leading

to generation of loss-of-function alleles at each locus, thereby

resulting in hybrid seedlings with the set of loss-of-function

alleles. This lethality can be avoided or overcome if additional

substances are added to compensate for the loss of function (Bikard

et al., 2009). Moreover, if it is difficult to compensate for the loss of

function, the alleles at the causal loci can be changed to functional

alleles using mutagens, genome editing, or genetic modification.

Alternatively, cross breeding can be performed by selecting

breeding lines to be free of the loss-of-function alleles.
6 Active application of hybrid lethality
to prevent gene flow

In nature, gene flow occurs among cultivars and/or wild and

weedy relatives. If hybridization occurs between cultivars or

between cultivar and its relatives, genetic purity and characteristic

traits of the cultivar is diminished. Furthermore, gene flow from

non-transgenic herbicide resistant sorghum (Sorghum bicolor) and

sunflower (Helianthus annuus) to weedy relatives is a concrete

problem, although two types of strategy, physical containment

(such as mesh on greenhouses and isolation distance in the field)

and biological containment (such as chloroplast transformation and

male sterility), have been proposed to prevent gene or transgene

flow (Bozic et al., 2015; Gressel, 2015). The use of hybrid seedling

lethality genes has been proposed to prevent genetic contamination

(Sato and Inarura, 1989; Yonezawa et al., 1990). To achieve this, the

cultivar possessing an epistatic gene which causes hybrid seedling

lethality with its counterpart is developed. When the cultivar is

pollinated by pollen from other cultivars or its relatives which

possess the counterpart gene, hybrid seedlings show hybrid lethality

and the inflow of alien genes to the cultivar can be suppressed. In

this system, a set of epistatic genes causing F1 hybrid seedling

lethality is available, but those causing hybrid breakdown are not

useful. Such a system would also be effective to suppress outflow of
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foreign genes in transgenic plants to cultivars and wild and weedy

relatives in the field.

For practical application of this system, sufficient severity of hybrid

seedling lethality is required to prevent progeny from surviving (Sato

and Inarura, 1989; Yonezawa et al., 1990). Additionally, high stability of

hybrid seedling lethality would be required because viable hybrids

might emerge at very low frequency as mentioned above in interspecies

crosses in Nicotiana. Therefore, use of additional set of epistatic genes

causing hybrid seedling lethality might be effective. In Nicotiana, very

rare survival hybrids seem unlikely to emerge when two sets of epistatic

genes are possibly involved in hybrid seedling lethality (Tezuka and

Marubashi, 2012). Additionally, use of other isolationmechanismsmay

also be effective, although there may also be loopholes in these

mechanisms. For example, germinable seeds may be rarely produced

even though the hybridization combination almost always produces

hybrid seeds showing EBN-based hybrid seed lethality (He et al., 2019).

However, combination of hybrid seed lethality and hybrid seedling

lethality is expected to suppress gene flow more robustly than each

lethality alone.
7 Conclusions and perspectives

Hybrid lethality has been considered to occur in embryos and

seedlings after hybridizations between different lineages. However,

similarities and differences between hybrid seed lethality and hybrid

seedling lethality remain poorly understood. Recent molecular

evidences indicated that evolution of genes derived from a

common ancestor can lead to deleterious epistatic interaction

leading to both hybrid seed lethality and hybrid seedling lethality.

Additionally, hybrid seed lethality involves a unique mechanism

related to endosperm, whereas hybrid seedling lethality involves a

unique mechanism related to autoimmune response. For plant

breeding, hybrid lethality is an obstacle which needs to be

overcome or circumvented, as well as a valuable resource to

prevent gene flow. In this context, it is necessary to identify other

genes involved in hybrid lethality and investigate whether other

mechanisms are involved in hybrid lethality.
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J., et al. (2021). Hybrid seed incompatibility in Capsella is connected to chromatin
condensation defects in the endosperm. PloS Genet. 17, e1009370. doi: 10.1371/
journal.pgen.1009370

Erdmann, R. M., Satyaki, P. R. V., Klosinska, M., and Gehring, M. (2017). A small
RNA pathway mediates allelic dosage in endosperm. Cell Rep. 21, 3364–3372.
doi: 10.1016/j.celrep.2017.11.078

Erickson, F. L., Holzberg, S., Calderon-Urrea, A., Handley, V., Axtell, M., Corr, C.,
et al. (1999). The helicase domain of the TMV replicase proteins induces the N-
mediated defence response in tobacco. Plant J. 18, 67–75. doi: 10.1046/j.1365-
313x.1999.00426.x

Fernandez, A.-M. A., Tanisaka, T., Nakazaki, T., and Lkehashi, H. (1998). Efficient
hybridization between Lilium × elegance and L. longlflorum through in vitro ovary slice
culture. Breed Sci. 48, 71–75. doi: 10.1270/jsbbs1951.48.71

Figueiredo, D. D., and Kohler, C. (2018). Auxin: a molecular trigger of seed
development. Genes Dev. 32, 479–490. doi: 10.1101/gad.312546.118

Fleming, A. M., and Burrows, C. J. (2023). DNA Modifications walk a fine line
between epigenetics and mutagenesis. Nat. Rev. Mol. Cell Biol. 24, 449–450.
doi: 10.1038/s41580-023-00590-2

Floyd, S. K., and Friedman, W. E. (2000). Evolution of endosperm developmental
patterns among basal flowering plants. Int. J. Plant Sci. 161, S57–S81. doi: 10.1086/
317579
Frontiers in Plant Science 13
Fukuoka, S., Namai, H., and Okuno, K. (1998). Geographical variation of the genes
controlling hybrid breakdown and genetic differentiation of the chromosomal regions
harboring these genes in Asian cultivated rice, Oryza sativa l. Genes Genet. Syst. 73,
211–217. doi: 10.1266/ggs.73.211

Gangappa, S. N., Berriri, S., and Kumar, S. V. (2017). PIF4 coordinates
thermosensory growth and immunity in Arabidopsis. Curr. Biol. 27, 243–249.
doi: 10.1016/j.cub.2016.11.012

Garcia, D., Fitz Gerald, J. N., and Berger, F. (2005). Maternal control of integument
cell elongation and zygotic control of endosperm growth are coordinated to determine
seed size in arabidopsis. Plant Cell 17, 52–60. doi: 10.1105/tpc.104.027136

Garner, A. G., Kenney, A. M., Fishman, L., and Sweigart, A. L. (2016). Genetic loci
with parent-of-origin effects cause hybrid seed lethality in crosses between Mimulus
species. New Phytol. 211, 319–331. doi: 10.1111/nph.13897

Gepts, P., and Bliss, F. A. (1985). F1 hybrid weakness in the common bean:
differential geographic origin suggets two gene pools in cultivated bean germplasm.
J. Hered 76, 447–450. doi: 10.1093/oxfordjournals.jhered.a110142

Gerstel, D. U. (1954). A new lethal combination in interspecific cotton hybrids.
Genetics 39, 628–639. doi: 10.1093/genetics/39.5.628

Gonai, T., Manabe, T., Inoue, E., Hayashi, M., Yamamoto, T., Hayashi, T., et al.
(2006). Overcoming hybrid lethality in a cross between Japanese pear and apple using
gamma irradiation and confirmation of hybrid status using flow cytometry and SSR
markers. Sci. Hortic. 109, 43–47. doi: 10.1016/j.scienta.2006.02.026

Gressel, J. (2015). Dealing with transgene flow of crop protection traits from crops to
their relatives. Pest Manag Sci. 71, 658–667. doi: 10.1002/ps.3850

Gupta, S., Buirchell, B., and Cowling, W. (1996). Interspecific reproductive barriers
and genomic similarity among the rough-seeded Lupinus species. Plant Breed 115, 123–
127. doi: 10.1111/j.1439-0523.1996.tb00886.x

Haig, D., and Westoby, M. (1989). Parent-specific gene expression and the triploid
endosperm. Am. Nat. 134, 147–155. doi: 10.1086/284971

Haig, D., and Westoby, M. (1991). Genomic imprinting in endosperm: its effect on
seed development in crosses between species, and between different ploidies of the same
species, and its implications for the evolution of apomixis. Philos. Trans. R Soc. Lond B
333, 1–13. doi: 10.1098/rstb.1991.0057

Hancock, W. G., Kuraparthy, V., Kernodle, S. P., and Lewis, R. S. (2015).
Identification of maternal haploids of Nicotiana tabacum aided by transgenic
expression of green fluorescent protein: evidence for chromosome elimination in the
N. tabacum × N. africana interspecific cross. Mol. Breed 35, 179. doi: 10.1007/s11032-
015-0372-8

Hannah, M. A., Krämer, K. M., Geffroy, V., Kopka, J., Blair, M. W., Erban, A., et al.
(2007). Hybrid weakness controlled by the dosage-dependent lethal (DL) gene system
in common bean (Phaseolus vulgaris) is caused by a shoot-derived inhibitory signal
leading to salicylic acid-associated root death. New Phytol. 176, 537–549. doi: 10.1111/
j.1469-8137.2007.02215.x

He, H., Iizuka, T., Maekawa, M., Sadahisa, K., Morikawa, T., Yanase, M., et al. (2019).
Nicotiana suaveolens accessions with different ploidy levels exhibit different
reproductive isolation mechanisms in interspecific crosses with Nicotiana tabacum.
J. Plant Res. 132, 461–471. doi: 10.1007/s10265-019-01114-w

He, H., Sadahisa, K., Yokoi, S., and Tezuka, T. (2022). Parental genome imbalance
causes hybrid seed lethality as well as ovary abscission in interspecific and interploidy
crosses in Nicotiana. Front. Plant Sci. 13. doi: 10.3389/fpls.2022.899206

He, H., Yokoi, S., and Tezuka, T. (2020). A high maternal genome excess causes
severe seed abortion leading to ovary abscission in Nicotiana interploidy-interspecific
crosses. Plant Direct 4, e00257. doi: 10.1002/pld3.257

Hermsen, J. (1963a). The genetic basis of hybrid necrosis in wheat. Genetica 33, 245–
287. doi: 10.1007/BF01725765

Hermsen, J. (1963b). Hybrid necrosis as a problem for the wheat breeder. Euphytica
12, 1–16. doi: 10.1007/BF00033587

Hirose, T., Nishi, S., and Takashima, S. (1960). Studies on the interspecies crossing in
cultivated Capsicum. i. crossability. Sci. Rep. Kyoto Prefectural University. Agric. 12, 40–
46. (in Japanese with English summary).

Hollingshead, L. (1930). A lethal factor in Crepis effective only in an interspecific
hybrid. Genetics 15, 114–140. doi: 10.1093/genetics/15.2.114

Hu, Y., Xue, Y., Liu, J., Fang, Z., Yang, L., Zhang, Y., et al. (2016). Hybrid lethality
caused by two complementary dominant genes in cabbage (Brassica oleracea l.). Mol.
Breed 36, 73. doi: 10.1007/s11032-016-0498-3

Huang, J., Yang, L., Yang, L., Wu, X., Cui, X., Zhang, L., et al. (2023). Stigma
receptors control intraspecies and interspecies barriers in brassicaceae. Nature 614,
303–308. doi: 10.1038/s41586-022-05640-x

Huang, F., Zhu, Q. H., Zhu, A., Wu, X., Xie, L., Wu, X., et al. (2017). Mutants in the
imprinted PICKLE RELATED 2 gene suppress seed abortion of fertilization independent
seed class mutants and paternal excess interploidy crosses in arabidopsis. Plant J. 90,
383–395. doi: 10.1111/tpj.13500

Huc, J., Dziasek, K., Pachamuthu, K., Woh, T., Kohler, C., and Borges, F. (2022).
Bypassing reproductive barriers in hybrid seeds using chemically induced
epimutagenesis. Plant Cell 34, 989–1001. doi: 10.1093/plcell/koab284

Ichitani, K., Taura, S., Tezuka, T., Okiyama, Y., and Kuboyama, T. (2011).
Chromosomal location of HWA1 and HWA2, complementary hybrid weakness
genes in rice. Rice 4, 29–38. doi: 10.1007/s12284-011-9062-2
frontiersin.org

https://doi.org/10.1038/nrg2082
https://doi.org/10.1007/BF03356548
https://doi.org/10.1126/science.206.4418.585
https://doi.org/10.1105/tpc.010496
https://doi.org/10.1016/j.cell.2014.10.049
https://doi.org/10.1038/ncomms4357
https://doi.org/10.1093/mp/sss146
https://doi.org/10.1007/BF00299753
https://doi.org/10.1093/genetics/13.3.233
https://doi.org/10.1093/genetics/70.1.163
https://doi.org/10.1270/jsbbs1951.38.319
https://doi.org/10.1016/j.cub.2019.11.023
https://doi.org/10.1016/j.cub.2019.11.023
https://doi.org/10.1186/s41065-017-0033-5
https://doi.org/10.1111/j.1365-3059.1958.tb00826.x
https://doi.org/10.1093/jxb/erz312
https://doi.org/10.1007/BF00260773
https://doi.org/10.1371/journal.pbio.0060308
https://doi.org/10.1371/journal.pbio.0060308
https://doi.org/10.1042/bst20140040
https://doi.org/10.1371/journal.pgen.1009370
https://doi.org/10.1371/journal.pgen.1009370
https://doi.org/10.1016/j.celrep.2017.11.078
https://doi.org/10.1046/j.1365-313x.1999.00426.x
https://doi.org/10.1046/j.1365-313x.1999.00426.x
https://doi.org/10.1270/jsbbs1951.48.71
https://doi.org/10.1101/gad.312546.118
https://doi.org/10.1038/s41580-023-00590-2
https://doi.org/10.1086/317579
https://doi.org/10.1086/317579
https://doi.org/10.1266/ggs.73.211
https://doi.org/10.1016/j.cub.2016.11.012
https://doi.org/10.1105/tpc.104.027136
https://doi.org/10.1111/nph.13897
https://doi.org/10.1093/oxfordjournals.jhered.a110142
https://doi.org/10.1093/genetics/39.5.628
https://doi.org/10.1016/j.scienta.2006.02.026
https://doi.org/10.1002/ps.3850
https://doi.org/10.1111/j.1439-0523.1996.tb00886.x
https://doi.org/10.1086/284971
https://doi.org/10.1098/rstb.1991.0057
https://doi.org/10.1007/s11032-015-0372-8
https://doi.org/10.1007/s11032-015-0372-8
https://doi.org/10.1111/j.1469-8137.2007.02215.x
https://doi.org/10.1111/j.1469-8137.2007.02215.x
https://doi.org/10.1007/s10265-019-01114-w
https://doi.org/10.3389/fpls.2022.899206
https://doi.org/10.1002/pld3.257
https://doi.org/10.1007/BF01725765
https://doi.org/10.1007/BF00033587
https://doi.org/10.1093/genetics/15.2.114
https://doi.org/10.1007/s11032-016-0498-3
https://doi.org/10.1038/s41586-022-05640-x
https://doi.org/10.1111/tpj.13500
https://doi.org/10.1093/plcell/koab284
https://doi.org/10.1007/s12284-011-9062-2
https://doi.org/10.3389/fpls.2023.1219417
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


He et al. 10.3389/fpls.2023.1219417
Iizuka, T., Kuboyama, T., Marubashi, W., Oda, M., and Tezuka, T. (2012). Nicotiana
debneyi has a single dominant gene causing hybrid lethality in crosses with N. tabacum.
Euphytica 186, 321–328. doi: 10.1007/s10681-011-0570-3

Il̇tas ̧, Ö., Svitok, M., Cornille, A., Schmickl, R., and Lafon Placette, C. (2021). Early
evolution of reproductive isolation: a case of weak inbreeder/strong outbreeder leads to
an intraspecific hybridization barrier in Arabidopsis lyrata. Evolution 75, 1466–1476.
doi: 10.1111/evo.14240

Inai, S., Ishikawa, K., Nunomura, O., and Ikehashi, H. (1993). Genetic analysis of
stunted growth by nuclear-cytoplasmic interaction in interspecific hybrids of Capsicum
by using RAPD markers. Theor. Appl. Genet. 87, 416–422. doi: 10.1007/BF00215086

Inoue, E., Marubashi, W., and Niwa, M. (1994). Simple method for overcoming the
lethality observed in the hybrid between Nicotiana suaveolens and N. tabacum. Breed
Sci. 44, 333–336. doi: 10.1270/jsbbs1951.44.333

Inoue, E., Marubashi, W., and Niwa, M. (1997). Improvement of the method for
overcoming the hybrid lethality between Nicotiana suaveolens and N. tabacum by
culture of F1 seeds in liquid media containing cytokinins. Breed Sci. 47, 211–216.
doi: 10.1270/jsbbs1951.47.211

Ishikawa, R., Ohnishi, T., Kinoshita, Y., Eiguchi, M., Kurata, N., and Kinoshita, T.
(2011). Rice interspecies hybrids show precocious or delayed developmental transitions
in the endosperm without change to the rate of syncytial nuclear division. Plant J. 65,
798–806. doi: 10.1111/j.1365-313X.2010.04466.x

Iwai, S., Kishi, C., Nakata, K., and Kawashima, N. (1986). Production of Nicotiana
tabacum × Nicotiana acuminata hybrid by ovule culture. Plant Cell Rep. 5, 403–404.
doi: 10.1007/BF00268613

Iwai, S., Kishi, C., Nakata, K., and Kubo, S. (1985). Production of a hybrid of
Nicotiana repanda willd. × N. tabacum l. by ovule culture. Plant Sci. 41, 175–178.
doi: 10.1016/0168-9452(85)90085-8

Jeuken, M. J. W., Zhang, N. W., Mchale, L. K., Pelgrom, K., Den, B. E., Lindhout, P.,
et al. (2009). Rin4 causes hybrid necrosis and race-specific resistance in an interspecific
lettuce hybrid. Plant Cell 21, 3368–3378. doi: 10.1105/tpc.109.070334

Jiang, H., Moreno-Romero, J., Santos-González, J., De Jaeger, G., Gevaert, K., Van
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