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Oracle selection provides insight
into how far off practice is from
Utopia in plant breeding
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Since the introduction of genomic selection in plant breeding, high genetic gains

have been realized in different plant breeding programs. Various methods based

on genomic estimated breeding values (GEBVs) for selecting parental lines that

maximize the genetic gain as well as methods for improving the predictive

performance of genomic selection have been proposed. Unfortunately, it

remains difficult to measure to what extent these methods really maximize

long-term genetic values. In this study, we propose oracle selection, a

hypothetical frame of mind that uses the ground truth to optimally select

parents or optimize the training population in order to maximize the genetic

gain in each breeding cycle. Clearly, oracle selection cannot be applied in a true

breeding program, but allows for the assessment of existing parental selection

and training population update methods and the evaluation of how far these

methods are from the optimal utopian solution.

KEYWORDS

genetic gain, genetic selection, genetic variation, genetic value, oracle, scoping, plant
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1 Introduction

Since prehistory, when man started to settle and shifted from a hunter-gatherer to a

settled-agricultural lifestyle, plants have played a crucial role in the development and survival

of humankind. Over time, plants have been cultivated and selected based on morphological

characteristics to improve favorable traits. Initially, phenotypic information was used to guide

the selection of parental lines in plant breeding. Contemporary plant breeding methods select

parents based on molecular markers such as single nucleotide polymorphisms (SNPs). Based

on the idea that a phenotypic trait is controlled by many quantitative trait loci (QTLs) or

genes, molecular markers can serve as proxies for these QTLs, assuming that they are in

strong linkage disequilibrium with at least one QTL (de Roos et al., 2008). Genomic selection

exploits this strategy to predict the genome-wide estimated breeding value (GEBV) using

molecular markers that are uniformly distributed over the whole genome (Meuwissen et al.,
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2001). It has led to an improvement of trait performance in both

animal and plant breeding and a reduction in time in between

breeding cycles (Hayes et al., 2009; Cros et al., 2018).

A variety of methods aiming to maximize the long-term genetic

value have been proposed. This problem can be tackled by

optimizing the parental selection and by improving the prediction

of the GEBVs. Different methods to update the training population

(TP) have been proposed (Maenhout et al., 2010; Rincent et al.,

2012; Akdemir et al., 2021), but Neyhart et al. (2017) demonstrated

that most methods resulted in the same long-term genetic values as

long as the TP is updated on a regular basis. Recently, Akdemir et al.

(2021) proposed a genetic algorithm to select an optimal TP,

outperforming the aforementioned update methods.

The genetic gain can also be maximized in the short term by

increasing the selection intensity to only select the most superior lines

(highest GEBVs) as parents (truncation selection) (Hayes et al., 2009;

VanRaden et al., 2009). This often results in the selection of closely

related individuals, reducing the genetic variation of the offspring and

causing a lower genetic value in the long term (Jannink, 2010). To

avoid the loss of genetic variation, alternative approaches such as the

scoping (Vanavermaete et al., 2020) and deep scoping methods

(Vanavermaete et al., 2021) were proposed. Compared to

truncation selection, by slightly decreasing the selection intensity,

the mentioned methods are able to better preserve genetic variation,

increase the predictive performance and maximize the long-term

genetic value. Although these methods outperform other parental

selection strategies such as the population merit (Lindgren and

Mullin, 1997), the maximum variance total (Cervantes et al., 2016)

and the HUC with bridging methods (Allier et al., 2020), it remains

difficult to evaluate to what extent these breeding strategies really

maximize the long-term genetic value.

Oracle selection is a hypothetical frame of mind in which a value

of interest (e.g., genetic gain) is maximized using the ground truth.

Therefore, oracle selection can only be used in silico, allowing for the

assessment of different selection algorithms. By assuming that oracle

selection represents the optimal selection, the progress of existing

parental selection methods and TP update methods can be assessed.

Additionally, by exploiting the insights resulting from oracle selection,

new (non-oracle) selection methods could be developed in the future.

In this paper, an oracle parental selection method and an oracle

TP update method are proposed. Both oracle methods are

compared with existing, state-of-the-art selection methods. In the

case of TP updates, each method is assessed using a simulated

breeding population with a narrow as well as a broad genetic

variation. Different numerical characteristics such as the genetic

value, predictive performance and genetic relationship of a breeding

population using different TP update methods including oracle

selection will be assessed. Finally, based on these insights, new

approaches for parental and TP update methods are discussed.
2 Materials and methods

The base population and breeding scheme in this paper are

adopted from Neyhart et al. (2017). The base population is

constructed from two datasets of North American barley
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(Hordeum vulgare) from the University of Minnesota (UMN) and

the University of North Dakota (NDSU), counting respectively 384

and 380 six-row spring inbred lines with 1590 biallelic SNP loci.
2.1 Breeding scheme

The recurrent breeding scheme is depicted in Figure 1 and has

been described by Vanavermaete et al. (2020) as well as by Neyhart

et al. (2017). In each breeding cycle, 100 parents are selected from

the current breeding population and paired into 50 couples. Each

couple produces 20 offspring resulting in a total of 1000 F1 hybrids.

After two generations of single-seed descent, 1000 F3 individuals

are obtained. These individuals form the new breeding population

from which parents can again be selected.

In the first breeding cycle, 50 individuals with the highest

phenotypic values of the NDSU dataset are coupled with 50

individuals with the highest phenotypic values of the UMN

dataset. In all subsequent breeding cycles, 100 parents are selected

and coupled according to one of the parental selection methods that

are described further. From this point onwards, the parents are

selected solely based on the genomic estimated breeding values

(GEBVs). The GEBVs are predicted using a linear mixed effects

model that has initially been fitted using the base population and

incorporates both phenotypic and genotypic information. During

each breeding cycle, the TP is updated using one of the TP update

methods (described further). These methods add and remove

individuals from the TP. Added individuals are selected from the

current breeding population.
FIGURE 1

Overview of the recurrent breeding scheme. First, 50 couples of
parents (P1 ;  P2) each produce 20 offspring, yielding a total of 1000
F1 hybrids. After two generations of single-seed descent, 1000 F3
individuals are obtained. From those F3 individuals, new parental
lines are selected.
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The different parental selection methods are compared over 50

breeding cycles, whereas the different TP update methods are

compared over 15 breeding cycles. All results are averaged over

100 simulation runs.

2.2 Parental selection methods

Truncation selection selects 100 individuals with the highest

GEBVs and crosses them randomly. This method is generally

associated with a high short-term genetic gain and is therefore

often used in breeding programs.

The optimal genomic mating (OGM) method, on the other

hand, selects parents that minimize an objective function combining

the inbreeding coefficient, the coancestry coefficient and a usefulness

criterion (Akdemir and Sánchez, 2016). Parents are selected by a

genetic algorithm using the R package GenomicMating.

The scoping method has been proposed by the present authors and

consists of two steps (Vanavermaete et al., 2020). First, individuals with

the highest GEBVs are preselected from the breeding population. The

fraction of the population that is preselected is controlled by the

scoping rate (SR). Second, parents are selected iteratively from the

preselected individuals. The individual with the highest GEBV is

selected as the first parent, whereas the second parent is the one that

maximizes the F-score (F):

F =o
k

i=1
var(Z*,i)pi, (1)

with k the number of markers, Zi the i–th column of the n� k

matrix Z containing the genotypes (coded as -1, 0 and 1) of the n

already selected individuals. The vector p consists of k Boolean

values that are initially set to 1 for all marker positions. When both

alleles at marker i are present, pi is set to 0. If all pi equal 0, they are

restored to 1. This way, the inclusion of all marker alleles in the

parental population is assured to the highest extent possible. A

complete overview of the scoping method can be found in

Vanavermaete et al. (2020).

The deep scoping method uses the scoping method to (re)

introduce new QTL alleles in the breeding population through the

use of a genebank. First, truncation selection is used for five

breeding cycles (DSBC5) to simulate a reduction in genetic

variation in the breeding population due to intensive breeding.

Next, a genebank is used to (re)introduce genetic variation in the

breeding population. Because the genebank is characterised by a

broad genetic variation and individuals with a low genetic value, the

breeding population is divided into different layers allowing for the

genetic values to gradually increase over different breeding cycles

before introducing these individuals into the elite population. A

complete overview of the deep scoping method is reported in

Vanavermaete et al. (2021).

2.3 Oracle parental selection

Oracle parental selection is a hypothetical frame of mind that

allows to reveal the full potential of parental selection. Classical

selection methods only have access to information extracted from
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molecular markers that are linked to the QTLs that underlie the trait

of interest. In contrast, oracle parental selection is allowed to exploit

knowledge of the actual QTL effects. Intuitively, the method selects

individuals with the highest number of favorable QTL alleles, giving

priority to QTL positions that have not yet been selected in the

parental population, thus preventing the loss of rare favorable QTL

alleles. Formally, each individual receives a score between 0 and L

(number of QTLs), representing the number of favorable QTL

alleles that are present in its genome. The individual with the

highest score is selected as the first parent. The remaining

individuals are scored again, this time only taking into account

QTL positions whose favorable alleles have not yet been selected in

the parental population. In case all favorable QTL alleles are already

present in at least one of the selected parents, the score is calculated

over all QTLs. Again, the individual with the highest score is

selected. This process is repeated until the required number of

parents is selected. The selected parents are randomly paired using a

recurrent breeding scheme (see Figure 1). The oracle selection

method maximizes the genetic progress while avoiding the loss of

favorable QTL alleles.
2.4 Training population update methods

Different methods to update the TP will be evaluated. Each

method selects individuals from the current breeding population

and adds them to the TP. The top TP update method selects

individuals with the highest GEBVs, the tails TP update method

selects individuals from both tails of the normally distributed

GEBVs and the random TP update method selects individuals at

random. A complete description of these methods can be found in

Neyhart et al. (2017). The PEVmean TP update method selects

individuals that minimize the prediction error variance, whereas the

CDmean TP update method selects individuals that maximize the

reliability of the predictions (Maenhout et al., 2010; Rincent et al.,

2012). Finally, the TrainSel TP update method selects individuals

from the breeding population by means of a genetic algorithm

(Akdemir et al., 2021); this method is available in R via the

package TrainSel.
2.5 Oracle training population updating

We propose the oracle TP update method to construct an

optimal TP that maximizes the predictive performance of the

genomic prediction model. The oracle TP update method is again

a hypothetical frame of mind to study the characteristics of an

optimally selected TP. In contrast to the oracle parental selection

method, the oracle TP update method only requires the phenotypic

and genotypic values of each individual. QTL information is thus

not needed. The oracle TP update method can be used in

combination with classical (i.e., non-oracle) parental section

methods that rely on GEBVs. The difference is that by using an

optimally selected TP, the GEBVs are better predicted.

In the oracle TP update method, individuals are added and

removed from the TP iteratively. First, the contribution of each
frontiersin.org
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individual towards the predictive performance is calculated. The

predictive performance is expressed as the Pearson correlation

between the predicted and true genetic values of the whole

breeding population. To avoid overfitting, individuals of the

breeding population that have been accepted in the TP are not

used to calculate the predictive performance. The individual that

maximizes the predictive performance after its addition to the TP is

accepted in the TP. Second, the impact of removing each individual

separately from the TP is assessed and the individual that

maximizes the predictive performance after its removal is

eliminated from the TP. In total, up to 50 individuals can be

added and removed from the TP. An individual will only be

added to or removed from the TP if that action increases the

predictive performance. It is, however, possible that each individual

in the TP has a positive contribution towards the predictive

performance and that no individual is removed. Therefore, the

size of the TP could vary, depending on the addition and removal

of individuals.
2.6 Prediction model

In the first breeding cycle, the complete base population is used

as TP. In the subsequent breeding cycles, 150 individuals are

phenotyped and added to the TP according to the tails method,

selecting 75 individuals with the highest and 75 individuals with the

lowest GEBVs (Neyhart et al., 2017). According to Neyhart et al.

(2017), this results in a (non-significantly) higher genetic gain

compared to other update methods. Before updating the TP, the

150 oldest individuals in the TP are removed from the TP. This

reduces the computational time without reducing the predictive

performance (Neyhart et al., 2017).

In the case of the oracle TP update method, only 100 randomly

selected individuals of the base population are used as TP. To

compare the different TP update methods, in subsequent breeding

cycles, only up to 50 individuals are added to the TP. Additionally,

the oracle TP update method can also remove up to 50 individuals

from the TP if the removal of such individuals increases the

predictive performance.

The GEBVs are predicted by fitting a linear mixed effects model:

y = 1nb + Zu + ϵ, (2)

with y a vector of phenotypic values, 1n a vector of size n containing

ones, n the number of individuals in the TP, b the fixed effect

(phenotypic mean), Z he incidence matrix of the TP with marker

information, u the marker effects following a normal distribution

N (0,G) with G = s 2
u Ik (with Ik the identity matrix of dimension k),

k the number of markers and e the residual effects following a

normal distribution N (0,R) with R = s 2
e In. Both s 2

u and s 2
e are

estimated by means of restricted maximum likelihood (REML). The

GEBVs of the individuals are calculated as:

ĝ = Zû , (3)

with ĝ the GEBVs, Z the marker information and û the predicted

marker effects.
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The linear mixed effects model in Eq. (2) is fitted using the

package rrBLUP in R (Endelman, 2011). Even though it has been

recommended to remove markers with low levels of polymorphism

from the TP (Chang et al., 2018), we kept all markers as this resulted

in a higher predictive performance.
2.7 Simulation of the population

The simulation study was built upon the work of Neyhart et al.

(2017), using the packages GSSimTPUpdate and hypred in R

(version 3.6.3). First, the QTLs were simulated based on the

marker position, allele, and chromosomal information. One

hundred QTLs (L = 100) are selected randomly from the available

1590 biallelic SNP loci. The remaining 1490 biallelic SNP loci are

available as markers for prediction and selection purposes. The QTL

effects are calculated according to a geometric series. At the k-th

QTL, the favorable homozygote will have a value ak, the

heterozygote a value zero, and the unfavorable homozygote a

value − ak with a = (L − 1)=(L + 1). Dominance and epistatic

effects were assumed to be absent. The phenotypic value is

calculated over three different environments, each drawn from a

normal distribution with mean 0 and variance s 2
E which is defined

as 8 var(g) with g the genetic values of the breeding population

(Bernardo, 2014). The variance of the genetic value, and hence s 2
E is

calculated before the first breeding cycle and remains unchanged

during the simulation. The phenotypic value of the i-th individual

in the j-th environment (yij) is calculated as follows:

yij = gi + ej + ϵij, (4)

with gi the genetic value of the i-th individual, ej the j-th

environmental effect and ϵij the residual effect of the i-th

individual and the j-th environment. The residual effect is drawn

from a normal distribution with mean 0 and variance s2
R , with s 2

R

scaled to simulate a population with a heritability (h2) of 0.5. The

residual error s 2
R is calculated as:

s 2
R = 3

var(g)
h2

− var(g)

� �
: (5)

The phenotypic value of an individual is defined as the average over

the three environments. A comprehensive overview of the

simulation study can be found in Vanavermaete et al. (2020).

To track the fixation of unfavorable QTL alleles, the maximum

reachable genetic value is calculated as the sum of the QTL effects

that are fixed (both favorable and unfavorable) and the sum of the

favorable QTL effects that are not yet fixed. It represents the

maximum genetic value that could still be reached, taking into

account the fixation of unfavorable QTL alleles. The maximum

reachable genetic value and the mean genetic value are rescaled such

that the maximum reachable genetic value, when no unfavorable

QTLs are fixed, has a value of 1. As in Vanavermaete et al. (2020),

the mean genetic value of the top-10 individuals is reported. These

individuals represent the superior lines that are prime candidates

for commercialization.
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3 Results

3.1 Oracle parental selection

Oracle parental selection is a hypothetical frame of mind that

uses the knowledge of QTL positions and QTL effects to

demonstrate the effect of an almost perfect parental selection on

the genetic value. In the initial population, some of the QTLs are

already fixed for one of the two possible alleles. Some of these alleles

have a negative contribution to the genetic value. This explains why

the maximum reachable genetic value is slightly lower than 1 for the

initial population (see Figure 2). Over the subsequent breeding

cycles, the maximum reachable genetic value remains unchanged,

indicating that no favorable QTL alleles are eliminated during

breeding. Meanwhile, the frequency of favorable QTL alleles in

the breeding population increases, leading to high mean genetic

values. Over time, unfavorable QTL alleles are lost from the

breeding population, leading to the fixation of favorable QTL alleles.

The scoping method ðSR = 0:3Þ and the deep scoping method

(DSBC5) are able to increase the long-term genetic values compared

to truncation selection (baseline) and the OGM method. However,

oracle selection reaches much higher genetic values in the short as

well as in the long term. This indicates that current parental

selection methods could, in principle, be further optimized to

increase the short- and long-term genetic values up to 14

percentage points. An overview of the mean genetic value of the

top-10 individuals and of the maximum reachable genetic value for

the different parental selection methods is listed in Tables S1, S2 in

the Supplementary Material, respectively.
Frontiers in Plant Science 05
3.2 Oracle training population update

The oracle TP update method is a hypothetical frame of mind

that selects individuals to construct a TP using their genotypic and

phenotypic values. The optimal TP is then used to (re-)train the

mixed effects model that predicts the GEBVs of the current breeding

population. In turn, these GEBVs are used to select parents for the

next breeding cycle. Assuming that the oracle TP update method

results in a good prediction of the GEBVs, it can be used to assess

the current progress of other TP update methods.

The TP update methods were compared using a breeding

population where the parents are either selected according to

truncation selection or according to the scoping method.

Truncation selection prioritizes individuals with the highest

GEBVs, whereas the scoping method will also select individuals

that maximize the genetic variation of the parental population.

Therefore, both approaches may require a different TP update

strategy. The results for truncation selection (left panel) and the

scoping method (right panel) using different TP update methods are

shown in Figure 3.

At the start of the simulation, each method results in the same

mean genetic value of the top-10 individuals. After only two

breeding cycles, the oracle TP update method already yields a

higher genetic gain compared to the other TP update methods. At

breeding cycle 15, a difference of 15 and 21 percentage points is

observed between the oracle and top TP update methods for a

breeding population using truncation selection and the scoping

method, respectively. It is clear that the oracle TP update method

results in a better prediction of the GEBVs, optimizing the parental
FIGURE 2

Mean genetic value of the top-10 individuals and maximum reachable genetic value of a breeding population using the oracle selection method,
scoping method (SR = 0.3), and deep scoping method (DSBC5), OGM method and truncation selection over 50 breeding cycles. Oracle selection
leads to a high increase of the mean genetic value over the first breeding cycles, while the maximum reachable genetic value remains constant,
indicating that no favorable QTL alleles are lost. The difference in genetic value between the oracle selection method and the other methods
indicates that further improvements of the parental selection methods could increase the genetic value up to 14 percentage points.
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selection and thus leading to higher long-term genetic values. An

overview of the mean genetic value of the top-10 individuals and of

the maximum reachable genetic value using different update

methods is listed in Tables S3, S4, respectively, for truncation

selection, and Tables S5, S6, respectively, for the scoping method.

The top, random, tails, PEVmean and CDmean TP update

methods (Rincent et al., 2012; Neyhart et al., 2017) yield

approximately the same genetic values. When parents are selected

according to truncation selection, the top TP update method yields

high genetic values, whereas when the scoping method is used, the

tails TP update method results in higher long-term genetic values.

The TrainSel TP update method (Akdemir et al. 2021) is able to

outperform both the top and tails TP update methods in both

scenarios (truncation selection and scoping method). Especially

when the scoping method is used, the TrainSel TP update method

results in a 3 percentage points higher genetic gain after 15 breeding

cycles compared to the tails TP update method.

4 Discussion

4.1 Strength of the oracle
selection methods

The oracle selection method is a theoretical concept that uses

QTL positions, QTL effects, and genotypic and phenotypic

information to select an optimal parental population or TP. This

method allows for the comparison of currently existing methods. If a

method obtains a similar genetic value as observed for the oracle

method, then this means it is optimal and cannot be further improved

upon. However, as observed in Figure 2, this is not yet the case for the

current methods. Additionally, the oracle method can provide

insights into which variables (e.g., the genetic relationship,

inbreeding coefficient, coancestry coefficient, etc.) should be

controlled to maximize the short- or long-term genetic gain.
4.2 The greedy selection of QTL alleles

Oracle parental selection was developed to study the effects of

using a modified truncation selection scheme in which the
Frontiers in Plant Science 06
frequency of all favorable QTL alleles is maximized. Oracle

parental selection assumes knowledge of the actual QTL effects

and is therefore only of conceptual interest; in vivo, only genetic

markers are available to guide parental selection. Although oracle

selection is able to maximize the genetic gain by greedily selecting

the favorable QTL alleles in the parental population, when the

parental selection process relies on genetic markers that are

putatively linked to the causal QTL effects, greedily selecting

individuals (as observed for truncation selection) often results in

a premature convergence of the genetic value. In other words, by

only preserving the marker alleles that have a positive estimated

marker effect, the loss of favorable QTL alleles cannot be prevented.

Preserving both marker alleles in the breeding population prevents

the elimination of poorly estimated QTL alleles resulting in higher

long-term genetic values compared to a greedy strategy like

truncation selection.
4.3 Reaching the theoretical maximum
genetic value

The favorable QTL alleles are not always abundantly present in

the initial population and many breeding cycles may be needed

before fixation occurs. This explains the relatively slower increase of

the fixed genetic value compared to the mean genetic value of the

top-10 individuals (see Figure 4). In a standard setting, the fixed

genetic value represents the overall effect of all QTL alleles that are

fixed in the breeding population. As oracle parental selection avoids

the fixation of unfavorable QTL alleles, the fixed genetic value can,

in this case, be used to monitor the fixation of favorable QTL alleles.

After almost 30 breeding cycles, the genetic value and the fixed

genetic value converge to a slightly lower value than the maximum

reachable genetic value. Oracle parental selection, which was

designed to prevent the loss of favorable QTL alleles, should make

it possible to reach the maximum genetic value. However, when two

or more QTL alleles are in strong linkage disequilibrium (LD) w.r.t.

one another, linking a favorable QTL allele to an unfavorable QTL

allele, fixation of both QTL alleles becomes difficult. This was the

case for five percent of the QTLs, preventing the genetic value from

reaching its absolute maximum and explaining why the genetic
FIGURE 3

Simulation results of different TP update methods (top, tails, random, CDmean, PEVmean and TrainSel) and the oracle TP update method. The oracle
TP update method yields the highest long-term genetic values.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1218665
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Vanavermaete et al. 10.3389/fpls.2023.1218665
value and the fixed genetic value did not converge to the same value.

The oracle selection method demonstrates that, even in an ideal

situation, at least 30 breeding cycles are needed to approach the

maximum reachable genetic value in the breeding population for

the base population and simulation settings used in this study.
4.4 Genetic values, phenotypic values, and
genomic estimated breeding values

The main goal of breeding is to maximize the genetic value of

various traits of interest and this both in the short and the long term.

Unfortunately, the genetic value cannot be measured, and thus

selection is often based on the phenotype. Because the phenotype is

also influenced by the environment, its use to guide parental selection

will result in a lower genetic gain compared to the use of genetic values.

This is shown in Figure 5. Measuring the phenotype is a time-

consuming and expensive process, therefore, GEBVs are often used

instead, predicting the genetic values using a linear mixed effects model.

The selection of superior individuals using GEBVs hinges on the

predictive performance of the underlying genomic prediction model.

The construction of a genomic prediction model is based on a TP for

which phenotypic and genotypic data is required. Due to prediction

errors, selecting parents based on GEBVs results in a lower genetic gain

compared to parental selection based on phenotypic or genetic values

(see Figure 5). The difference in the genetic value obtained by selecting

the parents based on the GEBVs and phenotypic values could be

reduced by using a more accurate prediction model and a better TP

design. However, linear mixed models such as rr-BLUP and gBLUP

generally achieve competitive predictive performances (Moser et al.,

2009), and according to Neyhart et al. (2017), as long as the TP is

updated, the genetic value converges to the same long-term value.
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Aside from environmental effects and prediction errors, selecting

the parents with the oracle selection method results in a higher long-

term genetic value than when the parents are selected with truncation

selection based on the true breeding values. Truncation selection selects

individuals with the highest genetic value. Because the genetic value is

calculated as the sum of all the QTL effects, an individual with a high

genetic value can still possess unfavorable QTL alleles. In other words,

truncation selection based on genetic values can still result in the loss of

favorable QTL alleles. Oracle selection prevents, just like the (deep)

scoping method, the loss of these favorable QTL alleles, resulting in an

overall higher long-term genetic value.
4.5 Size of the training population

Figure 6 shows the size of the TP as a function of the breeding

cycle when the oracle TP update method is used in combination

with truncation selection (left panel) and scoping method (right

panel). At the start of the simulation, the TP is constructed as a

random selection of 100 individuals from the base population. The

oracle TP update method can, each cycle, add and remove up to 50

individuals from the TP. An individual can only be added to or

removed from the TP if a higher predictive performance is obtained

as a consequence. A similar TP update pattern is observed for both

truncation selection and the scoping method. However, after

breeding cycle 5, the scoping method results in a slightly higher

TP size compared to truncation selection. This can be explained by

the inherent aim of the scoping method to increase the genetic

variation in the breeding population and therefore requires a larger

TP to accurately predict all GEBVs.

At the first breeding cycle, the oracle TP update method adds

approximately 30 individuals to and removes 30 individuals from the

TP, replacing the randomly chosen individuals one by one. In
FIGURE 4

Simulation results using the oracle selection method over 50
breeding cycles. Oracle selection leads to a high increase of the
mean genetic value over the first breeding cycles. The maximum
reachable genetic value remains constant, indicating that no
favorable QTL alleles are lost. Due to selection, the frequency of the
favorable QTL alleles increases, finally leading to the loss of
unfavorable QTL alleles. This eventually results in high genetic
values.
FIGURE 5

Mean genetic value of a breeding population using truncation
selection. The parents are selected based on the GEBVs, true
genetic values (TGVs), or phenotypic values. Selecting parents based
on the TGVs results in the highest genetic values, followed by
phenotypic values and GEBVs (TP updated by means of the tails
method).
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subsequent breeding cycles, the number of individuals that are

removed from the TP is reduced, allowing for an increase in the

size of the TP. Over time, fewer individuals are added to the TP,

resulting in the same number of individuals that are added to and

removed from the TP (steady state). This means that the predictive

performance is not maximized by consistently increasing the TP size.

For truncation selection, the size of the TP starts to converge at

breeding cycle 15. At that point, fewer than 25 individuals are added

to the TP. This observation seems to indicate that using huge

datasets to fit a prediction model may not be the best strategy.
4.6 Constructing an optimal
training population

The top and tails TP update methods rely on GEBVs. Because

the top TP update method selects only the individuals with the

highest GEBVs, the mean genetic value of the TP is higher

compared to that of the breeding population (see top left panel of

Figures 7, 8). This is not observed for the oracle TP update method.

Selecting on the basis of the highest GEBVs does not seem like the

best strategy to maximize the predictive performance of the GEBVs.

The oracle TP update method yields a much higher predictive

performance than the other methods, whose performances are

similar (see top right panel of Figures 7, 8). As discussed in

Vanavermaete et al. (2020), by preserving the genetic variation in

the breeding population, an overall higher Pearson correlation

coefficient between the true and predicted breeding values is

obtained. This can be observed in Figures 7 and 8.

A TP should contain individuals that represent the genetic

diversity of the current breeding population, allowing for a better

prediction of each individual. This is also observed in Figure 3, where

the tails TP update method results in higher long-term genetic values

compared to the top TP update method. The scoping method

maximizes the genetic variation, therefore, only selecting

individuals with high GEBVs will not be sufficient to accurately

predict the GEBVs of the whole breeding population. If individuals of

the TP are a good representation of the breeding population, both will

have a high genetic relationship. This can easily be calculated as:
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G =
MM 0

2ok
i=1Pi(1 − Pi)

, (6)

with M a matrix with n rows and k columns of which each column

is calculated as Zi − 1n½2(Pi − 0:5)�, n the number of individuals in

the breeding population, Zi the genotype of n individuals at the i-th

marker, 1n a vector of size n containing ones, k the number of

markers, and Pi the frequency of the alternative allele at the i-th

marker (VanRaden, 2008).

The mean genetic relationship between the members of the TP

and the members of the breeding population for different TP update

methods is shown in the bottom left corner of Figures 7 and 8 for

truncation selection and the scoping method, respectively. In the

top TP update method, the individuals selected as parents are also

added to the TP, resulting in a slightly higher genetic relationship

between the TP and the breeding population compared to other

similar TP update methods (random, PEVmean, CDmean and

tails). This difference is more pronounced when truncation

selection is used, since in the scoping method only the first parent

is selected based on the GEBV. Therefore, the top TP update

method will not always select the same individuals. The oracle TP

update method also results in a training population with a high

genetic relationship w.r.t. the breeding population, indicating the

importance of maximizing the genetic relationship.

The residual error is the absolute difference between the genetic

value and the phenotypic value of an individual. Over the first

breeding cycles, the oracle TP update method selects individuals

with a low residual error. In vivo, the residual error is unknown and

thus selecting individuals that minimize the residual error cannot

easily be achieved. The PEVmean update method (Rincent et al.,

2012) selects individuals by minimizing specific contrasts of the

prediction error variance matrix that is associated with the random

effects part of the mixed model equations, but according to Neyhart

et al. (2017) it was not able to outperform other update methods in

the long term. This is also confirmed in Figure 3. Therefore, non-

oracle update methods will probably not be able to reach the same

long-term genetic values as the oracle TP update method as long as

the residual error cannot be measured or predicted more accurately.

The two driving forces of the oracle TP update method are the

maximization of the genetic relationship between the TP and the
FIGURE 6

Overview of the number of individuals that are added to and removed from the TP using the oracle TP update method. Parents are selected
according to truncation selection (left) or the scoping method (right). Over the first breeding cycles, a lower number of individuals are removed from
the breeding population, allowing for an increase in the size of the TP.
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breeding population and the minimization of the residual error of

the TP. Although the genetic relationship can easily be maximized,

minimizing the residual error may be more difficult. High-

throughput phenotyping could result in data of higher quality,

thus reducing the residual error. In this simulation study, the oracle

TP update method only required a TP size of approximately 150

individuals. This indicates that phenotyping efforts should probably

focus more on quality than on quantity.
5 Future prospects

A parental selection method should aim to maximize the

fixation of favorable QTL alleles. However, if the reliability of the

GEBVs is low, this may also result in premature convergence of the

genetic value. Therefore, a parental selection method should also

aim to preserve genetic variation to the highest extent possible.

Combined with high genetic progress, this will result in high genetic

gains while avoiding a premature convergence of the genetic value.

In one way, both the scoping and deep scoping methods

maximize the genetic gain while preserving a certain amount of

genetic variation in the parental population. The preservation of
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genetic variation can at a later stage be reduced to fully maximize

the genetic gain. This was demonstrated with the adaptive scoping

method (Vanavermaete et al., 2022), but this idea can be further

improved upon by dividing the crossing block design into two parts.

Assuming a parental selection of 100 parents that are paired into 50

couples, the first N couples are selected according to the scoping

method. The remaining 50 − N couples are selected solely using the

F-score to select both parents, fully maximizing the genetic

variation of the parental population. This will result in offspring

with a lower genetic value but a broad genetic variation. Because P1
parents are still selected via truncation selection in the scoping

method, increasing N will result in higher short-, but lower long-

term genetic values. Therefore, in due time, by increasing the

number of parental pairs that are selected according to the

scoping method, the genetic gain will gradually increase. This

concept, coined chimeric scoping, is shown in Figure 9. Just like a

chimera is composed out of cells with more than one distinct

phenotype, the crossing block design of chimeric scoping consists of

two separate parental selection strategies. By preserving the genetic

variation till the t-th breeding cycle, higher long-term genetic values

of up to 10 percentage points are observed compared to the original

scoping method. This demonstrates that maximizing the genetic
FIGURE 7

Simulation results using various TP update methods (Top, CDmean, PEVmean, Random, Tails, TrainSel, Oracle) using truncation selection to select
the parents in each breeding cycle. Top left: the mean genetic value of the TP; top right: the predictive performance; bottom left: the mean genetic
relationship calculated according to VanRaden (2008) between the members of the breeding population and the members of the TP scaled to the
average genetic relationship between the members of the base population; and bottom right: the absolute residual error.
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FIGURE 8

Simulation results using various TP update methods (Top, CDmean, PEVmean, Random, Tails, TrainSel, Oracle) using the scoping method to select
the parents in each breeding cycle. Top left: the mean genetic value of the TP; top right: the predictive performance; bottom left: the mean genetic
relationship calculated according to VanRaden (2008) between the members of the breeding population and the members of the TP scaled to the
average genetic relationship between the members of the base population; and bottom right: the absolute residual error.
FIGURE 9

Mean genetic value of the top-10 individuals and maximum reachable genetic value of a breeding population using the scoping method and the
chimeric scoping method. Compared to the scoping method, chimeric scoping results in lower short-term but higher long-term genetic values.
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progress while still preserving genetic variation can result in higher

genetic values in the long term.We believe that this approach can be

used to further develop new parental selection methods.
6 Conclusion

The results obtained by the oracle parental selection method

indicate that current methods to select the parental population are

far from optimal. Although the scoping method increases the long-

term genetic values considerably compared to truncation selection,

the optimal breeding strategy has not yet been found, incentivizing

the quest for more performant methods. Similarly, the TP update

methods are also not able to maximize the genetic gain compared to

the oracle TP update method. Although the oracle method clearly

adds individuals to the TP that maximize the genetic relationship

between the TP and the breeding population, it also selects

individuals with a lower residual error, which cannot easily be

achieved in vivo. Therefore, TP update methods will probably never

be able to reach the same long-term genetic values as the oracle TP

update method does. Nevertheless, this also shows that phenotyping

technology should perhaps focus more on quality and less

on quantity.
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