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Abiotic stresses pose significant threat to horticultural crop production

worldwide. These stresses adversely affect plant growth, development, and

ultimately declined crop growth, yield and quality. In recent years, plant

scientists have been actively investigating innovative strategies to enhance

abiotic stress resilience in crops, and one promising avenue of research

focuses on the use of brassinosteroids (BRs). BRs are a class of plant hormones

that play crucial roles in various physiological processes, including cell

elongation, differentiation, and stress responses. They have emerged as potent

regulators of plant growth and development, and their role in improving abiotic

stress tolerance is gaining considerable attention. BRs have been shown to

mitigate the negative effects of abiotic stresses by modulating key

physiological and biochemical processes, including stomatal regulation,

antioxidant defense, osmotic adjustment, and nutrient uptake. Abiotic stresses

disrupt numerous physiological functions and lead to undesirable phenotypic

traits in plants. The use of BRs as a tool to improve crop resilience offers

significant promise for sustainable agriculture in the face of increasing abiotic

stresses caused by climate change. By unraveling the phenomenon of BRs, this

review emphasizes the potential of BRs as an innovative approach for boosting

abiotic stress tolerance and improving the overall productivity and quality of

horticultural crops. Further research and field trials are necessary to fully harness

the benefits of BRs and translate these findings into practical applications for

crop production systems.
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Introduction

Plants possess intrinsic mechanisms to enhance their tolerance

to abiotic stresses (Kanwar et al., 2012). Different physiological and

biochemical adjustments are necessary under abiotic stress in

horticultural crops (Figure 1). These interactions comprise

variations in gene regulation, the production of particular

proteins and many metabolites, changes in hormonal signaling,

and antioxidant capacity (Shahzad et al., 2022). A collection of

organic, naturally occurring molecules is known as plant hormones

(Rao et al., 2019). Low concentrations of these hormones could

influence important plant life cycle activities (Rhaman et al., 2020).

Phytohormones are involved in physiological changes and

expression of genes under abiotic stresses. Brassinosteroids (BRs),

Auxins, gibberellins, cytokinin, abscisic acid, jasmonates, salicylic

acid, ascorbic acid, melatonin, and ethylene are only a few examples

of the class of naturally occurring compounds known as

phytohormones (Sardar et al., 2021). Since the 1940s, they have

been utilized in horticultural crops. A few examples of well-studied

expressions are ethylene’s encouragement of fruit ripening, auxin

and cytokinin control of the cell cycle, gibberellins initiation, seed

germination and stem length, and ABA’s maintenance of seed

dormancy (Tang et al., 2020). Hormonal processes determine the

growth and development of plants (Rabnawaz et al., 2020).

Phytohormones involved in signal transduction networks under

abiotic stresses resulting in improved growth and yield of

horticultural crops (Muhammad et al., 2022).

The BRs are a class of naturally occurring plant steroids that

play a key role in a wide range of biological and cellular

mechanisms, which include stem elongation, pollen tube

progression, leaf twisting and subscale, root suppression, fruit
Frontiers in Plant Science 02
ripening, ethylene synthesis, proton pump occurrence, xylem

segmentation, chlorophyll content, and expression levels (Bajguz,

2011; Ahmad et al., 2023). Since the 1980s, research has been

carried out to look into the potential economic advantages of BRs in

horticultural crops. The chemical synthesis of BRs analogs then

provides a way for the commercial manufacture of active BRs for

greenhouse and field studies, confirming structure-activity

connections (Altmann, 1999; Rhaman et al., 2020). 24-

epibrassinolide (EBR) and 28-homobrassinolide (HBR) have been

recognized as plant growth regulators (Figure 2). An extensive study

on EBR and HBR studied that exogenously applied BRs can

significantly boost yield and quality in several plant species

(Tarkowská and Strnad, 2017). However, the outcomes can vary

depending on the useful way, development stage, and external

factors (Figure 3). Plants had potential to withstand

environmental challenges such as water deficit conditions, salinity

stress, and low and high temperatures due to BRs applications

(Krishna, 2003). The extra benefit of using BRs in agriculture to

increase agricultural output is their capacity to endow plants with

resilience to abiotic stressors (Baghel et al., 2019). The role of BRs in

protecting plants against environmental stresses is more vital for

sustainable production (Ahmad et al., 2023). Future farming will

benefit much economically from the merging of two qualities

(growth stimulation and stress resistance) as transmitted by BRs

for increased crop yield (Altmann, 1998; Sultan and Raza, 2015).

The variations in plant form, size, color, flavor, and aroma as

well as flower or fruit color also contribute to the diversity and value

of these plants (Ahmad and Anjum, 2023). The sectors of

horticulture and the related green industries are professionally

expanding quickly and are becoming more and more significant

to society (Bajguz, 2012). It is also well-recognized that horticultural
FIGURE 1

Abiotic stress variables and its effect on plants.
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plant cultivation is characterized by rigorous and highest

management costs, climate control, extensive technological

utilization, and serious risk (Pereira-Netto et al., 2006). Therefore,

the main objective of this review is to describe the function of BRs, a

form of harmless and ecologically friendly hormone, on

horticultural crops to satisfy the rise of the industrial sectors. The

practical implementation of BRs in horticultural crops for

improving yield, quality, and stress tolerance may have a

promising future with the advancement of chemical synthesis
Frontiers in Plant Science 03
capabilities (Tang et al., 2016; Chaudhary et al., 2023; Sardar

et al., 2023).

The adoption of management strategies to increase plant yield

while cultivating under abiotic stressors was advised by plant

researchers. Exogenous phytohormone spray is a more attractive

method to counteract the detrimental effects of abiotic stresses on

long-term plant yield (Souza et al., 2017). Plant researchers are paying

close attention to hormones because of their multifaceted behavior

against various adverse environmental factors. For increased yields,
FIGURE 2

Functions of brassinosteroid in horticultural plants.
FIGURE 3

Brassinosteroid application protected leaf photosynthetic system and reduced oxidative damage in plants.
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their usage in horticultural crops growing under abiotic stressors is

beneficial. Due to the multiple environmental challenges that

horticulture crops face, the current study explores how

phytohormones are utilized in these crops. There were also in-depth

analyses of the physicochemical andmolecular programming that gives

plants the ability to fight against the harmful impacts of

climatic extremes.
Impact of stressors on
horticultural crops

Agroupof polyhydroxylated steroidal plant hormones is known as

BRs, involved in a wide range of physiological, biochemical, and

molecular reactions in plants, including germination of seeds, cell

growth and elongation, capillary distinctions, photomorphogenesis,

chlorophyll content, enzyme activation, metabolism, and inhibition of

cells are widely distributed all over the kingdom Plantae (Vives-Peris

et al., 2017). Furthermore, it has been revealed that they can shield

plants against several biotic and abiotic stresses, including pathogens,

toxic substances, water, heat, and salt. Similarly, BRs increase the

productivity of a majority of horticultural crops. They also improve

fruit quality and yield in certain plants with significant horticultural

value. Despite the fact that there are not as many of these reports, a

thorough review of them has been done and is reviewed here (Khan

et al., 2020). BRs control the regulation of photosynthesis, root

extension, stomatal growth, leaf senescence, chlorophyll breakdown,

and nutritional balance (Daszkowska-Golec, 2011; Kumar et al., 2016).

It is well known that BRs play a critical role in how effectively plants can

withstand stress and acclimatize to it. It’s interesting to note that BRs

boost plants’ tolerance to environmental stressors. Through ROS-

mediated oxidative damage control and an improved antioxidative

defense strategy, exogenous BRs promoted cold stress resistance in

peach (Wang X. et al., 2019). The use of BRs improved the antioxidant

status of grape seedlings under high temperature conditions (Khan

et al., 2020). In bitter melon under salt stress, BRs successfully

enhanced growth traits, proline, and metabolite levels, and decreased

oxidative injury (Souza et al., 2017). Previous research showed that BRs

positively influenced strawberry pigments content, strawberry root

development, cauliflower antioxidant defense system, tomato

osmolytes activities, apple ROS generation, and many other

horticultural crops under an abiotic stress condition (Pereira-Netto

et al., 2006; Tang et al., 2016). It also enhanced leaf gas exchange

parameters, lesser ROS production, and decreased heavy metal

concentrations. The most prevalent, well-known, and best-

characterized substance is BRs. Once horticultural crops are

subjected to abiotic challenges such as drought, salinity, cold,

alkalinity, heat, and metal stress, BRs effectively regulate the

defensive mechanisms of the plants (Ahmad et al., 2023). The BRs

can therefore lessen a range of environmental stressful threats.

Additionally, exogenous BRs assisted in raising endogenous BRs

concentrations in pea plants. Due to the cooling damage index, BRs

treatment lowered phenolic concentration while increasing

antioxidant enzyme activity (Sardar et al., 2021). Proline content and

antioxidant activity were considerably increased in citrus after BRs

treatment, and ROS-induced oxidative injury was reduced (Ahmad
Frontiers in Plant Science 04
et al., 2023). Through foliar applications of BRs under waterlogging

conditions in pepper plants, the metabolic activity, root aeration,

antioxidative enzyme efficiency, and osmolytes content were greatly

increased, while the formation of hydroxyl free radicals, MDA, and

electrolyte leakage (EL) decreased (Bajguz, 2011). As a result, BRs play

a favorable role in controlling how well horticultural crops respond to

abiotic stress situations (Mandava et al., 2022). In numerous studies,

tomatoes have undergone BRs treatment at various periods when seeds

were pre-sown, root dipping, and foliar spraying (Tarkowská and

Strnad, 2017). Tomato plants grown in greenhouses produced more

when pre-sowing seeds with BRs for 4 hours in a 1 ppm solution.

Applying 22, 23, 24-triepibrassinolide, and 28-homobrassinolide

improved tomato fruit set by 43–111%, 118–129%, and 43–111%,

respectively (Sridhara et al., 2021).
Impact of BRs against abiotic stresses

There has been some exploration into how phytohormones

concentrations and signaling status alter concerning abiotic stress

for many years. (Ali et al., 2006). These variations show that

phytohormones do not act as early stress signal transducers but

rather as mediators of numerous upstream signals. The goal of this

review is to describe the function of BRs, a type of harmless and

ecologically friendly hormones, on horticultural crops in order to

satisfy the evolution of the horticulture sector. Additionally, the

development of biological synthesis knowledge and the actual use of

BRs in horticulture crops to improve yield, quality, and stress

resistance have excellent future potential (Figure 4). Therefore,

before actually responding with BRs directly, it is imperative to

look at these underlying signals (Tables 1–3).
BRs and drought

Drought is caused by a lack of water or precipitation, which

significantly lowers crop yield. In locations with limited or

inconsistent rainfall, the issue is worse (Ali et al., 2022). Osmotic

stress, which is eventually brought on by drought, interferes with

normal physiological functions by upsetting redox balance and ion

allocation in the cells through absorption, extrusion, and retention

(Kaya et al., 2019). The abscisic acid (ABA) buildup is intimately

related to drought resistance. Exogenous BRs treatment increasedABA

levels and lessen the negative impacts of drought on plants. EBRdosing

in tomatoes increases drought resistance as seen by enhanced

photosynthetic apparatus, leaf hydration status, and antioxidant

defense in stressful conditions (Kaya et al., 2020). Exogenous BRs

spray (0.02 M) in pepper seedlings can improve light use and

stimulation energy absorption in the PSII antennae during dry

conditions (Khamsuk et al., 2018). Exogenous BRs spray (0.1 M

EBR) can improve Chorispora’s resilience to polyethylene glycol

(PEG) treatment-induced dehydration (Devi et al., 2022). The

transcript of genes that code for both structural and regulatory

proteins is changed by BRs treatment. BRs-induced higher drought

resistance in canola plants is partially attributed to EBR-induced

elevated transcript levels of BnCBF5 and BnDREB (two important
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drought-sensitive genes) (Li J. et al., 2015). BRs interventions can lessen

the long-term effects of drought on plants (Nawaz et al., 2017). Despite

60 days following a week-long water deficit, Indian mustard seedlings

still showed low growth and photosynthesis (Naz et al., 2022).

Nevertheless, after 30 days of sowing, treatment with 28-

homobrassinolide (0.01 µM) might significantly enhance both

growth and photosynthesis. While drought stress causes an excessive

production of ROS, BRs intervention can significantly lower ROS,

MDA, and lipid peroxidation levels when drought stress is present

(Sirhindi et al., 2017). When BRs are applied exogenously, tolerance to

various abiotic stimuli, such as drought, is increased. BothBR-deficient

and BR-insensitive mutants exhibit increased stress tolerance
Frontiers in Plant Science 05
(Samancıoğlu et al., 2014). Moreover, a study on tomatoes revealed

that drought tolerance is improved by an increase in endogenous BRs

level but not BRs signaling potency. The study also found that tomato

drought tolerance was negatively impacted by BRI1 overexpression,

indicating that abnormalities in the BRs network may either enhance

or reduce stress tolerance, illustrating the complexity of the

connections between stressors and BRs (Lv et al., 2020).
FIGURE 4

Exogenous brassinosteroid supplementation enhanced abiotic stress tolerance by increasing physiological and morphological traits.
TABLE 1 Potential functions of brassinosteroid in horticultural plants.

Functions References

Regulated seed germination Vardhini et al., 2006.

Modified root architecture system Martins et al., 2017

Enhanced abiotic stress tolerance Wei et al., 2015

Regulated stomatal development Planas-Riverola et al., 2019

Protected photosynthetic system Xia et al., 2009a

Upregulated antioxidant enzymes system Wu et al., 2014

Balanced redox homeostasis Devi et al., 2022

Cell expansion and elongation Yang et al., 2019

Increased mineral nutrient accumulation Singh and Savaldi-Goldstein,
2015

Reduced heavy metals accumulation Basit et al., 2022

Enhanced Secondary metabolites
accumulation

Xia et al., 2011

Fruit ripening Wu and Yang, 2016

Flower and fruit development Fu et al., 2008
TABLE 2 Exogenous brassinosteroid application enhanced abiotic stress
tolerance in horticultural plants.

Crop name Stress type Reference

Peppermint Salinity Çoban and Baydar, 2016

Tomato heat Ogweno et al., 2008

pepper Cadmium Kaya et al., 2020

Tomato Drought Behnamnia et al., 2009

Tomato Cold Wang et al., 2022

Tomato salinity Zhu et al., 2016

Cucumber Cold Anwar et al., 2018

Pepper Drought Kaya et al., 2019

Cucumber cold Xia et al., 2009a

Lettuce Salinity Serna et al., 2015

Pepper Chromium Mumtaz et al., 2022

Radish Cadmium Anuradha and Rao, 2007

Orange Cold Ghorbani and Pakkish, 2014

Grapevine Drought Wang Y. et al., 2019

Tomato Cadmium Hayat et al., 2012

Cucumber heat Wei et al., 2015

Tomato Cold An et al., 2023
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BRs and salinity

Salinity is a significant contributor to osmotic stress, also known

as physiological drought (Yin et al., 2010). Crop growth, yield, and

development are all adversely affected (Zhang et al., 2016). With

regards to a broad range of plants, including Arabidopsis, pepper,

cucumber, common bean, and black locust, BRs have been

established to lessen the harmful impacts of salinity (Kumari

et al., 2021). The elevated antioxidant enzyme activities, reduced

Na+ and Cl-, and improved K+ and Ca2+ levels in eggplants are signs

of the treatment’s ability to boost their tolerance to saline conditions

(Sardar et al., 2023). EBR treatment can lower NO3 and NH4

concentrations in cucumber plants that are under saline

conditions (Naz et al., 2022). However, at 30 and 45 days after

sowing, foliar treatment of HBL to rapeseed may successfully

mitigate the negative effects of salinity stress (Zhang et al., 2022).

Higher photosynthesis, nitrogen efficiencies, and total polyamines

are all linked to cucumber plants improved BR-induced resistance

to the saline condition (Wei et al., 2015). Exogenous EBR exposure

enhanced the net rate of photosynthesis, stomatal regulation,

evapotranspiration, net photosynthetic, and maximal quantum

yield of PSII under the saline condition by lowering leaf Na+

levels and membrane permeability (Chaudhary et al., 2023; Sardar

et al., 2023). BRs is also efficient in minimizing the effects of several

stresses on plants. EBR (1 µM) can reduce simultaneous stress

brought on by NaCl in Brassica species, while HBL (0.01 µM) can

reduce combined stress brought on by salt and elevated heat in

mung bean (Fu et al., 2008). This wide range in BRs concentrations

significantly emphasized the dose-effect relationship between BRs

and plant species (Cui et al., 2011). It has been demonstrated that

ubiquitin-conjugating enzymes (UBC 32) have a function in BR-
Frontiers in Plant Science 06
induced salt stress resistance. UBC32 affects the BRI1 receptor’s

accumulation in cells as a functional member of the endoplasmic

reticulum-associated protein degradation (ERAD) pathway, and

also guides the ERAD pathway towards BR-enhanced osmotic

adjustment in Arabidopsis (Chi et al., 2016). Additionally, BRs

has been regulating DNA methylation, which is crucial for salt

tolerance. A role for BRs in epigenetic alteration under salinity

stress is suggested by the fact that seed priming with EBR raises total

methylation and enhances salt tolerance (Wang et al., 2011).
BRs and waterlogging

Plants faced serious injuries at the post-waterlogging stage due

to a rapid flow in oxygen as reported in the peas (Jackson, 1979).

Reoxygenation also referred to as post-waterlogging injuries, is the

basic way of this harm. When suddenly exposed again to ambient

oxygen, plants overproduce ROS as a result of reoxygenation.

Photo-inhibition, or high light after water stress, harms the

photosynthetic machinery (Najeeb et al., 2015). The formation of

ROS in photosystem I and photosystem II, which are located in the

thylakoids of the plastid, is significantly correlated with the

deactivation of the photosynthesis. High light can also obliterate

photosystem II directly, increasing H2O2 production. ROS also

limits the production of new proteins necessary for rebuilding

photo-damaged PSII (Bhusal et al., 2020). The four primary

organelles for ROS generation in plants are the plastid, cellular

organelles, endosomes, and endoplasmic reticulum (ER). In

addition to these, enzymes for the production of ROS are also

present in the apoplast, cell wall, and cell membrane. Similarly, ROS

are usually created in plant metabolic activities. Singlet oxygen
TABLE 3 Brassinosteroid enhanced physiological, morphological and metabolic processes of horticultural plants.

Crop
name

Findings References

Pepper
Reduced Cd uptake and enhanced ion homeostasis, regulates antioxidant enzymes system, leaf water potential, and decreased

oxidative damage
Kaya et al., 2020

peppermint
Increased fresh and dry weight, enhanced proline level, essential oil content, antioxidant enzyme system, maintained cellular

membrane integrity, secondary metabolites production
Çoban and Baydar,
2016

Cucumber
Better seedling health index, increased chlorophyll content, antioxidant enzymes activity, upregulate BRs synthesis gene expression,

reduced ROS and MDA level
Anwar et al., 2018

Tomato Regulate stress response genes, positively modulates cold stress tolerance, reduced electrolyte leakage and MDA accumulation Wang et al., 2022

Lettuce Decreased the adverse effect of salinity on lettuce leaf by reduced oxidative damage, and increased antioxidant enzymes activity Serna et al., 2015

Radish Increased seed germination rate, proline concentration, antioxidant enzymes such as SOD, GPX, CAT, APX, fresh seedling weight
Anuradha and Rao,
2007

Orange Decreased MDA accumulation, H2O2 generation rate, increased antioxidant enzymes system, and maintained fruit quality
Ghorbani and
Pakkish, 2014

Grapevine Decreased the H2O2, and O2
− generation rate, and increased antioxidant defense system, and upregulates key defense genes Wang Y. et al., 2019

Tomato Regulates several antioxidant enzymes, reduced H2O2 production Zhu et al., 2016

Pepper
Lowered chromium accumulation from root to shoot, reduced cellular membrane damage, enhanced antioxidant enzyme system

and upregulates defense response genes
Mumtaz et al., 2022

Cucumber Enhanced abiotic stress tolerance, increased seedling health index, ethylene signaling biosynthesis genes were upregulated Wei et al., 2015
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(1O2), superoxide anion (O2), hydrogen peroxide (H2O2), hydroxyl

radical (HO), hydroperoxyl radical (HO2), and ozone are some of

the radical and non-radical ROS found in plants (Geldhof et al.,

2022). Cellular proteins, lipids, and nucleic acids can all be harmed

by ROS. Although a multiplicity of plant hormones is in charge of

controlling reoxygenation or dehydration damage, little is known

about how these hormones interact when plants are under post-

waterlogging stress (Jiao et al., 2023). But the key point is that all of

these hormones work to overcome reoxygenation or dehydration

stress in plants under post-waterlogging conditions, either by

opening or closing stomata or by detoxifying ROS through

various physiological and signaling mechanisms (Zhu et al., 2018).
BRs and temperature

In many parts of the world, chilling or freezing damage caused

by low temperatures is a serious hindrance to agricultural

production, especially for thermophilic plants (Dong et al., 2021).

Adjustments to membrane fluidity, changes in macromolecule

interactions, a reduction in cell osmotic pressure, as well as

mechanical restrictions, are all consequences of cold stress in

plants. The effects of cold exposure on plant photosynthetic

activities include a decrease in the pace of CO2 assimilation,

photo-inhibition at PSI and PSII, and a decline in enzyme activity

(Ma et al., 2021). The increased cold tolerance caused by BRs does

not just affect whole plants but also harvested plant products like

fruits. According to studies, BRs can increase the shelf life under

low-temperature stress, enhancing the post-harvest integrity of

horticultural crops (Zhao et al., 2019). However, compared to the

amounts that are utilized to impart stress resistance in the complete

plant, relatively large quantities of EBR are applied for post-harvest

regulation. Fruit integrity of tomatoes is severely degraded by cold

stress. However, 6 µM EBR treatment decreased the chilling-

induced damage on tomato fruits (Chang and Reed, 2000; Lopez

et al., 2011). Mango fruits are protected from cold-related damage

by 10 mM EBR treatment by having higher amounts of a group of

proteins (remorin, type II SK2 dehydrin, and temperature-induced

lipocalin) (Li et al., 2012). In contrast, BRs elevated the unsaturated

fatty acids in the plasma membrane phospholipids of mango fruits,

lowering the phase transition temperatures and increasing fluidity

under coldness (Nham et al., 2017; Shi et al., 2019). The impact of

various EBR levels on the freshness of peppers at low temperatures

(3°C) has been explored. Moreover, 15 µM EBR was sufficient to

reduce adverse effects of chilling on the green sweet peppers (Raza

et al., 2023). BRs supplementation on peppers improved

antioxidant activity and photosynthetic pigments and L-ascorbic

acid and expected to reduce oxidative damage and EL under cold

stress (Gisbert-Mullor et al., 2021). The metabolic process that is

most vulnerable to heat stress is photosynthetic machinery. High

temperatures hinder photosystem II related to photochemical

activities in addition to reducing net photosynthetic rate (Li T.

et al., 2015). By enhancing the antioxidant enzyme functions that

reduce oxidative damage under distress, EBR (0.2 µM) pretreatment

in tomato can reduce losses in photosynthesis brought on by high

temperatures. It is fascinating to note that BRs can regulates
Frontiers in Plant Science 07
thermo-tolerance in plant cultivars that are both heat-tolerant

and heat-sensitive (Zhang et al., 2013). In the case of both heat-

tolerant and heat-sensitive ecotypes of melon, EBR pretreatment

significantly increases the photosynthetic pigment levels, net CO2

absorption rate, stomatal closure, photo-degradation activity of PSI,

and water-use efficiency under heat exposure (Raza et al., 2023). By

boosting antioxidant capability, EBR treatment (0.05 - 0.2 mM)

reduces heat stress in eggplant and, reduces the amount of ROS that

accumulates when temperatures are high (Mohapatra et al., 2022).

According to these results, BRs have specific modulatory impacts on

plant photosynthesis and antioxidant properties, which significantly

help to mitigate the harmful consequences of heat stress.
BRs and heavy metals

Metal-induced stress is a problem for plants cultivated in

contaminated soil. Stress brought on by heavy metals has certain

distinctive impacts. First off, the quantity and quality of crops

grown in heavy metal-contaminated soils are harmed. Second,

due to possible food chain contaminants, there are severe dangers

connected to consuming heavy metal-contaminated natural

substances (Bücker-Neto et al., 2017). High levels of harmful

metals are frequently found in crops cultivated in such metal-

affected soils, and eating these contaminated foods carries

additional dangers. Numerous studies using different

methodologies were carried out to address these problems (Sytar

et al., 2019). Heavy metal stress can be reduced through the

application of plant growth regulators, bioactive substances, and

modification of endogenous hormones and signaling pathways.

Similarly, BRs can reduce the effects of heavy metal stress on a

variety of plant species (Singh et al., 2016) (Figure 5). The ability of

plants to absorb CO2 and their ability to photosynthesize are

significantly impacted by heavy metals. Increasing data indicate

that heavy metals like Cd reduce photosynthetic activity by

restricting the Calvin cycle’s use of ATP and NADPH (Rady and

Osman, 2012.). The net photosynthetic activity, stomatal

functioning, maximum quantum yield of PSII, the quantum

efficiency of PSII, and photochemical quenching coefficient were

all considerably reduced in tomato under cadmium (Cd) stress for

40 days. BRs regulates net photosynthetic rate, restrictions of Cd

accumulation in leaves, and improves CO2 absorption ability

(Ahammed et al., 2013). As a result, Cd stress severely inhibits

the formation of biomass in plants. Nevertheless, foliar EBR (0.1 M)

exposure considerably boosts CO2 absorption capability, Fv/Fm,

and total chlorophyll content during Cd stress (Vardhini, 2016). A

foliar spray of Exogenous BRs also reduces Cd absorption in the

roots and its transfer toward leaves. Under chromium (Cr)

exposure, tobacco leaf mesophyll cells’ transmission electron

micrographs revealed a deformed cellular structure and

cytoplasmic membrane as well as dilated thylakoid (Jan et al.,

2020). However, EBR treatment aided to maintain the

organization of grana and thylakoids under Cr stress and

safeguarded the chloroplast from Cr-induced injury. EBR exhibits

a stress-protective function in reducing the stress caused by heavy

metals. Treatment with HBL could reduce the effects of Cd on
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tomato seedlings’ development, photosynthetic capacity, and PSII

redox reactions (Basit et al., 2022). Heavy metal exposure causes

plants to produce ROS at the microscopic level, which severely

affects metabolic reactions and results in oxidative damage to

proteins, lipids, and biomolecules. It’s interesting to observe that

plants produce more distinct BRs when exposed to heavy metals like

nickel (Ni). It has been demonstrated that BRs protect plants from

stress brought on by heavy metals (Fariduddin et al., 2011).

Moreover, EBR treatment (0.1 M) in tomato plants can increase

adaptability to Cd stress. Moreover, in soils containing less than 12

mg kg-1 Cd, foliar treatment of BRs (0.01 M EBR) can increase

tomato fruit yields and quality. Within a short period of exposure,

BRs have a potent protective effect against Cd stress (Yang et al.,
Frontiers in Plant Science 08
2019). For contrast, under a 60-day Cd load, a single foliar dose of

EBR (0.01 mM) applied 24 hours before the assessment can

significantly increase the photosynthetic processes in tomato

leaves. Leguminous crops treated with BRs have better nodule

production when exposed to heavy metals. Vigna radiata plant

development especially nodulation was disturbed under Ni stress

(Posmyk and Janas, 2007). Similarly, HBL treatment reduced Cd

phytotoxicity by increasing Cicer arietinum concentrations of both

enzymatic and non-enzymatic antioxidants (Xia et al., 2009b). By

increased levels of antioxidant enzymes and redox balance, the

addition of EBR (5 nM) in the half-strength MS medium increases

the resilience of tomato seedlings to zinc-oxide nanoparticle-

induced stress (Ahmed et al., 2021). Likewise, increased
FIGURE 5

Brassinosteroid application reduced heavy metals accumulation from root to shoot. HM, heavy metals; ROS, reactive oxygen species; BRs,
brassinosteroids.
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endurance to heavy metals caused by exogenous BRs is considered

to be due to significant improvements in photosynthetic pigments,

antioxidative defense, ROS scavenging capabilities, glutathione

content, phytochelatin content, and cell cycle under stress

conditions (Bajguz and Hayat, 2009). So, it has been assumed that

BRs had protecting role against heavy metals stress. BRs have shown

great potential in reducing the detrimental effects of abiotic stress,

including vanadium (V) and chromium (Cr) stress, on plants. V

and Cr are heavy metals that can accumulate in plants, leading to

oxidative stress and disruption of cellular processes. Studies have

demonstrated that BRs can alleviate V and Cr stress by enhancing

antioxidant defense systems, regulating ROS scavenging, and

promoting the synthesis of stress-related proteins (Fariduddin

et al., 2011). BRs also play a crucial role in maintaining cellular

ion homeostasis and restricting metal accumulation in plants. The

application of BRs offers a promising strategy to mitigate the toxic

effects of V and Cr stress on plant growth and development,

contributing to improved crop productivity and environmental

sustainability (Ahammed et al., 2013).
Future scenarios

Enhancing plants’ capacity to survive abiotic stress is crucial,

and there is still a lot to be done to protect subsequent generations

from the impending problem. It is possible in many ways.
Fron
◼ For pollution lessening, it is necessary to stop global warming.

In this regard, conferences should be held on a national and

international scales, the public should be made aware of the

issue, and industries should be built according to a plan.

◼ The mechanism of stress tolerance should be explored to

identify the crucial components contributing to drought

response, such as the function of phytohormones and the

genes expression.

◼ Transgenic developments should be used for the

development of climate-resilient cultivars.

◼ It is important to test stress-tolerant cultivars in the field

rather than just in the lab and greenhouses. Together, these

laws and innovations will assist plants in better

withstanding climate change and combating abiotic stress.
Conclusion

BRs are a class of steroidal plant hormones that are produced

naturally by all members of the plant family. There are several BRs

analogues, but epibrassinolide, homobrassinolide, and brassinolide
tiers in Plant Science 09
are the most stable ones. However, there are also a few synthetic and

commercial substitutes of BRs in the market. BRs are allegedly non-

toxic and environmentally safe. They are widely used to increase the

yield of several crops. However, there has been very little research

conducted on this broad topic, which has mostly gone unexplored.

Horticultural crops can benefit from the huge potential of BRs by

increasing yield. Since BRs are also well known for their function in

protecting plants against biotic stress scenarios like the attack of

various pathogens, which includes a variety of environmental

stresses. As a result, they can quickly and effectively replace

various pesticides and fungicides that pose a risk to human health

and harm the environment.
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