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trait parameters derived
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Rapid and accurate prediction of crop yield is particularly important for ensuring

national and regional food security and guiding the formulation of agricultural

and rural development plans. Due to unmanned aerial vehicles’ ultra-high spatial

resolution, low cost, and flexibility, they are widely used in field-scale crop yield

prediction. Most current studies used the spectral features of crops, especially

vegetation or color indices, to predict crop yield. Agronomic trait parameters

have gradually attracted the attention of researchers for use in the yield

prediction in recent years. In this study, the advantages of multispectral and

RGB images were comprehensively used and combined with crop spectral

features and agronomic trait parameters (i.e., canopy height, coverage, and

volume) to predict the crop yield, and the effects of agronomic trait

parameters on yield prediction were investigated. The results showed that

compared with the yield prediction using spectral features, the addition of

agronomic trait parameters effectively improved the yield prediction accuracy.

The best feature combination was the canopy height (CH), fractional vegetation

cover (FVC), normalized difference red-edge index (NDVI_RE), and enhanced

vegetation index (EVI). The yield prediction error was 8.34%, with an R2 of 0.95.

The prediction accuracies were notably greater in the stages of jointing, booting,

heading, and early grain-filling compared to later stages of growth, with the

heading stage displaying the highest accuracy in yield prediction. The prediction

results based on the features of multiple growth stages were better than those

based on a single stage. The yield prediction across different cultivars was weaker

than that of the same cultivar. Nevertheless, the combination of agronomic trait

parameters and spectral indices improved the prediction among cultivars to

some extent.
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1 Introduction

The growing global population has led to a rising demand for

food. Increasing global climate change has caused frequent

occurrences of natural disasters, posing a huge threat to

agricultural production, and it has been demonstrated that

climate change has a substantial effect on food security (Mora

et al., 2018; Su et al., 2018; Misiou and Koutsoumanis, 2022).

Comprehensive, timely, and accurate grain yield prediction of

major crops is also of great significance for optimizing the

structure of the agricultural industry and formulating rural

development plans. Therefore, whether in the context of current

climate change or macro policies, it is quite necessary to quickly and

accurately estimate crop yields to ensure food security and

agricultural and rural development.

Traditionally, crop yield prediction has mainly relied on field

surveys, which require much time, people, and resources. Currently,

crop yield prediction methods include statistical regression models,

crop model simulations, and remote sensing (RS)-based models.

The deficiency of statistical regression models is that the yield

prediction accuracy is related to the crop cultivars, region, and

growth period, and the models are not universal (Fang et al., 2011;

Huang et al., 2015). The main superiority of the crop model

simulation method is that it can mechanically simulate the entire

process of crop growth and biomass accumulation. However, the

accuracy of the production simulation depends on the model

structure and the accuracy of the model parameters, and there are

many parameters required (Asseng et al., 2013; Dong et al., 2020).

Therefore, it is still challenging to accurately estimate production on

a large scale. RS technology has developed rapidly in recent years,

and it has been widely used in crop yield prediction due to its

advantages of large coverage area, low cost, and high efficiency

(Sagan et al., 2021).

Currently, many studies have used satellite RS images to predict

the crop yield and have achieved a good estimation accuracy. These

studies involved a variety of methods (e.g., statistical regression,

machine learning, and data assimilation), various crop types (e.g.,

rice, wheat, cotton, and potatoes), and different RS data (from low

to high resolution, from multispectral (MS) to hyperspectral (HS)

bands) (Lobell et al., 2015; Lambert et al., 2018; Yang et al., 2019;

Filippi et al., 2019; Sakamoto, 2020; van Klompenburg et al., 2020;

Weiss et al., 2020; Cao et al., 2021; Sagan et al., 2021; Jeong et al.,

2022). With the continuous development of precision agriculture,

the requirements for crop yield prediction in terms of spatial

resolution and accuracy have increased (Maes and Steppe, 2019).

Satellite imagery still has the problem of low spatial resolution for

farmland with a small area and complex terrain. In addition, it is

easily affected by rainy weather, resulting in poor image continuity.

Therefore, due to the advantages of ultra-high spatial resolution and

flexibility, unmanned aerial vehicle (UAV) RS platforms have been

significantly improved in many agricultural applications, such as

crop yield prediction, field management, crop phenology

identification, and chlorophyll estimation in recent years

(Maresma et al., 2016; Maes and Steppe, 2019; Li et al., 2021; Guo

et al., 2022; Tanabe et al., 2023).
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The main idea of many existing studies is to use digital cameras

and MS and/or HS sensors carried by UAVs to obtain or estimate

various parameters related to the crop yield and then to apply

statistical or machine learning techniques to predict the crop yield

(van Klompenburg et al., 2020; Sagan et al., 2021). Nonetheless, the

accuracy and robustness of the crop yield prediction still need to be

further improved. The accuracy and robustness can be further

improved by (1) optimizing the feature parameter space of the

crop yield prediction and selecting more suitable features; (2)

improving crop yield prediction algorithms; and (3) combining

other yield prediction methods (e.g., crop model simulations). This

study mainly focused on the first method. Through a review of the

existing literature, it was found that most studies have used the

spectral features of crops, especially vegetation indices or color

indices to predict crop yields. Vegetation indices exhibit a strong

correlation with crop growth and development when the coverage is

low. However, they are prone to saturation when the canopy of the

plant is closed, at which time they become less sensitive to the plant

growth. In addition, the vertical growth information which is

strongly linked to the formation of crop biomass and yield, poses

a challenge for vegetation indices to detect accurately during the

middle and later stages of crop growth (Yue and Tian, 2020).

Therefore, in addition to spectral features, it is necessary to

improve the feature space for yield prediction and to select

optimal and available agronomic RS features that are closely

related to the yield formation.

Agronomic trait parameters are closely linked with crop growth

and yield formation, so they are considered to have great potential

for improving the yield prediction capability. Many agronomic trait

parameters involve all aspects of the crop growth process, and they

can also be acquired through RS techniques. The agronomic trait

parameters in this study specifically refer to those obtained using RS

techniques. Choosing parameters related to crop yield and relatively

independent of crop growth is an important principle for feature

selection. Many RS-based agronomic biochemical/biophysical

parameters (e.g., the chlorophyll content, nitrogen content, and

leaf area index) are usually obtained using the relationship with

vegetation indices, and hence, they are autocorrelated with the

spectral features. The fractional vegetation cover (FVC) is crucial

parameter that describes the spatial pattern of vegetation types, and

it is closely relevant to the crop planting density, growth stage, and

health status (Gao et al., 2020). The canopy height (CH) and canopy

volume (VOL) can reflect the vertical growth of crops and can

characterize the crop structure information (Maimaitijiang et al.,

2019; Zhang et al., 2021; Shu et al., 2022). The three indicators

mentioned above are all agronomic structural trait parameters that

are closely related to the yield, and all three can be obtained using a

UAV. In addition, compared with spectral or color information,

they are relatively independent data sources. The FVC can be

calculated using the image classification method, while the CH

and VOL are extracted from dense photogrammetric point cloud

information obtained by a UAV equipped with a high-definition

camera. In addition, the texture is also a frequently used RS feature

that can provide insight into the spatial variations within the

vegetation canopy to a certain extent. Currently, the
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abovementioned metrics have been applied for predicting nitrogen

content, crop biomass, and crop yield. Nevertheless, there is an

ongoing need for further validation on how to better integrate

multi-temporal spectral features with agronomic trait parameters to

enhance the accuracy of yield predictions. Additionally, the

adaptability of the constructed models across different crop

cultivars still requires further explored.

Machine learning has become a key approach to predict crop

yield using UAV-based RS data (Shahhosseini et al., 2020; van

Klompenburg et al., 2020; Wang et al., 2021; Xu et al., 2021). The

random forest (RF) is a widely used machine learning algorithm

with many advantages (Breiman, 2001; Li et al., 2020; He et al.,

2021). Firstly, it is an ensemble learning algorithm that achieves

predictions by constructing multiple decision trees, each with a

degree of independence. As a result, it exhibits robustness to noise,

outliers, and missing values, making it highly reliable. Secondly, RF

introduces a bootstrap sampling mechanism, which enhances the

model’s generalization ability while mitigating the risk of

overfitting. Furthermore, it is relatively easy to use and does not

require extensive hyperparameter tuning. Importantly, RF has been

proven to perform well in many studies (Li et al., 2020; Marques

Ramos et al., 2020; van Klompenburg et al., 2020; Wan et al., 2020).

Therefore, we used the RF algorithm as the core algorithm and

combined it with spectral features, texture features, and agronomic

trait parameters based on UAV images to predict the crop yield.

The specific research goals of this study were (1) to predict the crop

yield and compare the performances of the spectral, texture, and

agronomic trait parameters; (2) to evaluate the impacts of the

parameters in the different growth periods on the yield prediction

results; and (3) to investigate the robustness of models of different

cultivars and to evaluate whether the incorporation of agronomic

parameters can enhance the predictive capacity of the crop yield

model for various cultivars. This study focuses on wheat as its

research crop, aiming to estimate its yield. It should be noted that in

this context, ‘yield’ specifically refers to grain yield rather than

biomass yield.
2 Materials and methods

2.1 Experimental design

The study was conducted at the experimental site situated in

Ningbo City, Zhejiang Province, with geographic coordinates of 29°

18′N and 121°34′E. The study area has a subtropical monsoon

climate characterized by clear seasonal variations. The average

temperatures in summer and winter are approximately 27°C and

6°C, respectively, resulting in an annual average temperature of

approximately 16°C. The average annual rainfall is approximately

1700 mm. In this study, winter wheat was selected as the research

crop, which is one of the most important crops in the study area.

The experimental period was the 2019–2020 winter wheat growing

season (planting in November 2019 to harvest in May 2020). The

experimental design is shown in Figure 1. Two main wheat cultivars

(JYM 1 and YM 20) were used. For each cultivar, four nitrogen

fertilizer treatments and six replicates were set, i.e., 24 plots for each
Frontiers in Plant Science 03
cultivar. There were 48 plots (3 × 13.7 m) in the entire experiment,

and each plot had a subplot (1 × 1 m). The nitrogen fertilizer

treatments were 0 (N0), 90 kg/ha (N1), 180 kg/ha (N2), and 270 kg/

ha (N3). The application rates of the phosphate fertilizer and potash

fertilizer were the same in each plot. The amount of phosphate

fertilizer was 75 kg/ha, and the amount of potash fertilizer was 120

kg/ha. Nitrogen fertilizer was applied twice: 40% of the total amount

was applied during the sowing, and the remaining 60% was applied

in the jointing stage. The phosphate fertilizer and potash fertilizer

were applied once during the sowing.
2.2 Data collection

2.2.1 Collection and processing of UAV images
In this study, two UAVs (Phantom 4 RTK, SZ DJI Technology

Co., Ltd., China), one equipped with a red-green-blue (RGB)

camera and the other equipped with an MS camera, were

employed to capture RGB and MS images during the winter

wheat growing season. The basic parameters of the UAV and

onboard sensors are described in Table 1.

Seven UAV flight missions were conducted during the critical

growth stage of the winter wheat. The flight dates and

corresponding growth stages are listed in Table 2. Under clear

weather conditions, the RGB andMS images were collected between

10:00 and 14:00 local time. The flight height of the UAV was 30 m;

the forward and side overlap ratios were set to 80% and

70%, respectively.

After obtaining the aerial photos of the study area, the photos

were preprocessed, comprising two major procedures: (1) image

mosaicking in a single period and (2) geometric correction between

the mosaicked images in different periods. The image mosaicking

included the following steps: image registration of each band,

vignetting correction, distortion calibration, and radiation

correction. The above image mosaicking steps were all performed

using the DJI Terra software (SZ DJI Technology Co., Ltd., China)

designed for DJI UAVs. For radiometric calibration, three

calibration whiteboards with reflectance values of 25%, 50%, and

75% were placed beneath the flight path of the UAV, and collected

in the multispectral sensor. In DJI Terra V3.5.5, the raw image’s

DN (Digital Number) values were transformed into surface

reflectance using a linear correction method (Xia et al., 2022).

The corrected images were mosaicked into multi-temporal RGB

and reflectance images of the study area. Then, all of the mosaicked

images for the different periods were resampled into images with a

resolution of 2 cm. Geometric registration was performed on these

resampled images to ensure that the pixel positions of the images

in all of the periods corresponded to each other. This process

was completed using the ArcGIS software (Esri, Inc., Redlands,

CA, USA).

2.2.2 Crop yield measurements
After the wheat matured, the 48 plots and 48 subplots were

harvested to obtain yield measurements. The manual harvesting

method was used to reduce the error of the yield measurements.

The harvested wheat was threshed in the laboratory, and the grain
frontiersin.org
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water content was measured. The formula used to calculate the

wheat yield is as follows:

Ym = 10000 ∗G ÷ A� (1 − CÞ ÷ (1 − 13% ) (1)

where Ym is the wheat yield (kg/ha); G is the weight of the

harvested wheat seeds in each plot (kg); A is the plot area (m2); C is

the grain moisture content (%); and 13% is the wheat standard

moisture content (Xin et al., 2008).
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2.3 Yield prediction model development

Figure 2 shows the workflow of the development of the crop

yield prediction model in this study, comprising three parts: image

collection and processing, feature extraction, and model

construction and validation. Section 2.2 introduced the image

acquisition and preprocessing. This section mainly describes the

image feature extraction and model building.
TABLE 1 Parameters of the UAV and onboard RGB and MS sensors.

Sensor Band
Spectral range
(nm)

Resolution
(pixels)

Field of
view (°)

Positioning
accuracy (cm)

Ground resolution at
100m height (cm)

RGB
camera

RGB / 5472×3648 84
Horizontal: 1
Vertical: 1.5

2.74

MS camera Blue (B) 450 ± 16 1600×1300 62.7 Horizontal: 1
Vertical: 1.5

5.3

Green (G) 560 ± 16

Red (R) 650 ± 16

Red Edge (RE) 730 ± 16

Near Infrared
(NIR)

840 ± 26
FIGURE 1

Location of the study area and experimental design.
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2.3.1 Feature extraction
2.3.1.1 Spectral features

The main variables used to represent the spectral features in this

study were the original values (i.e., the band reflectance and RGB

values) of the UAV MS and RGB images and the vegetation/color

indices (Table 3) calculated based on the original values.

2.3.1.2 Image textures

The gray level co-occurrence matrix (GLCM) is a frequently

utilized and widely adopted method for calculating image texture

features, and it was used to represent the image texture feature in

this study. The GLCM consists of eight features: the mean (MEA),

variance (VAR), homogeneity (HOM), contrast (CON),

dissimilarity (DIS), entropy (ENT), second moment (SEM), and

correlation (COR). The details of the specific calculation methods
Frontiers in Plant Science 05
have been described by Haralick et al. (1973). In this study, a

moving window with size of 3×3 and a co-occurrence shift of 1 pixel

were utilized for texture calculations. The ENVI software (L3Harris

Technologies, Inc., Boulder, CO, USA) was used to calculate the

GLCM features for seven temporal MS images, and a total of 280

texture features were generated.
2.3.1.3 Agronomic traits

Many parameters characterize the growth and development of

crops, including biochemical, biophysical, and structural

parameters. In this study, three RS-based, available, and

independently sourced traits were selected for use in the crop

yield prediction.

2.3.1.3.1 Canopy height

A digital surface model (DSM) can be obtained using the

photogrammetric 3-D point clouds from the UAV RGB images

(Colomina and Molina, 2014; Maimaitijiang et al., 2017). Therefore,

a DSM of the crop canopy was generated from the UAV RGB

images during the crop growth and development stages. Similarly, a

digital elevation model (DEM) of the bare soil surfaces in the study

area was obtained from the UAV flight before wheat germination.

The DEMwas subtracted from the canopy DSM to obtain the wheat

CH [Eq. (2)].

CH = DSM − DEM (2)

The specific processes were as follows. First, the DEM and

canopy DSMs for the different periods were obtained using the DJI
FIGURE 2

Workflow of the development of the yield prediction model.
TABLE 2 Seven UAV fight dates and corresponding wheat growth stages.

Flight date Growth stage Abbr.

Mar 16, 2020 Jointing JS

Mar 26, 2020 Booting BS

Apr 2, 2020 Heading HS

Apr 15, 2020 Initial filling IFS

Apr 24, 2020 Middle filling MFS

Apr 29, 2020 Late filling LFS

May 12, 2020 Maturity MS
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Terra software. Second, it was necessary to ensure that the DSM and

DEM had the same resolution, and the pixels corresponded to each

other. Finally, the CH was calculated pixel by pixel using Eq. (2).

2.3.1.3.2 Fractional vegetation cover

The FVC is a crucial parameter that describes the spatial pattern

of the vegetation types and can serve as an indicator for monitoring

vegetation health (Yan et al., 2019; Gao et al., 2020). There are

currently many RS methods for estimating the FVC (Gao et al.,

2020). In this study, the supervised classification method was used

to distinguish between the soil and crop information based on the

UAV MS images. Specifically, the support vector machine (SVM)

classifier was selected as the supervised classification method to

identify crop pixels. Previous studies have shown that the SVM has

a higher classification accuracy in the case of relatively limited

samples (Mountrakis et al., 2011; Maimaitijiang et al., 2020; Wan

et al., 2020). Subsequently, the FVC was calculated using Eq. (3).
Frontiers in Plant Science 06
FVC =
c
n
� 100 (3)

where c is the number of crop pixels in the plot, and n is the

total number of all pixels in the plot.
2.3.1.3.3 Canopy volume

The canopy volume (VOL) reflects the three-dimensional

structure of the crops during the growth and development stages.

Existing studies have used it in crop biomass estimation (Walter

et al., 2018; Maimaitijiang et al., 2019) and have achieved good

estimation results. In this study, we attempted to use the VOL as

one of the features for crop yield estimation. The formula for

calculating the VOL is as follows:

VOL =o
c

i=1
(Ai � CHi) (4)
TABLE 3 Summary of the vegetation/color indices used in this study.

Sensors
Vegetation/color
indices

Abbreviations Equations References

MS
Normalized difference
vegetation index

NDVI (NIR − R)=(NIR + R) Rouse et al., 1974

Green normalized difference
vegetation index

GNDVI (NIR − G)=(NIR + G)
Gitelson et al.,
2003

Enhanced vegetation index EVI 2:5� (NIR − R)=(NIR + 6� R − 7:5� B + 1) Huete et al., 2002

Enhanced vegetation index
without a blue band

EVI2 2:5� (NIR − R)=(NIR + 2:4� R + 1) Jiang et al., 2008

Modified triangular
vegetation index

MTVI2 1:5 ∗½1:2 ∗ (NIR − G) − 2:5 ∗ (R − G)�=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(2�NIR + 1)2 − (6 ∗NIR − 5

ffiffiffi
R

p
) − 0:5

q
Haboudane, 2004

Soil-adjusted vegetation
index

SAVI 1:5� (NIR − R)=(NIR − R + 0:5) Huete, 1988

Normalized difference red-
edge index

NDVI_RE (NIR − RE)=(NIR + RE)
Gitelson and
Merzlyak, 1994

Modified simple ratio red-
edge index

MSR_RE (NIR=RE − 1)=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NIR=RE + 1

p
Wu et al., 2008

Red-edge chlorophyll index CI_RE NIR=RE − 1
Gitelson et al.,
2003

RGB Normalized difference index NDI (g − r)=(g + r)
Woebbecke et al.,
1995

Excess green index ExG 2� g − r − b
Woebbecke et al.,
1995

Excess red index ExR 1:4� r − g
Meyer and Neto,
2008

Excess green minus excess
red index

ExGR 3� g − 2:4� r − b
Meyer and Neto,
2008

Visible atmospherically
resistant index

VARI (g − r)=(g + r − b)
Gitelson et al.,
2002

Green leaf index GLI (2� g − b − r)=(2� g + b + r)
Louhaichi et al.,
2001

Normalized difference
yellowness index

NDYI (g − b)=(g + b)
Sulik and Long,
2016
R, G, B, Nir, and RE denote the reflectance in the red, green, blue, near-infrared, and red-edge bands for the MS images, respectively; and r, g, and b are the normalized DNs of the red, green, and
blue channels for the RGB images, respectively.
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where VOL is the canopy volume; c is the number of crop pixels

in the plot; Ai is the area of the pixel i; and CHi is the crop height in

pixel i.

2.3.2 Yield prediction model
The RF algorithm (Breiman, 2001) was used to construct the

models for wheat yield prediction. The RF belongs to the category of

ensemble learning algorithms, and uses the bootstrap sampling

method to build a large number of independent decision trees to

implement classification and regression tasks. The RF is insensitive

to collinearity between variables, can effectively reduce the problem

of overfitting, and has been proven to perform well in many studies

(e.g., crop parameters, biomass, yield estimation, and image

classification) (Li et al., 2020; Wan et al., 2020; He et al., 2021). In

this study, the number of decision trees, ntree, was set to 500, and

the default values were used for the rest of the RF parameters. There

was a total of 96 plot samples (including subplots) in this study, and

2/3 of the data were selected for model training, while the remaining

1/3 of the data were independently employed for model testing.
2.4 Evaluation metrics

The evaluation metrics included Pearson’s correlation

coefficient (R), coefficient of determination (R2), root mean square

error (RMSE), and relative root mean square error (RRMSE). The R

value was used to analyze the relationship between each feature and

the crop yield, and the R2, RMSE, and RRMSE values were used to

measure the accuracy and error of the yield prediction model. The

calculation formulas of the statistical analysis indicators are as

follows:

R = on
i=1(xi − �x)(yi − �y)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

on
i=1(xi − �x)2on

i=1(yi − �y)2
q (5)

RMSE ==

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
no

n

i=1
(xi − yi)

2

s
(6)

RRMSE =
RMSE
�x

� 100% (7)

where x and y are the observed and predicted variables,

respectively; �x and �y are the average values; and n is the number

of observations.
3 Results

3.1 Correlations between model features
and crop yield

Correlation analysis was conducted to investigate the

relationships between the model feature parameters and the crop

yield so as to better screen the optimal features for crop yield

prediction. Figures 3 and 4 show the correlations between the

features of four categories of features (reflectance, vegetation/color
Frontiers in Plant Science 07
indices, agronomic trait parameters, and textures) and the crop

yield, as well as the average values of the correlation coefficients

during the different growth periods. In general, among the four

categories of features, the agronomic traits have strong correlations

with the crop yield, followed by the vegetation/color indices and

reflectance, and the texture features exhibit relatively weak

correlations. The agronomic trait parameters (FVC, CH, and

VOL) have good correlations with the crop yield during each

growth stage. They all pass the 0.01 significance level test, and

their average correlation coefficients are 0.77, 0.85, and 0.82,

respectively (Figure 4). For the vegetation indices, the red-edge

vegetation indices (REVIs) have better correlations with the crop

yield, and the correlations in the jointing, booting, and heading

stages are > 0.9. For the color indices, the NDYI performs better,

and the relationships between the other color indices and the crop

yield are weaker. For the texture features, except for the red band

features, most of the other features exhibit weak correlations.
3.2 Yield prediction using a single feature

An RF-based yield estimation model was constructed using a

single feature, and the yield was predicted using the feature

parameters in the different growth stages and during the entire

growth period. Figure 5 shows the error (RRMSE) of the yield

prediction result. There are great differences in the yield accuracy

obtained using the features in the different growth stages and the

different categories (reflectance, vegetation indices, textures, and

agronomic trait parameters). Specifically, using the features of the

entire growth stage leads to significantly smaller yield errors than

using the features of a single growth stage. The errors of the yield

prediction obtained using the features of the entire growth stage are

10–30.4%, with an average value of 18.7%. Furthermore, the errors

of the yield prediction obtained using a single feature are 11.6–

46.4%, with an average value of 30.1%.

In addition, the performances of the different categories of

feature variables in the yield prediction were compared. Figure 6

presents a box plot of the error of the yield prediction of the feature

variables of each category (reflectance, vegetation indices, textures,

and agronomic trait parameters). The results show that similar to

the correlation analysis results, the average error of the yield

prediction obtained using the agronomic trait parameters is the

smallest, followed by that obtained using the vegetation indices and

reflectance, and the relative error of the yield prediction obtained

using the texture features is the largest. Overall, the agronomic trait

parameters perform the best in the yield prediction, and the error of

the yield prediction obtained using the plant height parameter for

the entire growth period is the smallest, with an RRMSE of 10%.
3.3 Yield prediction using combinations of
multiple features

In Sections 3.1 and 3.2, it was found that the different categories

of feature parameters have differences in predicting the crop yield.

The agronomic trait parameters and vegetation/color indices
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perform better. Therefore, multiple features of agronomic trait

parameters and vegetation/color indices were integrated to

determine the best combination of yield prediction features. To

compare the vegetation indices with different construction

principles, they were subdivided into the commonly used

vegetation indices of the near-infrared and visible light bands

(ComVIs), the red-edge vegetation indices (REVIs), and the color
Frontiers in Plant Science 08
indices (CIs). Table 4 shows the error statistics of the optimal yield

prediction results for different feature combinations using all of the

growth stage data.

The results show that the minimum RRMSE of the yield

prediction, based on the vegetation indices, reduced from 11.6%

for a single feature (GNDVI) (Figure 5) to 9.88% for multivariate

combinations (NDVI_RE, MSR_RE, EVI, and SAVI) (Table 4).
FIGURE 4

The average values of the correlation coefficients between the yield and remote sensing features in the different growth stages.
FIGURE 3

Correlations between various features (i.e., reflectance, vegetation/color indices, agronomic trait parameters and textures) and crop yield. The red
font represents that the correlation is significant at the 0.01 level.
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There are also differences in the yield prediction accuracy based on

the combination of vegetation indices, and the estimation accuracy

based on the ComVIs and REVIs is slightly better than that based

on the CIs. In addition, combining indices with different

construction principles (red-edge vegetation index combined with

visible light vegetation index) can improve the estimation accuracy

of the yield to some extent.

Among the three agronomic trait parameters, the combination

of the CH and FVC has the best yield prediction (RRMSE = 8.93%

and R2 =0.94), which is better than the yield prediction obtained

using a single feature and is also better than the results based on the

combinations of vegetation indices. Combining the vegetation

indices and agronomic trait parameters further improved the

yield prediction accuracy. The RRMSE of the optimal

combination decreased from 10.47–12.65% to 8.34–8.85%, and

the R2 increased from 0.88–0.91 to 0.94–0.95. A scatter plot of the

yield prediction versus the measured results is shown in Figure 7.

Therefore, adding agronomic trait parameters to the vegetation
Frontiers in Plant Science 09
indices as feature parameters results in a considerable enhancement

of yield prediction accuracy.
3.4 Yield prediction across different
growth stages

The crop growth process includes multiple growth stages, and it

is quite important to determine how the features of the growth

stages affect the yield prediction. This section mainly exhibits the

yield prediction performances in the different growth stages for the

use of a single feature and combinations of multiple features.

According to the yield prediction results based on a single feature

presented in Section 3.2, Figure 8 shows the average errors in the

crop yield predicted using a single feature in the different growth

stages. As can be seen from Figure 8, the features in the different

growth stages make great differences in the yield prediction results.

The RRMSEs based on a single feature range from 14.6% to 37.7%
FIGURE 5

The RRMSEs (%) of the yield predicted using the remote sensing features of the different growth stages.
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across different growth stages. Among the different categories of

features, the yield errors predicted using the vegetation indices and

agronomic trait parameters are relatively small, whereas errors are

relatively large for other feature categories. Figure 9 displays the

yield prediction results for the different growth stages using

combinations of multiple features (vegetation/color indices and

agronomic trait parameters, a total of 19 features). The RRMSEs

based on combinations of multiple features range from 8.5% to

44.6% across different growth stages. The results also indicate that

there are still considerable variations in yield prediction at different

growth stages. In general, the prediction accuracies were notably

greater in the stages of jointing, booting, heading, and early grain-
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filling compared to later stages of growth, with the heading stage

displaying the highest accuracy in yield prediction (Figure 9).
4 Discussion

4.1 Impact of crop growth stage on
yield prediction

In Section 3.4, the study showcased yield predictions across

different growth stages, revealing substantial variations in the

accuracy of predictions. Notably, the accuracy of yield predictions
TABLE 4 The error statistics of the yield prediction results based on various feature combinations.

Types Feature variables Number
of variables

Number of
combinations

Best
combination

RRMSE
(%)

R2

ComVIs NDVI, GNDVI, EVI, EVI2, MTVI2, SAVI 6 63 GNDVI, SAVI 10.47 0.91

REVIs NDVI_RE, MSR_RE, CI_RE 3 7 NDVI_RE 10.57 0.91

CIs NDI, ExG, ExR, ExGR, VARI, GLI, NDYI 7 127 ExG, VARI 15.79 0.78

AgTP CH, FVC, VOL 3 7 CH, FVC 8.93 0.94

ComVIs+
REVIs+CIs

NDVI, GNDVI, EVI, EVI2, MTVI2, SAVI, NDVI_RE,
MSR_RE, CI_RE, NDI, ExG, ExR, ExGR, VARI, GLI, NDYI

16 65535 NDVI_RE,
MSR_RE, EVI,
SAVI

9.88 0.92

ComVIs
+AgTP

NDVI, GNDVI, EVI, EVI2, MTVI2, SAVI, CH, FVC, VOL 9 511 CH, FVC, SAVI,
GNDVI

8.85 0.94

REVIs+AgTP NDVI_RE, MSR_RE, CI_RE, CH, FVC, VOL 6 63 CH, FVC,
NDVI_RE

8.36 0.94

CIs+AgTP NDI, ExG, ExR, ExGR, VARI, GLI, NDYI, CH, FVC, VOL 10 1023 CH, FVC, VARI 8.52 0.95

ComVIs
+REVIs+ CIs
+AgTP

NDVI, GNDVI, EVI, EVI2, MTVI2, SAVI, NDVI_RE,
MSR_RE, CI_RE, NDI, ExG, ExR, ExGR, VARI, GLI, NDYI,
CH, FVC, VOL

19 524287 CH, FVC,
NDVI_RE, EVI

8.34 0.95
frontiers
ComVIs, commonly used vegetation indices with near-infrared and visible light bands; REVIs, red-edge vegetation indices; CIs, color indices; AgTP, agronomic trait parameters.
FIGURE 6

Box plots of the errors of the predicted yield obtained using the different categories of feature parameters.
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was found to be superior during the mid-growth phase when

compared to the late-growth phase, with the highest accuracy

obtained during the heading stage. These findings of this research

align with the outcomes of prior studies conducted on wheat

(Tanabe et al., 2023) and rice (Wan et al., 2020; Wang et al.,

2021). In the later stage of crop growth, the mean and variance of

the yield prediction results are large, and the different feature

combinations lead to significantly different yield predictions.

During the mid-growth stage of crops, the Leaf Area Index (LAI)

typically reaches its maximum value, and leaf reflectance in the

near-infrared spectrum is at its strongest (Li et al., 2020). Vegetation

indices are primarily constructed based on near-infrared radiation.

In this stage, vegetation indices exhibit a strong correlation with

biomass and yield. Nonetheless, as leaves senescence begin, the

capacity of leaves to reflect near-infrared radiation gradually wanes,

culminating in the decreased interpretability of vegetation indices

for LAI or biomass. Consequently, this progression adversely

impacts the accuracy of yield predictions, leading to the lowest

accuracy during the maturity stage (Zhou et al., 2017; Tanabe et al.,
Frontiers in Plant Science 11
2023). Similarly, Maimaitijiang et al. (2019) argued that unlike

airborne light detection and ranging (LiDAR), photogrammetric

point clouds have insufficient penetration ability when the canopy

closure is quite high, which may lead to a decrease in the yield

prediction accuracy in the later growth stages. Therefore, the

features in the jointing, booting, heading, and early grain-filling

stages should be preferentially selected for yield prediction, which

contributes to a better performance.
4.2 Impact of cultivar on yield
prediction accuracy

The robustness of the yield prediction models across different

cultivars is critical for assessing their application potential

(Maimaitijiang et al., 2020; Duan et al., 2021). To evaluate the

suitability of the yield prediction models among different cultivars,

the data for one cultivar were employed for training, while the data

for the other cultivar were utilized for testing. Finally, the mean
FIGURE 8

The average RRMSEs of the crop yields predicted using a single feature in the different growth stages. Refls, Reflectance; VIs, vegetation indices; CIs,
color indices; Tex, texture; AgTP, agronomic trait parameters.
A B

FIGURE 7

Yield prediction results of the model using the feature combination of the canopy height (CH), fractional vegetation cover (FVC), normalized
difference red-edge index (NDVI_RE), and enhanced vegetation index (EVI): (A) training set and (B) testing set.
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error of the yield prediction results was calculated. Based on the

previous analysis, it can be seen that the yield prediction model with

multi-feature fusion is more accurate than that with a single feature.

Here, we used multi-feature combinations to analyze the robustness

of the yield prediction models among different cultivars. By

contrasting Tables 4 and 5, it was found that the error of the

model, which employed the data for one cultivar to predict the yield

of another cultivar, was greater than that of the model trained using

the data for both cultivars. The RRMSE of the optimal combination

of various features increased from 8.34–15.79% to 13.90–19.23%,

and the R2 decreased from 0.88–0.95 to 0.81–0.86. The different

cultivars of crops have differences in parameters such as phenology,

plant height, leaf type, and pigment content. Therefore, the

accuracy of the yield prediction models across different cultivars

is low. Several recent studies have also reported a decrease in the

quality of prediction models for different cultivars (e.g., Rischbeck

et al., 2016; Duan et al., 2021). Rischbeck et al. (2016) concluded

that models trained using diverse cultivars can significantly improve

the yield prediction performance compared to models trained using
Frontiers in Plant Science 12
a single cultivar, which was also concluded in this study.

Furthermore, our results support this view.

The results of our study indicate that the use of a combination

of multi-temporal and multi-features can enhance the yield

prediction performance. Therefore, it is quite essential to identify

better feature combinations to improve the robustness of the yield

prediction models across different cultivars. Table 5 presents the

yield prediction error metrics for various feature combinations

across different categories. The results illustrate that the

prediction abilities of various feature combinations are different

among different cultivars, and the yield prediction accuracy is

improved when the agronomic trait parameters are incorporated

into the vegetation indices and color indices. This also indicates that

the CH, which reflects the vertical growth characteristics of a crop

and is one of the important agronomic trait parameters, can better

characterize the information about the crop structure and help

strengthen the capability of the yield prediction model across

cultivars. The combination of the CH, EVI, and NDI indices

produced the highest prediction accuracy, with an RRMSE of
FIGURE 9

The RRMSEs (%) of the crop yields predicted using multiple features in the different growth stages. Left: The colors indicate the RRMSE values. The
horizontal axis indicates the different growth stages. The vertical axis indicates the different feature combinations of multiple features, and the
number of features increases gradually from top to bottom, with a total of 524,287 feature combinations. Upper right: Histogram of the RRMSE
values; lower right: box charts of the RRMSE values for the different growth stages.
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13.9% and an R2 of 0.86. For the yield prediction models that do not

consider cultivars, the REVIs produce larger prediction errors

across cultivars.
4.3 Importance of using agronomic trait
parameters in yield prediction

Through analysis of the previously presented results, we found

that when using a single feature for yield prediction, the agronomic

trait parameters performed the best overall. Three agronomic trait

parameters were used in this study: the CH, FVC, and VOL. Among

them, the CH performed best in the yield prediction, followed by

the FVC, and finally, the VOL had the weakest performance. The

plant CH can reflect the vertical growth characteristics of the crop,

can better reflect the information about the crop structure, and can

help to improve the yield prediction ability. Since the canopy

volume was calculated based on the CH and vegetation coverage,

there was an autocorrelation problem, so the performance was not

as good as expected.

Furthermore, the models for yield prediction, which

incorporated agronomic trait parameters along with spectral

features, also demonstrated enhanced accuracy. Existing studies

on biomass and yield prediction of other crops (barley, soybean,

and corn) have also found that data fusion of spectral and

agronomic features can improve the performance (Geipel et al.,

2014; Bendig et al., 2015; Maimaitijiang et al., 2019), and this study

further supplements related conclusions. The fusion of spectral

features and agronomic trait parameters has led to an enhancement

in yield prediction accuracy, which can be explained from several

perspectives. Firstly, spectral features effectively capture the crop

growth status, while multi-temporal spectral features can reflect the

entire crop growth and development process (Maimaitijiang et al.,
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2019; Maimaitijiang et al., 2020; Wan et al., 2020; Tanabe et al.,

2023). Secondly, as mentioned earlier, agronomic trait parameters

provide valuable insights into crop structural information,

particularly vertical growth characteristics that are not easily

obtained through spectral features alone. Thirdly, these three

agronomic parameters were obtained using UAV-based RGB and

MS sensors, which were independent data sources and were not

calculated using spectral indices. There was no autocorrelation with

the spectral indices, which overcame the inherent asymptotic

saturation problem of the spectral features to a certain extent

(Maimaitijiang et al., 2017; Maimaitijiang et al., 2020). Therefore,

considering the easy availability and cost-effectiveness of obtaining

UAV-based agronomic trait parameters, the fusion of spectral

indices and agronomic trait parameters has great potential for

improving crop yield predictions.
4.4 Comparison of yield predictions using
RGB and MS images

The features used in this study were all calculated from images

acquired by RGB and MS sensors. The VIs and FVC were derived

from the MS data, the CIs and CH were derived from the RGB data,

and the VOL was calculated based on the CH and FVC, i.e., from a

combination of RGB and MS images. Our results confirm that

multi-sensor data fusion improves the accuracies of the yield

prediction models. While researchers hope to enhance the

capacity of the yield prediction, they also expect to achieve this

goal at a less cost (e.g., economic cost, time cost, and computational

cost). That is, within the range of acceptable accuracy, fewer data

and lower costs are more feasible for large-scale applications.

Therefore, in this section, we compare the performances of the

RGB and MS images in the yield prediction.
TABLE 5 Yield prediction results based on various feature combinations and considering cultivar differences.

Types Feature variables Number
of variables

Number of
combinations

Best
combination

RRMSE
(%)

R2

ComVIs NDVI, GNDVI, EVI, EVI2, MTVI2, SAVI 6 63 EVI 15.16 0.82

REVIs NDVI_RE, MSR_RE, CI_RE 3 7 NDVI_RE, CI_RE 19.23 0.81

CIs NDI, ExG, ExR, ExGR, VARI, GLI, NDYI 7 127 ExG, ExR, NDI,
VARI

15.28 0.83

AgTP CH, FVC, VOL 3 7 CH, FVC, VOL 15.50 0.84

ComVIs+
REVIs+CIs

NDVI, GNDVI, EVI, EVI2, MTVI2, SAVI, NDVI_RE,
MSR_RE, CI_RE, NDI, ExG, ExR, ExGR, VARI, GLI, NDYI

16 65535 EVI, NDI 14.32 0.85

ComVIs
+AgTP

NDVI, GNDVI, EVI, EVI2, MTVI2, SAVI, CH, FVC, VOL 9 511 CH, EVI, MTVI2 14.51 0.85

REVIs+AgTP NDVI_RE, MSR_RE, CI_RE, CH, FVC, VOL 6 63 CH, FVC, VOL 15.50 0.84

CIs+AgTP NDI, ExG, ExR, ExGR, VARI, GLI, NDYI, CH, FVC, VOL 10 1023 CH, ExR, NDI 14.28 0.85

ComVIs
+REVIs+ CIs
+AgTP

NDVI, GNDVI, EVI, EVI2, MTVI2, SAVI, NDVI_RE,
MSR_RE, CI_RE, NDI, ExG, ExR, ExGR, VARI, GLI, NDYI,
CH, FVC, VOL

19 524287 CH, EVI, NDI 13.90 0.86
frontiers
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Table 6 shows the yield prediction results obtained using

various features obtained from the RGB and MS images. The

results indicate that the best yield prediction results were

obtained using a combination of the VIs and FVC from the MS

sensor, with RRMSE = 8.94% and R2 =0.94. The best yield

prediction results from the CIs and CH from the RGB sensor had

RRMSE = 10.29% and R2 =0.91. The yield prediction accuracy of the

MS-based VIs and FVC was better than that of the RGB-based

features. For the RGB-based features, the CH still outperformed the

other CIs in terms of the yield prediction, while for the MS-based

features, the combination of features involving red-edge indices had

a better performance. Red-edge light has a better penetration effect

than other visible light bands, is not easily saturated when the

vegetation canopy density is high, and is more sensitive to

chlorophyll (Dong et al., 2019; Sagan et al., 2021; Zeng et al., 2022).

These research results demonstrate that the features that

fuse MS and RGB image data have the best yield prediction

performance, followed by the MS-based features, and the RGB-

based features have the weakest performance. A UAV equipped

with an RGB camera is the most common configuration for

agricultural RS applications, and this configuration has the

advantages of simplicity, convenience, and low cost. Our results

show that if the purpose of the research is to understand the crop

yield status and the trend from a macroscopic perspective, the RGB-

based yield prediction model can fully meet the requirements within

the acceptable accuracy range. If the goal is to determine the crop

yield more accurately, the use of features obtained from multi-

sensor fusion is recommended for yield prediction.
4.5 Strengths and limitations of this study
and future work

The significant timeliness and operability of UAVs overcome the

disadvantages of the spatiotemporal resolution of satellite RS data in

precision agricultural applications. UAV-based crop yield prediction
Frontiers in Plant Science 14
has always been an active topic in the field of precision agricultural

RS. In this study, RGB and MS images were acquired using a UAV,

and crop yield prediction models were constructed based on the RF

algorithm and a combination of spectral features and agronomic

trait parameters. The results revealed that the model integrating

agronomic trait parameters and spectral features enhance the

accuracy of the crop yield prediction (Table 4; Figure 7), and the

addition of agronomic trait parameters addressed the issue of

reduced prediction capacity across different cultivars to some

extent (Table 5). In addition, these agronomic trait parameters are

easy to obtain at a low cost, so they represent a great potential

solution for crop yield prediction at medium and small scales.

Certainly, there were still some limitations in this study. The

experiment duration was limited to only one year, and the sample

size was relatively small. Multi-year experiments and larger sample

sizes would enable a more comprehensive and systematic testing of

the crop yield prediction model and feature parameters. Much work

remains to be done in the future regarding UAV-based crop yield

prediction. First, experiments in different climatic regions need to

be conducted to verify the robustness of the yield prediction models

across different climatic regions. Experiments involving different

crops and different cultivars of the same crop need to be conducted

to examine the reliability and suitability of the yield prediction

models across crops and cultivars. Second, our research results

confirm that multi-data fusion can effectively upgrade the

performance of the yield prediction model. The fusion of

structural and spectral parameters of crops was adopted in this

study. Exploring multi-data fusion, such as thermal infrared,

LiDAR, or environmental data, remains a future research focus

(Maimaitijiang et al., 2020; Li et al., 2022; Qader et al., 2023). In

addition, in terms of machine learning algorithms, previous studies

have used deep learning algorithms for yield prediction and have

achieved good results (Khaki and Wang, 2019; Khaki et al., 2020;

Sagan et al., 2021; Jeong et al., 2022). We also plan to explore the

performances of deep learning algorithms in UAV-based yield

prediction models in the future.
TABLE 6 Comparison of yield prediction using the RGB and MS images.

Sensors Types Feature variables Number
of variables

Number of
combinations

Best
combination

RRMSE
(%)

R2

MS VIs NDVI, GNDVI, EVI, EVI2, MTVI2, SAVI,
NDVI_RE, MSR_RE, CI_RE

9 511 NDVI_RE,
MSR_RE, SAVI

9.72 0.93

VIs+FVC NDVI, GNDVI, EVI, EVI2, MTVI2, SAVI,
NDVI_RE, MSR_RE, CI_RE, FVC

10 1023 FVC, CI_RE,
SAVI

8.94 0.94

RGB CIs NDI, ExG, ExR, ExGR, VARI, GLI, NDYI 7 127 ExG, VARI 15.79 0.78

CIs+CH NDI, ExG, ExR, ExGR, VARI, GLI, NDYI, CH 8 255 CH 10.29 0.91

MS+RGB CIs+VIs
+CH
+FVC
+VOL

NDVI, GNDVI, EVI, EVI2, MTVI2, SAVI,
NDVI_RE, MSR_RE, CI_RE, NDI, ExG, ExR,
ExGR, VARI, GLI, NDYI, CH, FVC, VOL

19 524287 CH, FVC,
NDVI_RE, EVI

8.34 0.95
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5 Conclusions

Agronomic trait parameters are closely related to crop growth,

development, and yield formation. In this study, crop canopy

spectral parameters (VIs) and agronomic trait parameters (plant

height and coverage) obtained using low-cost UAVs were combined

to predict the crop yield. The potential of agronomic trait

parameters was also investigated. The main conclusions of this

study are as follows:
Fron
(1) The agronomic trait parameters and spectral features had

strong relationships with the crop yield, while the texture

features had relatively weak relationships with the crop

yield. Compared with the yield prediction using spectral

features, the addition of agronomic trait parameters

effectively improved the yield prediction accuracy.

(2) The yield prediction results based on the features in the

different growth stages were quite different. In general, the

prediction accuracies were noticeably greater in the

jointing, booting, heading, and early grain-filling stages as

compared to the later growth stages. Early yield predictions

were most precise during the heading stage. Multiple

growth stages provided a better yield prediction

performance than a single stage.

(3) The yield prediction across different cultivars was weaker

than that for the same cultivar. However, the combination

of crop trait parameters and spectral indices improved the

yield prediction among cultivars to some extent.

(4) The features based on MS and RGB fusion had the best

performance in terms of the yield prediction, followed by

the MS-based features, and the RGB-based features had the

weakest performance. It should be noted that the accuracy

of the RGB-based yield prediction models also fell within

the acceptable accuracy range. Therefore, they meet the

requirements for understanding the crop yield status and

trends from a macroscopic perspective.
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