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Salt stress affects large cultivated areas worldwide, thus causing remarkable

reductions in plant growth and yield. To reduce the negative effects of salt stress

on plant growth and yield, plant hormones, nutrient absorption, and utilization, as

well as developing salt-tolerant varieties and enhancing their morpho-

physiological activities, are some integrative approaches to coping with the

increasing incidence of salt stress. Numerous studies have been conducted to

investigate the critical impacts of these integrative approaches on plant growth

and yield. However, a comprehensive review of these integrative approaches,

that regulate plant growth and yield under salt stress, is still in its early stages. The

review focused on the major issues of nutrient absorption and utilization by

plants, as well as the development of salt tolerance varieties under salt stress. In

addition, we explained the effects of these integrative approaches on the crop’s

growth and yield, illustrated the roles that phytohormones play in improving

morpho-physiological activities, and identified some relevant genes involve in

these integrative approaches when the plant is subjected to salt stress. The

current review demonstrated that HA with K enhance plant morpho-

physiological activities and soil properties. In addition, NRT and NPF genes

family enhance nutrients uptake, NHX1, SOS1, TaNHX, AtNHX1, KDML, RD6,

and SKC1, maintain ion homeostasis and membrane integrity to cope with the

adverse effects of salt stress, and sd1/Rht1, AtNHX1, BnaMAX1s, ipal-1D, and sft

improve the plant growth and yield in different plants. The primary purpose of this

investigation is to provide a comprehensive review of the performance of various

strategies under salt stress, which might assist in further interpreting the

mechanisms that plants use to regulate plant growth and yield under salt stress.

KEYWORDS

salt stress, morpho-physiological and biochemical activity, nutrient uptake, CRSIPER-
Cas9, genes, yield
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Introduction

The world faces a tremendous challenge in crop production

(López-Marqués et al., 2020). According to (FAO, 2017), the human

population will increase to 10 billion, and the requirements for

cereals and livestock production will exceed 60 percent

(Springmann et al., 2018). Agriculture growth depends on

productivity achieved through increased crop yields. However, the

higher yield was only achieved during the green revolution period

(López-Marqués et al., 2020). The percentage increase in yield has

decreased after the green revolution.

Salt stress is one of the most important environmental factors,

significantly decreasing crop growth and yield worldwide (Zörb

et al., 2019; Negi et al., 2020). Salt stress affects approximately 20

percent of all agricultural lands and 33 percent of irrigated

agricultural lands (FAO, 2017). The neutral salt concentrations of

sodium chloride (NaCl) and sodium sulfate (Na2SO4) caused salt

stress in soil (Van Zelm et al., 2020). The higher accumulation of

NaCl in the soil depletes the water content and harms plants. It thus

causes toxic effects from the sodium and chloride ions in plants

(Ahmad et al., 2022b). To cope with the negative effects of salt

stress’s, plants use various responses, such as regulating gene

expression and stimulating hormones (Raza et al., 2022; Feng

et al., 2023). During salt stress, different kinds of strategies can be

used to increase plant growth and yields. Currently, researchers and

growers realize the importance of identifying suitable cultivars

(Jiang et al., 2022), nutrient absorption (Adil et al., 2022), the

roles of hormones (Ahmad et al., 2022a), and gene identification

(Tang et al., 2022) under salt stress (Adil et al., 2022; Jiang et al.,

2022; Tang et al., 2022; Ahmad et al., 2022b).

Different studies have shown that the regulation of genes under

salt stress is affected by numerous transcriptional cascades (Wu et al.,

2019). Abscisic acid (ABA) and gibberellin (GA), both acting as

endogenous signaling hormones and are essential regulators of salt
Frontiers in Plant Science 02
stress (Pu et al., 2019; Ahmad et al., 2022b). WRKY genes in cotton

respond to salt stress via ABA signaling and regulate the production

of reactive oxygen species (ROS) in plant cells (Yan et al., 2014). In

wheat, MYB genes respond to salt stress by regulating ion

homeostasis in order to control osmotic pressure and lower ROS

concentrations (Song et al., 2020). Understanding the molecular

mechanism underlying salt resistance in plants is essential for

improving crop quality and yield, and this can only be achieved by

studying different salt-tolerant genes in plants (Wang et al., 2022).

Salt stress affects nutrient absorption and disturbs plant

metabolic activities such as lipid and carbohydrate metabolism,

which reduce crop growth and yield (Parida and Das, 2005; Zafar

et al., 2022). In addition, salt stress affects the plant’s root system. It

creates osmotic stress due to the elevated sodium (Na+), resulting in

a water shortage in plant cells and thus affecting water potential

(Ekinci et al., 2022). Due to the imbalances of nutrient availability in

soil, salt stress thus causes ion toxicity in different plants (Ali

et al., 2021).

Introducing suitable cultivars and desirable genes, etc., has been

widely investigated to improve crop growth and productivity under

salt stress (Chattha et al., 2020). However, these approaches are

time-consuming and costly. In order to improve the growth and

yield of desirable cultivars, plant genomic editing with the CRISPR/

Cas9 system is currently being used. Nevertheless, the regulation of

genome-edited crops is still unknown, especially under abiotic

stresses (Razzaq et al., 2019). Applying seed priming, nutrient

management, and phyto-hormones to overcome the adverse

effects of salt stress can suggest promising conclusions for various

plants to improve yield (Ahmad et al., 2022a; Ahmad et al., 2022b;

Figure 1). In this review, we examined how salt stress affects

nutrient uptake and utilization in various crops under salt stress

from the aspects of breeding salt-tolerant varieties, identifying salt-

resistant genes, and using CRISPR-Cas9 tools for genome

editing (Table 1).
FIGURE 1

Integrated approach mitigate the negative effects of salt stress and improve plant growth and yield.
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Different approaches for increasing
plant growth and yield

Effects of salt stress on crop growth
and development

Salt stress is one of the major abiotic stresses that causes seed

dormancy and reduces normal plant growth and yield. Soluble salt

at higher concentrations causes both osmotic and ionic stresses in

soil, which lead to secondary stresses such as nutritional imbalance

and oxidative stress. In the root zone, the higher concentrations of

salts cause higher osmotic pressure in the soil compared to plant

cells, which reduces the capability of plants to uptake water and

nutrients (El-Mageed et al., 2022). When plants are subjected to

high salt stress, the soil solution becomes more hyper-osmotic and

causes the root cells to lose water, resulting in plant senescence or

wilting (Verma et al., 2022). Osmotic stress, caused by a lack of

water in plant tissues, primarily reduces leaf growth and causes a

reduction in shoots and reproductive growth. (Chourasia et al.,

2022). Secondary stress, such as oxidative stress, mainly occurs due
Frontiers in Plant Science 03
to the higher production of ROS, which contributes to the primary

effects of salt stress described above (Kaur et al., 2023). In addition,

the overproduction of ROS in plants increases the fluidity and

permeability of cell membranes and degrades functional and

structural proteins under salt stress (Sharma et al., 2023).
Salt stress and genes involve in plant’s
nutrient uptake

Due to salt-induced osmotic stress, plant growth and nutrient

uptake decreased under salt stress. (Abbas et al., 2022). The uptake

of nutrients by roots and the efficiency of photosynthesis by leaves

are sources of plant development. Plant cells accumulate salt-

affected soil ions (Na+, and Cl-) that inhibit nitrogen (N),

phosphorus (P), and potassium (K) uptake and photosynthesis

(Zhang et al., 2011; Ait-El-Mokhtar et al., 2020; Figure 2). Many

plant organelles, including mitochondria, chloroplasts, and

peroxisomes, produce more reactive oxygen species (ROS) when

subjected to higher salt stress, such as hydroxyl radical (OH),
TABLE 1 Different genes improve plant growth and yield under salt stress.

Plants genes Genes functions in plants Salt stress References

Cotton WRKY, Regulate ROS production in plant cell
Enhance salt tolerance via ABA signaling and

regulate the production of ROS
(Yan et al., 2014)

Tomato MYB Prevent plant cell membrane from injury
Enhance salt tolerance via regulating of ROS

production
(Cui et al., 2018)

Wheat MYB Regulates ion homeostasis
Enhance salt tolerance via regulating osmotic

pressure and lower production of ROS
(Song et al., 2020)

Arabidopsis MYB Regulates antioxidant enzymes and cuticle formation Enhance salt tolerance (Zhang et al., 2020)

Arabidopsis
NPF6.3, NRT1.1

or CHL1
NO3- Enhance salt tolerance (Liu et al., 1999)

Cotton GA2ox7
Improve plant growth and development and biological

process, enhance the content of ABA and IAA
Enhance salt tolerance and upregulated via

GA
(Ahmad et al., 2022b)

Arabidopsis
thaliana

XERICO and
GASAA

Improve plant growth and development and biological
process

Enhance salt tolerance and upregulated via
GA

(Ahmad et al., 2022b)

Rice
GA2ox, GA2ox5,
and GA2ox6

Improve plant growth and development and biological
process, crop yield

Enhance salt tolerance and upregulated via
GA

(Ahmad et al., 2022b)

Potato GA2ox
Improve plant growth and development and biological

process, crop yield
Enhance salt tolerance and upregulated via

GA
(Ahmad et al., 2022b)

Tomato TaNHX Reduce the uptake of Na+ Enhance salt tolerance (Liu et al., 2020)

Rice TaNHX Reduce the uptake of Na+ Enhance salt tolerance (Liu et al., 2010)

Tomato AtNHX1 Enhance K+ retention Enhance salt tolerance (He and He, 2023)

Rice
KDML, RD6,
and SKC1

Improve seedling growth, maintenance of ionic
homeostasis, and maintaining membrane integrity,

Enhance salt tolerance
(Nounjan et al., 2018;
Pamuta et al., 2022)

Cereals sd1/Rht1 Increase plant yield Enhance salt tolerance (Zheng et al., 2022)

wheat AtNHX1 Increase plant yield Enhance salt tolerance (Sharma et al., 2022)

Brassica
napus L.

BnaMAX1s
(Dwarf gene)

Improve hormone biosynthetic activity and Increase plant
yield

Enhance salt tolerance (Zheng et al., 2020)

tomato sft
improve photosynthetic activity, enhanced dry matter
accumulation in the sink, and increased plant yield

Enhance salt tolerance (Krieger et al., 2010)
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superoxide (O2-), and hydrogen peroxide (H2O2). Proteins, lipids,

nucleic acids, and cellular membranes were all negatively affected

due to the higher accumulation of ROS in plants (Zulfiqar et al.,

2019). Plants protect themselves against ROS by producing different

antioxidant enzymes such as catalase, ascorbate peroxidase, and

superoxide dismutase (Ahmad et al., 2022a).

Different mineral nutrients and organic amendments have

been widely used to improve salt resistance and nutrient uptake in

different kinds of crop species. Among these nutrients, N, P, and K

are essential for plants as they are involved in different

physiological and biochemical processes in plant growth and

yield (Ahmad et al., 2022a). Previous studies demonstrated that

macronutrients are required for various plant cellular processes,

such as enzyme activation, photosynthesis, protein content,

stomatal opening and closing, energy transmission, and

osmoregulation under salt stress (Ashraf et al., 2013; Taha et al.,

2020). K is suggested to be more efficient for osmotic regulation as

compared to N and P under salt stress (Abbas et al., 2022). A key

factor in plant salt resistance is the higher uptake of potassium

over sodium (Zrig et al., 2021). Abbas et al. (2022) demonstrated

that the application of K with humic acid (HA) enhanced different

physiological and biochemical activities, such as nutrient uptake,

water relations, stomatal conductance, and enzymes activation to

counter the adverse effects of ROS (Abbas et al., 2022). HA, are

organic compounds that are necessary for improving soil

properties and plant growth (Ampong et al., 2022). The

corresponding findings were supported by (Ali et al., 2019), who

demonstrated that K with HA, increased salt resistance in

sorghum by increasing its nutrient uptake and antioxidant
Frontiers in Plant Science 04
activities, and reducing ROS production. The current review

showed that K in combination with HA improved different

morpho-physiological activities in plants. The application of HA

with N and P or other molecules, such as fulvic acid (FA), which

enhances soil qualities and plant growth in different crops under

salt stress, is still not well understood.

Plant nutrient use efficiency and yield can be increased by

identifying critical genes (Kumar et al., 2021). Both the NRT and

NPF gene families have been recently discovered to be involved in

nitrate uptake and transport throughout the plant (Fan et al., 2017;

Figure 3). There are two types of transport systems involved in

NO3- uptake: low-affinity transport systems (LATS) and high-

affinity transport systems (HATS) (Faure et al., 2021). Many NRT

family genes have been identified as having high affinity, whereas

NPF are thought to function as the primary components of the

LATS for NO3- at high concentrations (Li et al., 2021). Previous

studies showed that some RNT and NPF family genes are involved

in the dual-transport system; for example, in Arabidopsis, the RNT

and NPF genes such as NPF6.3, NRT1.1 or CHL1, was identified in

both high- and low-affinity nitrate uptakes (Liu et al., 1999). The

NPF6.3 gene transport a variety of substrates, including protein

concentration, dipeptides, chloride, glucosinolates, and plant

hormones such as gibberellins (GAs), jasmonates (JAs), indole-3-

acetic acid (IAA), and abscisic acid (ABA) (Fan et al., 2017; Chao

et al., 2021). In Arabidopsis, the gene families NRT and NPF were

crucial for nitrate uptake and transport to other parts of the plant.

However, the remarkable performance of the NPF6.3 gene under

salt stress, as well as the identification of NRT and NPF low-to-high

affinities genes in other plant species, remain unclear.
FIGURE 2

Nutrients mitigate the adverse effects of salt stress. Plant cells accumulate salt-effected ions such as Na+ and Cl- that reduce N, P, and K uptake and
photosynthetic activity. Plants organelles such as mitochondria, chloroplast, and peroxisome are exposed to higher salt stress, including the hydroxyl
radical (OH), superoxide (O2-), and hydrogen peroxide (H2O2), produce more reactive oxygen species (ROS), which negatively affect protein, lipids
nucleic acid, and cellular damage. For self-defense, plants produce different antioxidant enzymes, such as CAT, POD, and SOD, to eliminate the
negative effects of salt stress. Macronutrients N, P and K play a major role in enzyme activation photosynthesis, protein content, stomatal opening
and closing, energy transmission, and osmoregulation under salt stress. K play a vital role in osmotic regulation compared to N and P. The combined
application of K with humic acid counters the negative effects of ROS and improves the morph-physiological activity and yield of various crops.
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Effects of salt stress on physiological and
biochemical activities

Nevertheless, internally, plants have developed comprehensive

resistance systems to cope with the adverse effects of ROS (Wang

et al., 2023). SOD, CAT, POD, GR, and APX are ROS-scavenging

and mediate in the reaction cycle of antioxidant chemicals,

including ascorbic acid (AsA) and glutathione (GSH) (Apel and

Hirt, 2004; Dietz et al., 2006; Türkan and Demiral, 2009).

Several studies demonstrated that salt stress reduces the

physiological activities of wheat, barley, maize, sunflower, rice,

tomatoes, and beets (Turan et al., 2009; Shahbaz et al., 2011;

Shiyab et al., 2013; Umnajkitikorn et al., 2013; Zeeshan et al.,

2020; He et al., 2022). In wheat and barley, the negative effects of

salt stress may be due to a reduction in stomatal conductance or the

excessive production of ROS in plants, which can enhance oxygen-

induced cellular damage. Similarly, Netondo et al. (2004) in

sorghum showed that changes in stomatal conductance and the

concentration of cellular CO2 were positively correlated during salt

stress, showing that stomatal conductance was a key factor that

played an important role in plant net photosynthesis (Netondo

et al., 2004). It has been confirmed that stomatal conductance plays

a crucial role in net photosynthesis in wheat, barley, and sorghum,

but the detailed mechanism in various species is still unknown.
Genes improve plant physiological and
biochemical activities under salt stress

Genes play an important role in reducing abiotic stresses in

plants by facilitating their growth and development, nutrient
Frontiers in Plant Science 05
uptake, and carrying them from one part of the plant to another.

Salt-related genes, such as SKC1, CDPK, and MAPK pathways,

overlay-sensitive (SOS) pathways, PAL and CHS, actively maintain

response to salt stress in plants (Pamuta et al., 2022). SOS1 and

NHX1 genes encode antiporter Na+/H+; however, SOS1 is located

on the plant plasma membrane (Du et al., 2023). The SOS1 gene

regulates the transport of Na+ from roots to the shoots of the plant

(Liu et al., 2019). The TaNHX gene enhance plant tolerance against

salt stress due to less uptake of Na+ and its translocation to the

shoots in tomatoes and rice (Liu et al., 2010). The performance of

the protein, NHX has been widely investigated in various crops such

as tomatoes, rice, and cotton (Liu et al., 2010; Gouiaa and Khoudi,

2015). Though, in tomatoes, AtNHX1 gene overexpression

improved K+ retention in cells under higher salt stress (He and

He, 2023). Similarly, in transgenic tobacco, the expression of the

TNHXS1-IRES-TVP1 bicistronic transcriptional unit led to an

increase in the accumulation of K+ and a decrease in N+

concentration in leaf tissue (Gouiaa et al., 2012). An increase in

antioxidant activities such as SOD, POD, and CAT prevents ROS

accumulation and reduces cellular damage in plants (Ahmad et al.,

2022a). In rice KDML, RD6, and SKC1 genes reduced the adverse

effect of ROS and increase seedling growth due to the higher

antioxidant enzymes activities under salt stress (Pamuta et al.,

2022). The possible results might be due to the SKC1 genes

responsible for the maintenance of ionic homeostasis,

maintaining membrane integrity, and coping against salt-induced

damages such as ROS detoxification (Nounjan et al., 2018; El

Moukhtari et al., 2020). Hence, genes alleviated the negative

effects of salt stress by improving physiological and biochemical

activities of the plants. However, these gene’s roles and underlying

mechanisms in various crops remain unclear under salt stress.
FIGURE 3

Different genes are involved in plant nutrient uptake and enhanced plant growth and yield under salt stress. Two gene families, NRT and NPF,
enhance the uptake of NO3- via two transportation methods: low-affinity transport systems (LATS) and high-affinity transport systems (HATS). RNT
genes are especially involved in HATS, while NPF is involved in LATS. Some genes, such as NPF6.3 and NRT1.1/CHL1, are involved in the dual-
transport system. The genes NPF6.3 transport a variety of substrates such as protein, dipeptides, chloride, glucosinolates, gibberellins (GAs),
jasmonate (JAs), indole-3-acetic acid (IAA), abscisic acid (ABA) to the various parts of the plants.
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Effects of salt stress on crop yield and
yield-related genes

The world population is expected to increase by 34 percent in

2050, and the requirements for food production are expected to

increase by 34 percent to meet the demand for cereals (FAO, 2017).

This growth in cereal productivity will need to occur in a world with

higher salt stress, where regular higher salt stress negatively affect plant

yield (Adil et al., 2022). Hence, to improve the yield of cereals, increase

the current germplasm’s yield and improve yield stability through

enhanced tolerance to salt stress (Hu and Schmidhalter, 2023). It has

been demonstrated that better management of land and the

introduction of new genotypes through genetic engineering and

breeding programs can lead to advances in yield. Recently, various

approaches, traditional and state-of-the-art amelioration, have been

put forward to improve plant yield (Panagea et al., 2016). Plant

breeding has played a paramount role in maintaining food security,

leading to increased plant productivity over the past few decades. For

salt reclamation, breeding is considered one of the most efficient

strategy for improving plant tolerance against salt stress (Ashraf and

Munns, 2022). Despite much research documented in understanding

the response of plants to salt stress, the breeding of salt-resistant

genotypes remains slow, with limited progress in plants (Asif et al.,

2018; Kotula et al., 2020). Compared to the slow breeding progress, to

enhance the salt tolerance of barley and wheat, salt-resistant genotypes

have been introduced and commercialized in various Asian countries

via conventional breeding methods (Ismail and Horie, 2017). The

improved rice genotypes development through this breeding method

increase grain yield production in fields under salt-affected areas by 0.5

to more than 2 tons per hectare (Singh et al., 2016). Nevertheless, the

development of these varieties took 5-10 years of rigorous evaluation

of many breeding lines with high process costs; hence, various

approaches, such as genome-based and marker-assisted breeding,

are becoming more promising and attractive (Thomson et al.,

2012). Different studies have shown that yield of transgenic wheat

and barley genotypes with salt resistance can be developed by

manipulating the expression of introducing genes or native genes

(Hu and Schmidhalter, 2023). The green revolution gene, sd1/Rht1,

significantly increased plant’s yield when it was successfully adopted in

cereals (Zheng et al., 2022). In addition, the highly expressed AtNHX1

gene in transgenic wheat lines, a gene encoding an Arabidopsis

vacuolar Na+/H+ antiporter, showed a higher grain yield in saline

field (Sharma et al., 2022). A few dwarf genes, such as BnaMAX1s, are

involved in hormone biosynthetic activities and increased plant yield

in brassica napus L. (Zheng et al., 2020). Similarly, rice over-

dominance ipa1-1D and tomato sft genes increased plant

photosynthetic activities, enhanced dry matter accumulation in sink,

and increased yield (Jiao et al., 2010; Krieger et al., 2010). Nevertheless,

the identified genes against salt resistance have not yet been

transferred into relevant commercial genotypes nor used to generate

a salt-resistant plant (Asif et al., 2018). The reason is that quantitative

trait loci (QTLs) or genes have only been checked in controlled growth

conditions with short periods of salt stress, which do not reflect

realistic field conditions (Singh et al., 2021). Therefore, in the future,

more field trials are required to measure the value of these genes and

dwarf-related genes in breeding to achieve higher yield under salt
Frontiers in Plant Science 06
stress. Moreover, clustered regularly interspaced short palindromic

repeats (CRISPR-Cas9), transcription activator-like effector nucleases

(TALENs), and zinc-finger nucleases (ZFNs) are techniques that easily

modify genetic loci or multiple homologous genes.
Practices of alleviating salt stress
on crops

Different technologies are used for
gene modification

Genome editing technologies, which can change the target

genes of the plant genome, is increasingly preferred for use in

different fields, including crop breeding and plant science. Genome-

editing technologies characterize crop improvement and gene

function (Xia et al., 2021). The leading three technologies used in

genome editing such as TALENs, ZFNs, and CRISPR/Cas9.

TALENs and ZFNs are time-consuming and require a lengthy

protocol to gain the specific target (Liu et al., 2021). Compared

with TALENs and ZFNs, the CRISPR-Cas9 techniques are more

convenient, easy to design, and vigorous (Chennakesavulu et al.,

2021). CRISPER-Cas9 is a simple toolkit that is easy to design

because of the involvement of only single-guided RNA (sgRNA)

and the cas9 protein compared to TALENs and ZFNs (Razzaq et al.,

2019). Additionally, the procedure involved in TALENs and ZFNs

is complicated because they need protein engineering for their

construction (Razzaq et al., 2019). Due to this obstacle, the tools

of TALENs and ZFNs in plants have been limited (Jinek et al.,

2012). In several plants, continuous innovation for efficient genome

editing has expanded the application of CRISPR-Cas9 and is rapidly

becoming a promising tool for gene modifications (Shan et al., 2013;

Zhang et al., 2019). CRISPR-Cas9 (CRISPR-associated) is a

prokaryotic adaptive immune system that binds and cleaves

foreign nucleic acids (Brouns et al., 2008). The type II CRISPR

system most frequently used is composed of two components, such

as Cas9 nuclease and an artificial single guide RNA (sgRNA) (Jinek

et al., 2012). CRISPR-Cas9 plays a vital role in improving plant

quality and yield. Plant yield is a complicated, multigenic, and

quantitative characteristic affected by various features. The

CRISPR-Cas9 technique has proven to be effective in increasing

plant yield. The CRISPR-Cas9 genome editing technique is only

important for gene knock-in and knock-out, not for the base

version (Chennakesavulu et al., 2021). The corresponding

findings of (Li et al., 2017; Zhang et al., 2018) revealed that genes

negatively regulate yield traits such as tiller number by OSAAP3,

and grain size by OsGRF, used CRISPR-Cas9 to knock out multiple

genome yield-related genes, including Hd2, Hd4, and Hd5 (Li et al.,

2017; Zhang et al., 2018). Recently, 30 genotypes of “Green

Revolution miracle rice” were investigated through genome

sequencing, and 57 genes controlling yield-relevant traits were

knocked out via the CRIPR-Cas9 technique (Huang et al., 2018).

Phenotyping results showed that many genes identified during

screening were crucial to regulate yield-related traits in rice.

However, more studies need further investigation to identify

various genes in other crops via CRISPR-Cas9.
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Abiotic stress tolerance through CRISPR-Cas9-mediated genome

editing has been documented in Arabidopsis, wheat, rice, tomatoes,

barley, and sorghum (Gobena et al., 2017; Wang et al., 2017; Sánchez-

León et al., 2018; Lawrenson and Harwood, 2019; Liu et al., 2019;

Tran et al., 2021). In tomatoes, the functional domains of hybrid

proline-rice protein 1 (S1HyPRP1), a negative regulator of salt stress

resistance, were disrupted using a CRIPR-Cas9 mediated multiple

genome editing approaches (Tran et al., 2021). Further investigation

showed that the precise elimination of S1HyPRP1 functional domains

in tomatoes led to higher salt tolerance during all growth stages (Tran

et al., 2021). The Slmapk3 editing gene, via CRISPR-Cas9, exhibited

lesser ROS, higher enzyme activities, lower membrane damage, and

reduced severe plant welting under heat stress (Yu et al., 2019).

Several studies have been conducted about the role of CRISPR-Cas9

in genome editing that enhanced different plant’s growth and yield,

but further research is needed to investigate the performance of these

modified genes via CRISPR-Cas9 techniques in different crops under

salt stress.
Selection of suitable cultivars under
salt stress

Different strategies assist in the
improvement of suitable cultivars under
salt stress

Salt resistance relies on the selection of suitable genotypes and

their families (Figure 4). Investigating the comparison or examining
Frontiers in Plant Science 07
the physiological mechanism of salt stress in some cultivars that

belong to the same family can provide more knowledge of the

discriminative growth pattern of plant and salt resistance levels in

both cultivars (Shahzad et al., 2021). Hence, due to the lack of

examination of physiological mechanisms concerning salt stress in

genotypes, it is critical to determine the negative impact of salt stress

on crop growth and yield. Adapting cultivars to salt stress involves

complex biochemical, physiological, and molecular mechanisms,

which are still in an early phase (Denaxa et al., 2022). To reduce the

negative effects of salt stress on crop growth and development,

various strategies, like seed priming and foliar application, should

be used to understand plant morpho-physiological and biochemical

activities (Figure 4). Seed priming is when various crop seeds are

soaked with one or more growth regulators at an appropriate level

before they are sown.

In contrast, the foliar application is the treatment of one or

more growth regulators applied at an appropriate level in a liquid

form directly to the leaves. Previous studies demonstrated that

NaCl reduced germination percentage in three beans and two

sorghum cultivars (Hasanuzzaman et al., 2020). The reduction in

germination percentage might be caused by increased NaCl

osmotic pressure, which slows down the water imbibition,

germination and metabolism processes of the seeds of sorghum

and beans (Xie et al., 2019). The application of ASA enhanced the

germination percentage of sorghum and eggplant under the

higher level of NaCl. The treatment reduced the adverse effects

of salt stress, improved oxygen absorption, and improved the

transportation of nutrients from cotyledon to embryos (Irfan

et al., 2021). Plant roots and shoots are considered essential
FIGURE 4

The selection of suitable cultivars can mitigate the negative effects of salt stress. For higher yield, it’s important to know the morph-physiological
activity of the cultivars. The phyto-hormones such as gibberellins (GAs), ascorbate (ASA), and salicylic acid (SA) can mitigate the adverse effects of
salt stress via two application methods such as foliar and seed priming. The application of GAs improves germinations, roots, shoot, oxygen
absorption, and nutrient uptake in sorghum, mung bean, and eggplant, ASA improves germinations, roots, shoot, oxygen absorption, nutrient uptake
in sorghum, mung bean, and eggplant, and SA improves morpho-physiology activities, and oxidative damage in cotton and mung bean. The genes
such as GA2ox, GA2ox5, GA2ox6, GA2ox, GA2ox7, XERICO and GASAA are involved in endogenous phyto-hormones and increase plant yield.
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parameters for salt stress because roots come into contact with the

soil and absorb water from it and transfer it to the shoots. For

instance, the reports of Xie et al. (2019) on various plants and

Hussien Ibrahim et al. (2020) on sorghum showed that tissue

alteration under salt stress caused a significant decrease in the

seedling growth characteristics (Xie et al., 2019; Hussien Ibrahim

et al., 2020). The application of exogenous ASA increased

sorghum seedling growth characteristic while mitigating the

negative effects of salt stress (Mohammed Ibrahim Elsiddig

et al., 2022). Similar results were supported by Mittal et al.

(2018) in Brassica rapa L., who demonstrated that seed

treatment with ASA before sowing has dramatically improved

seedling growth characteristics and protects the plants roots and

shoots form altering (Mittal et al., 2018). The improved seedling

growth characteristic might be due to the ascorbic acid

antioxidant action and or increased cell enlargement within the

apical meristem of seedlings (Wang et al., 2019).

Moreover, seed priming with suitable amount of GA can protect

against seed deterioration and mitigate the adverse effects of salt

stress, such as ion toxicity, osmotic stress, and an imbalance of

nutrients uptake (Ahmad et al., 2022b). Seeds soaked with GA

application facilitate germination and increased seedling length in

rice and sorghum, as GA stimulated cell division and cell elongation

(Saudi, 2017; Shihab and Hamza, 2020). Similarly, SA applications

can enhance plant tolerance to salt stress in different crops (Khan

et al., 2015). Such as, the reasonable concentration of SA in stressed

plants via seeds soaking before sowing and after germination via

spraying or adding to the nutrient solution can improve the

morpho-physiological activities of cotton seedlings under salt

stress (Ahmad et al., 2022a). SA improved mung beans growth

characteristics and photosynthetic activities, and at the same time,

oxidative damage from salt stress was reduced (Ahanger et al.,

2019). The seed priming and foliar application of ASA, GA, and SA

play an important role in enhancing salt tolerance mechanism and

promoting the germination ofMedicago sativa L. Brassica juncea L.

and cotton (Ahmad et al., 2022b). Further studies are required

to close the knowledge gap regarding the application of ASA,

GA, and SA to other growth attributes, such as the physiological

and biochemical characteristics of various plants via other

molecular techniques.

Additionally, to improve plant growth and yield with the help of

the selection of suitable cultivars, it is crucial to understand the

genes in plants that are responsive to phyto-hormones. In response

to salt stress, the genes GA2ox7 in cotton, XERICO and GASAA in

Arabidopsis thaliana, GA2ox, GA2ox5, and GA2ox6 in rice, and

GA2ox in potatoes were upregulated by GAs (Ahmad et al., 2022b).

These genes support the growth and development of plants and are

involved in a number of biological processes. The GA2ox7 genes

enhance the content of abscisic acid (ABA) and indole acetic acid

(IAA) in cotton (Ahmad et al., 2022b). The expression of GA2ox6

genes in rice transgenic plants increased the grain yield by 10-30%

during abiotic stresses (Lo et al., 2017). These genes are involved in

plant endogenous hormones, but their signaling and transduction

pathways in different species under salt stress are still not being

clearly understood.
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Conclusions and future
recommendations

The impact of salt stress on plant growth is considered a

significant threat to agricultural productivity. Salt stress mainly

reduces the plant’s growth through physiology and the imbalance of

ion homeostasis, which can alter gene expression. Therefore, to

enhance the yield of plants under salt stress conditions, it is crucial

to understand the integrative approaches. Salt stress is a highly

complicated process, and coping with the negative effects of this

stress is still poorly understood.

The application of HA with K+ improves morpho-physiological

activities and soil properties. However, its performance with N, P,

and other molecules such as FA, are far from clear.

The current study investigated that phyto-hormones such as

ASA, SA, and GA improve the growth attributes in several plants.

However, the detailed mechanism of these phyto-hormones in

physiological and biochemical activities in different plants under

salt stress is still in an early phase.

Stomatal conductance is paramount in net photosynthesis

activities in several crops, such as wheat, barley, and sorghum.

However, elucidating the detailed mechanism of stomatal

conductance under salt stress in various crops is still unknown.

Gene families such as NRT and NPF uptake nitrate and

translocate it to other parts of the plants. However, the

performance of these genes family, especially the NPF6.3,

NRT1.1/CHL1 under salt stress in different crops is still unknown.

It has been confirmed that various genes, including NHX1,

SOS1, TaNHX, AtNHX1, KDML, RD6, and SKC1, maintain ion

homeostasis and membrane integrity to cope with salt-induced

damage in different plants. However, these genes’ performance and

underlying mechanisms in several crops remain unknown under

salt stress.

Different genes, such as sd1/Rht1, AtNHX1, BnaMAX1s, ipal-

1D, and sft, improved the growth and yield of various plants.

However, the identification of these genes against salt tolerance

has not yet been transferred into the relevant commercial genotypes

or used to generate salt-resistant plants.

CRISPER-Cas9 successfully knocks out various genes such as

OSAAP3, OsGRF4, OsGS3, TaGW2, TaGASR7, Hd2, HD4, andHd5,

which negatively regulate the yield traits of rice. In contrast, the

genes modified by CRISPR-Cas9-modified genes Slmapk3 enhanced

enzyme activities, reduced plant wilting, and increased plant yield

under heat stress. However, further studies require to investigated

to knock in or knock out different genes via CRISPR-Cas9 under

salt stress.
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