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Comprehensive meta-analysis
of QTL and gene expression
studies identify candidate
genes associated with Aspergillus
flavus resistance in maize

Niranjan Baisakh1*†, Eduardo A. Da Silva1,2†, Anjan K. Pradhan1

and Kanniah Rajasekaran3

1School of Plant, Environmental and Soil Sciences, Louisiana State University Agricultural Center,
Baton Rouge, LA, United States, 2Department of Agriculture, Federal University of Lavras,
Lavras, Brazil, 3Food and Feed Safety Research Unit, Southern Regional Research Center, United
States Department of Agriculture - Agricultural Research Service (USDA-ARS), New Orleans,
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Aflatoxin (AF) contamination, caused by Aspergillus flavus, compromises the food

safety and marketability of commodities, such as maize, cotton, peanuts, and

tree nuts. Multigenic inheritance of AF resistance impedes conventional

introgression of resistance traits into high-yielding commercial maize varieties.

Several AF resistance-associated quantitative trait loci (QTLs) and markers have

been reported from multiple biparental mapping and genome-wide association

studies (GWAS) in maize. However, QTLs with large confidence intervals (CI)

explaining inconsistent phenotypic variance limit their use in marker-assisted

selection. Meta-analysis of published QTLs can identify significant meta-QTLs

(MQTLs) with a narrower CI for reliable identification of genes and linkedmarkers

for AF resistance. Using 276 out of 356 reported QTLs controlling resistance to A.

flavus infection and AF contamination in maize, we identified 58 MQTLs on all 10

chromosomes with a 66.5% reduction in the average CI. Similarly, a meta-

analysis of maize genes differentially expressed in response to (a)biotic stresses

from the to-date published literature identified 591 genes putatively responding

to only A. flavus infection, of which 14 were significantly differentially expressed

(−1.0 ≤ Log2Fc ≥ 1.0; p ≤ 0.05). Eight MQTLs were validated by their

colocalization with 14 A. flavus resistance-associated SNPs identified from

GWAS in maize. A total of 15 genes were physically close between the MQTL

intervals and SNPs. Assessment of 12 MQTL-linked SSR markers identified three

markers that could discriminate 14 and eight cultivars with resistance and

susceptible responses, respectively. A comprehensive meta-analysis of QTLs

and differentially expressed genes led to the identification of genes and makers

for their potential application in marker-assisted breeding of A. flavus-resistant

maize varieties.

KEYWORDS
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Introduction

Aflatoxin (AF) contamination in food and feed crops such as

maize, peanuts, cottonseed, and tree nuts, caused by Aspergillus

flavus, continues to be a persistent problem that compromises food

safety and marketability worldwide, especially in developing

countries. AF are potent carcinogens, and their contamination in

food is one of the major causes of liver cancer. AF levels are strictly

monitored in food and feed by the Food and Drug Administration

(FDA) and European agencies where American food products are

imported. Strict enforcement of action levels for AF in over 120

countries places an adverse burden on growers and food processors

because of significant economic losses resulting from the decreased

value of contaminated commodities (Bedre et al., 2015). Estimates

reveal direct annual crop revenue losses in the US in the tens of

millions of dollars, and the losses are exacerbated to hundreds of

millions of dollars during severe drought years.

Maize is a major food and feed crop grown worldwide and is

highly susceptible to A. flavus infection. Abiotic stressors such as

drought significantly increase AF contamination in maize (Kebede

et al., 2012; Fountain et al., 2014). Computer model-based

prediction projects that alterations in environmental conditions

due to climate change could lead to a significant increase in AF

contamination in maize resulting in an estimated annual loss of $50

million to $1.7 billion to the US maize industry (Mitchell et al.,

2016). In 2013, economic losses in the US resulting from A. flavus

alone in maize were estimated to be $686.6 million (Mitchell et al.,

2016). Total costs attributable to AF contamination are much

higher when factors such as sampling and testing, destruction and

disposal, and human and animal health effects are accounted for.

The most efficient and practical approach to reducing

pre-harvest AF contamination in maize is the development of

resistant lines. There is a dire need for AF-resistant maize

germplasms that will also possess resistance to other mycotoxins

such as fumonisin and tolerance to abiotic stresses such as drought.

Three types of A. flavus resistance mechanisms, such as in vitro seed

colonization, preharvest aflatoxin contamination, and aflatoxin

production/accumulation, have been reported in different genetic

backgrounds of crops, yet there is no report of a single genotype

possessing all three resistance mechanisms (Pandey et al., 2019).

Natural resistance to AF contamination in maize is a complex

multigenic trait, and therefore, it is difficult and slow to introgress

AF resistance traits into agronomically superior commercial

varieties. Genomics-enabled marker-assisted breeding (MAB) can

facilitate the development of AF-resistant maize germplasm suitable

for a specific ecogeographic system. A primary requisite for MAB is

the identification and validation of genes and linked diagnostic

molecular markers associated with AF resistance. A large number of

QTLs and markers associated with AF resistance in maize have been

reported from multiple biparental mapping and genome-wide

association studies (GWAS) (Soni et al., 2020). Resistance to

aflatoxin accumulation explained by an individual QTL has not

been more than 20% (Warburton and Williams, 2014), although a

QTL explaining up to 41% variance was reported by Mideros et al.

(2014). Yet, molecular breeding for the development of AF

resistance in maize remains to be realized. This is because most
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of the markers identified for AF resistance in maize emanate from

biparental QTL mapping, which is strongly influenced by

experimental design, the genetic background of parents, the type

and size of mapping population, the growing environment, the

choice and density of markers, and the statistical methods used for

analysis (Zhao et al., 2018). Moreover, QTLs detected using

different mapping populations with diverse genetic backgrounds

under different environmental conditions with often low-resolution

genotyping and inconsistent phenotyping explain low and varying

phenotypic variance with low logarithm of odds (LOD) scores,

which create uncertainty for their introgression by MAB (Price,

2006). The efficacy of the QTLs in MAB is further negated by

undesirable epistatic and modifier effects of different genetic

backgrounds, which are important for QTL stability (Swamy

et al., 2011). Also, the lack of fine mapping of these QTLs with

large confidence intervals (CI) hinders the application of these

overlapping genomic regions in breeding programs (Zhao

et al., 2018).

An alternative approach to fine mapping is to leverage

previously identified QTLs from multiple studies through meta-

QTL (MQTL) analysis. MQTL analysis is a fast-emerging, effective

computational technique that precisely combines previously

reported QTLs to identify true QTLs with refined positions by

reducing the CI of overlapping QTLs on a reconstructed consensus

map (Goffinet and Gerber, 2000; Veyrieras et al., 2007; Sosnowski

et al., 2012). Meta-analysis sequentially combines QTLs at a 95% CI

reported from different studies where the Akaike Information

Criterion (AIC)-based model simulation is performed to

determine the number of actual QTLs for the trait of interest

(Veyrieras et al., 2007). The MQTLs with clustering of a high

number of initial QTLs with the smallest CI and a consistent, major

effect on target trait(s) allow the identification of promising trait-

linked markers that can be effectively utilized in MAB programs

upon their validation in a set of germplasm accessions (Soriano and

Alvaro, 2019). Moreover, the identification of accurate locations of

the MQTLs facilitates mining the of candidate genes from the

available physical map. Functional analysis of these candidate genes

can narrow down to the actual gene(s) that will have a direct or

indirect effect on the desired traits.

Several studies have identified QTLs for various traits for

mining the candidate genes in different crop plants, including

maize for traits such as flowering time (Chardon et al., 2004;

Wang et al., 2016), popping traits (Kaur et al., 2021), grain

moisture content and dehydration (Xiang et al., 2012; Wang

et al., 2022), ear rot resistance (Xiang et al., 2012), and abiotic

stress tolerance (Zhao et al., 2018; Liu et al., 2019; Sheoran et al.,

2022). These studies focused on meta-trait (more than one trait),

which are functions of several component traits, and therefore such

analysis is not able to conclusively describe the genetic and

molecular mechanisms underlying the component traits (Liu

et al., 2020). Until now, there have been only two MQTL studies

reported in maize for AF and Aspergillus ear rot resistance (Xiang

et al., 2010; Mideros et al., 2014).

Similarly, several transcriptome studies have been conducted in

maize to identify differentially expressed genes with potential roles

in the resistance response in maize-A. flavus interaction (Luo et al.,
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2011; Kelley et al., 2012; Dolezal et al., 2014; Shu et al., 2017; Han

et al., 2020; Musungu et al., 2020; Liu et al., 2021). However, a meta-

analysis of the transcriptome data is lacking in maize. In the present

study, a comprehensive meta-analysis of previously published QTLs

and genes with putative roles in AF resistance response in maize

was conducted to identify candidate causal QTLs/genes and

linked markers.
Materials and methods

Curation of published literature
on QTLs and gene expression
and creation of a database

Published literature on QTL mapping for aflatoxin accumulation

in maize was curated through database searches using the keywords,

viz., QTL, metaQTL, maize, Aspergillus flavus, and aflatoxin, using

Web of Science (http://apps.webofknowledge.com) and Google search

engines. Altogether, 16 reports on separate experiments based on

different mapping populations were available on QTL analysis of the

AF resistance traits in maize. These QTL studies were scanned for

methods of QTL mapping, parents, type and size of mapping

population and molecular markers, genetic map, QTL position, peak

marker of QTL, marker/confidence interval (CI), LOD score of QTLs,

and phenotypic variance explained (PVE or R2) by the QTLs. A LOD

score of 3.0 was uniformly assumed for experiments that did not

provide the LOD value for the QTLs. For studies that did not provide

CI for QTLs, the 95% CI was calculated as described by Darvasi and

Soller (1997) and Guo et al. (2006). Most of the studies reported QTLs

from experiments involving individual environments (locations), years,

and overall based on data from multiple environments/years.

Therefore, each QTL reported for each year and location in the

studies was treated as an independent QTL. Of these QTL reports,

11 published a genetic map and analyzed their data using composite

interval mapping (CIM) and/or multiple interval mapping (MIP) to

report QTLs with information on key parameters such as QTL peak

and flanking markers, LOD score, and PVE, which were used to

perform the meta-analysis (Supplementary Table S1).

Similarly, literature available on the gene expression changes in

response to several abiotic and biotic stresses in maize was collected

following a thorough search for all stress-related studies from both

microarray and RNA-seq data available in the NCBI Gene Expression

Omnibus (Luo et al., 2008; Luo et al., 2011; Kelley et al., 2012; Shu

et al., 2017; Kebede et al., 2018; Han et al., 2020; Musungu et al., 2020;

Liu et al., 2021) (Supplementary Table S2). All the genes and their

relative fold change in expression values were collected and/or

deduced using signal intensity, FPKM, or TPM values using

methods described earlier (Baisakh et al., 2012; Bedre et al., 2015).
QTL meta-analysis

Construction of consensus map
First, a consensus genetic map was developed using the

B73 reference genetic map available in MaizeGDB (https://
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www.maizegdb.org/data_center/map). The genetic maps and QTL

files from published data, as well as the reference map, were

uploaded in BioMercator v4.2.3 (De Oliveira et al., 2014),

following an InfoMap analysis (Veyrieras et al., 2007) to confirm

that all genetic maps shared at least one marker among them and

the reference map. The consensus map was created by ConsMap,

which calculates the goodness-of-fit value of the maps for each

chromosome (Veyrieras et al., 2007; Truntzler et al., 2010). If a

common marker was not found between the individual genetic map

and the consensus map, a third map was used as a cross-reference

based on the marker positions and order.
Projection of QTLs
All QTLs with LOD score, R2 value, flanking marker positions,

and CI from published studies were projected on the consensus

genetic map using the QTLProj command, which utilized a simple

scaling rule between the original QTL marker interval and the

corresponding interval on the consensus map (Veyrieras et al.,

2007). The new CI of the projected QTLs was approximated with a

Gaussian distribution encompassing the most probable QTL

position. Two initial QTLs that did not meet a minimal distance

ratio of 0.25 and the p-value of homogeneity of flanking markers

between the original map and the consensus map at 0.5 were

not projected.

Meta-analysis of QTLs and genes
Meta-analysis of independent QTLs obtained from different

mapping populations, locations/environments, and years was

performed using the consensus map with QTL projections using

the Meta-analysis command to predict the MQTLs (representative

consensus regions). Meta-analysis was performed in two steps. First,

QTLs on each chromosome were clustered, assuming their normal

distribution around the true location. All possible QTL combinations

were tested with maximum clusters (Kmax) set to 15, and the one

with the maximum likelihood was selected. The QTL model on each

chromosome was selected using the AIC or corrected AIC (AICc,

when the QTL sample size was less than six), which returned the

number of MQTLs that represent the most significant regions. Next,

MQTLs were generated from QTL projection on a consensus map

based on the best model with the lowest AIC. Furthermore, the

position and 95% CI of the MQTLs were calculated, and the flanking

markers for MQTLs were retrieved.

A local database was created with the genes retrieved from the

gene expression omnibus that are differentially regulated in maize

under various biotic and abiotic stresses (unpublished data). Based

on the gene ID comparison, a sub-set of genes with expression

changes unique to AF resistance was identified.
Genes associated with MQTLs

Identification of candidate genes
in MQTL regions

Genes, along with their available functional annotation, linked

to each MQTL within their confidence intervals were retrieved
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using the genome version in Biomercator 4.2.3, which was built

based on the ZmB73_5b genome. Genes common between MQTL

intervals and differentially regulated under A. flavus (Musungu

et al., 2020) were queried against the putative unique genes

expressed by A. flavus infection to identify candidate genes within

MQTLs responsive exclusively to A. flavus.

Gene ontology and Kyoto Encyclopedia of Genes
and Genomes pathway analyses

AgriGO v2.0 (Tian et al., 2017) was used to perform the gene

ontology (GO) enrichment analysis for the genes common between

MQTLs-linked genes and A. flavus-responsive genes to examine the

GO terms overrepresented that describe gene products in biological

processes, molecular functions, and cellular components. Enrichment

for each GO slim term was queried in the gene list to identify related

gene entries and GO terms at a hypergeometric significance threshold

(FDR < 0.05). Kyoto Encyclopedia of Genes and Genomes KEGG

pathway enrichment analysis of the genes was performed using the

KEGG mapper (https://www.genome.jp/kegg/mapper/).

Expression of candidate Aspergillus flavus
responsive genes linked to MQTLs

Expression of the unique A. flavus-responsive genes in MQTL

regions was assessed using the Log2-fold change values in

inoculated maize tissues relative to uninoculated control reported

in the RNA-seq data of Musungu et al. (2020). In addition, the

expression of these genes under abiotic stresses such as drought,

salt, and the heat was analyzed using qTeller, a comparative RNA-

seq expression platform in maizeGDB, which compares expression

across multiple data sources in a user-provided gene list. Heat maps

with hierarchical clustering of the genes based on their log2 fold-

change expression values were built for visualization using the R

package pheatmap.

Gene co-expression network analysis
The log2 fold-change values of significantly differentially expressed

genes (p ≤ 0.05) common between MQTLs and Musungu et al. (2020)

were used for co-expression network analysis using the R package

WGCNA. Clusters (modules) of highly correlated genes (nodes) and

intramodular hub genes were identified using the eigen values

(Langfelder and Horvath, 2008). Briefly, the soft threshold = 9,

according to the criterion of scale-free topology module, was selected

to create an adjacency matrix, which was transformed into a

topological overlap measure (TOM) matrix to estimate its

connectivity of the network, and the weighted adjacency matrix of

genes was hierarchically clustered based on dissimilarity among genes.

Theminimal gene number of 30 and a threshold cut-off of 0.25 were set

to identify significant modules. In each intramodular connectivity, the

genes with KM value >0.8 were declared as hub genes.
MQTL validation

A two-way validation was performed for the MQTL identified

in the study. The MQTLs and the markers associated with A. flavus

resistance in maize from five reported GWAS (Farfan et al., 2015;
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Warburton et al., 2015; Zhang et al., 2016; Han et al., 2020; Bertagna

et al., 2021) were compared based on the physical positions to

ascertain their proximity. Also, the consensus map of maize was

used to locate SSR markers flanking each MQTL and their genomic

positions. Primers for 12 SSR markers closest to the MQTLs that

colocalized with GWAS SNPs (except MQTL2.4 and MQTL8.2)

were custom synthesized at Integrated DNA Technologies Inc.

(www.idtdna.com). Based on the reports on the resistance

response of maize genotypes to A. flavus (Busboom and White,

2004; Brooks et al., 2005; Menkir et al., 2006; Bello, 2007; Alwala

et al., 2008; Warburton et al., 2009; Warburton et al., 2011; Willcox

et al., 2013; Williams et al., 2015; Brown et al., 2016; Smith et al.,

2019; Womack et al., 2020; Castano-Duque et al., 2021; Ogunola

et al., 2021), 14 resistant and eight susceptible maize genotypes were

selected for MQTL/marker validation.

Maize seeds were germinated in moist filter paper inside an

incubator at 28°C. Leaf tissues from 1-week-old seedlings were used

for total genomic DNA extraction by a modified CTAB protocol and

the DNA quality and quantity were assessed on a 1% agarose gel and

nanodrop as described earlier (Khan et al., 2013). Polymerase chain

reaction (PCR) was performed using 50 ng genomic DNA following

the thermal profile: one cycle of denaturation at 95°C for 5 min, 35

cycles of 95°C for 45 s, 58°C for 45 s, and 72°C for 1 min, followed by

a final extension at 72°C for 5 min, and the PCR amplicons were

resolved on a 12% polyacrylamide gel using the method described in

Khan et al. (2013).
Results

QTLs compilation and integrated linkage
map construction

A total of 356 QTLs controlling A. flavus resistance and/or AF

accumulation were reported from 17 studies, with the highest

number of QTLs (76) on chromosome 1 and the lowest (13) on

chromosome 9 (Supplementary Table S1). The average PVE by the

QTLs was 7.56%, with a range from 0.004% to 53%. Only 11 studies

reporting 278 QTLs that provided adequate relevant information on

linkage maps and QTL parameters were used for map projections

and subsequent MQTL analysis. The remaining six experiments

lacked either genetic maps or molecular markers delimiting the

QTLs that were not found in the final integrated linkage map for

their use in the downstream investigation. The integrated linkage

maps associated with A. flavus resistance were assembled from 11

published individual linkage maps and the reference map of maize

variety B73 (https://www.maizegdb.org/data_center/map). The

integrated linkage map contained 960 markers with a total length

of 2,372.9 cM and an average marker density of 2.47 markers/cM

(Supplementary Table S3).
Consensus map and QTL projections

The consensus genetic map developed using the integrated

linkage map on the B73 reference map with shared markers and
frontiersin.org
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the goodness-of-fit value of the genetic maps for each chromosome

containing the markers linked to the QTLs from published data

consisted of a total of 5,023 loci that included 2,968 SNPs and 2,055

SSR markers (Supplementary Table S4; Supplementary Figure S1).

The consensus map was highly saturated, covering a total length of

2,555.10 cM with an average genetic distance of 0.51 cM between

the adjacent markers. Comparison of the consensus map with the

physical map obtained from the B73 RefGen_V5b reference

genome showed very high collinearity in SSR marker order with

94.8% correlation (Supplementary Table S4), which suggested that

the consensus map was perfectly ideal for QTL projection.

Therefore, 276 out of 278 QTLs, considered out of 356 initial

QTLs, were successfully projected on the map.
MQTL identification and distribution

The meta-analysis of 276 projected QTLs identified a total of 58

MQTLs distributed over all 10 maize chromosomes, with

chromosome 1 having the highest number (10), while

chromosome 9 registered only two MQTLs (Table 1; Figures 1A,

B). On average, each MQTL accounted for 4.8 original QTLs, with

six MQTLs (MQTL2.2, MQTL2.6, MQTL4.3, MQTL5.3, MQTL8.4,

and MQTL 10.6) spanning two QTLs, whereas MQTL 1.1 covered

16 original QTLs.

The CI of individual MQTL regions was narrower than the

mean CI of the original QTLs for that region. The average CI of the

MQTLs was 5.52 cM in comparison with 19.91 cM for the original

QTLs (Table 1). There was a reduction of 68.3% in the average CI of

the MQTLs over the mean CI of the original QTLs, with a range

from 12.1% (for MQTL2.5 at 79.39 cM) to 99.0% for MQTL8.5 at

86.15 cM (Table 1). The average reduction in CI from the initial

QTLs per chromosome was 66.5%, with the lowest (39.5%)

reduction on chromosome 4 and the highest (84.6%) on

chromosome 6 (Figure 1C). The genetic and physical lengths of

MQTLs ranged from 0.12 cM and 0.098 Mb (MQTL8.5) to 23.36

cM and 18.01 Mb (MQTL2.8), respectively. Five MQTLs

(MQTL1.3, 1.6, 5.5, 7.5, and 8.5) had a physical interval of less

than 1 Mb. Bins 4.05 and 1.05 harbored the maximum number

(seven) of MQTLs, followed by five MQTLs in bin 8.03. The

MQTLs explained from 2.9% (MQTL2.8) up to 19.1% (MQTL6.2)

of the variance for A. flavus resistance. There was no significant

difference between the average PVE (7.0%) of the MQTLs (Table 1)

and the average PVE of the original QTLs (7.5%) (Supplementary

Table S1).
Genes located in MQTL positions

A total of 4,252 genes were identified in the 58 MQTL intervals

based on the maize genome ZmB73_5b built in Biomercator 4.2.3

(Table 1; Supplementary Table S5). On average, 73 genes were

identified in the MQTL regions, with the lowest (three) in MQTL8.5

and the highest (429) in MQTL9.2. The number of genes linked to

the MQTLs varied from 72 (chromosome 6) to 1,197

(chromosome 5).
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Functional annotation of the genes in
MQTL regions

The biological roles of the genes in MQTL regions were

ascertained by GO enrichment analysis, which showed that the

highest number of genes significantly enriched in biological

processes belonged to the GO term establishment of localization

(217), closely followed by 215 transport mechanism and 188 in

response to chemical stimulus (Supplementary Table S6; Figures 2).

Significantly overrepresented GO terms associated with molecular

function were related to genes involved in cation/ion binding (371),

metal ion binding activity (369), transition metal ion binding (287),

and oxidoreductase activity (201). For the cellular component, a

significantly higher number of candidate genes were mainly related

to the cell and cell part (1,018 genes), membrane (499 genes), and

organelle (301 genes). KEGG analysis revealed that the MQTL

genes belonged to 30 significant pathways, of which metabolic

pathways and biosynthesis of secondary metabolites were the two

most enriched pathways with 1,646 and 926 candidate genes,

respectively (Supplementary Table S7; Figure 3).

Gene co-expression network analysis of the genes in MQTLs

regions revealed that genes in four modules, such as Turquoise (445

genes), Blue (221 genes), Brown (71 genes), and Yellow (23 genes)

were significantly co-expressed in maize–A. flavus system

(Supplementary Table S8) with Kme values more than 0.8. In the

Turquois module, out of 12 candidate hub genes with significantly

high interaction (threshold >0.5), eight had functional annotations:

Zm00001d003488 (UDP-g l y co sy l t r an s f e r a s e 85A7 ) ,

Zm00001d024444 (aldehyde dehydrogenase 26), Zm00001d017532

(RING-H2 finger protein ATL71), Zm00001d025776 (cell division

control protein 48 homolog B), Zm00001d049374 (DUF295 domain-

containing protein), Zm00001d025651 (fasciclin-like arabinogalactan

protein 7), Zm00001d030855 (alpha zein z1D_4), and

Zm00001d025672 (autophagy10) with 954, 375, 348, 306, 285, 178,

134, and 60 interactions, respectively. On the other hand, only one

gene Zm00001d000004 coding for cysteine-rich PDZ-binding protein

passed the threshold with 36 interactions in Blue module

(Supplementary Table S8).
Prediction and expression of candidate A.
flavus-responsive candidate genes based
on comparative transcriptome data

Matching analysis of the 4,252 candidate genes in MQTL

regions with previously reported A. flavus-responsive genes

(Musungu et al., 2020) identified 3,384 common genes.

Comparison of the subsets of genes expressed in response to

various abiotic and biotic stresses, including A. flavus infection

(Musungu et al., 2020), in the database of both RNA-seq and

microarray experiments showed that 591 genes (256 from RNA-

seq and 335 from microarray) were induced only in response to A.

flavus (Supplementary Table S5). Of these 591 genes, 50 showed

significantly differential expressions at −1.0 ≤ Log2FC ≥ 1.0 (p ≤

0.05) at different stages of response to A. flavus (Musungu et al.,

2020; Supplementary Table S5). Furthermore, querying these 591
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TABLE 1 Detail information on the 58 MQTLs generated with the 276 initial QTLs associated with Aspergillus flavus resistance in maize.

ble Mean
R2

Avg. CI
(QTLS)

%
reduction

% reduction
by chr.

171, 6.37 22.53 91.08

6.68 17.83 71.73

10.20 10.76 97.21

10.73 8.83 78.26

14.72 5.89 43.97

5.95 6.24 96.79

9.10 6.26 69.33

10.07 7.2 70.42

4.19 13.1 74.73

3.88 26.1 91.80 78.53

6.69 11.82 51.27

6.66 20.35 85.85

7.90 17.17 81.01

6.48 28.45 80.88

9.80 3.73 12.06

6.90 22.46 85.40

4.66 31.81 61.40

2.87 34.84 32.95 61.35

5.25 45.69 71.88

5.19 47.07 79.16

5.23 18.78 92.01

5.48 41.13 75.91

5.84 41.6 87.31

3.71 25.83 83.58 81.64

7.09 14.54 33.98

14.00 2.67 47.57
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Chr.* Meta-
QTL

Phys_start Phys_end Position
(cM)

CI
MQTL

Bin No.
genes

No.
QTLs

QTL_id (refer to Supplementary T
S1)

1 MQTL1.1 40,751,922 42,220,789 56.77 2.01 1.03 33 16 73, 97, 128, 129, 130, 131, 132, 134, 168, 170
173, 176, 228, 287, 295

MQTL1.2 67,582,493 71,265,622 95.00 5.04 1.05 61 8 169, 172, 174, 177, 215, 221, 234, 256

MQTL1.3 84,638,887 84,858,121 115.97 0.30 1.05 5 6 85, 229, 253, 254, 343, 345

MQTL1.4 92,889,388 94,292,485 128.07 1.92 1.05 9 5 34, 208, 242, 260, 341

MQTL1.5 101,527,203 103,938,775 140.58 3.30 1.05 24 3 235, 243, 261

MQTL1.6 108,067,680 108,213,835 147.98 0.20 1.05 3 4 33, 216, 245, 257

MQTL1.7 112,240,431 113,643,527 154.55 1.92 1.05 15 6 35, 222, 244, 246, 258, 344

MQTL1.8 123,176,547 124,733,107 169.62 2.13 1.05 14 3 94, 95, 209

MQTL1.9 141,212,186 143,631,066 194.89 3.31 1.06 16 6 98, 99, 133, 270, 271, 346

MQTL1.10 161,144,198 162,708,066 221.58 2.14 1.07 27 5 36, 175, 217, 230, 342

2 MQTL2.1 13,707,326 18,150,443 20.65 5.76 2.02 132 4 4, 135, 178, 183

MQTL2.2 38,746,143 40,967,702 51.67 2.88 2.04 42 2 101, 247

MQTL2.3 43,297,253 45,811,934 57.76 3.26 2.04 63 10 38, 65, 100, 180, 184, 231, 255, 262, 263, 348

MQTL2.4 50,602,169 54,798,447 68.32 5.44 2.04 69 4 103, 223, 236, 248

MQTL2.5 59,974,370 62,504,478 79.39 3.28 2.05 29 3 78, 81, 347

MQTL2.6 76,169,378 78,691,772 100.38 3.28 2.05 30 2 179, 272

MQTL2.7 86,054,542 95,527,021 117.70 12.28 2.05 71 3 102, 136, 181

MQTL2.8 128,784,834 146,796,428 178.63 23.36 2.06 209 3 37, 182, 210

3 MQTL3.1 37,791,682 48,742,705 50.77 12.85 3.04 152 6 104, 108, 232, 273, 293, 297

MQTL3.2 66,025,720 74,385,995 82.38 9.81 3.04 50 6 39, 105, 107, 140, 283, 291

MQTL3.3 86,871,013 88,157,865 102.69 1.50 3.04 15 3 82, 109, 211

MQTL3.4 97,685,681 106,131,178 119.58 9.91 3.04 65 7 137, 185, 237, 264, 290, 302, 351

MQTL3.5 114,657,635 119,157,355 137.18 5.28 3.05 36 7 138, 218, 284, 298, 349, 350, 352

MQTL3.6 137,024,141 140,629,030 162.90 4.24 3.05 61 3 106, 110, 139

4 MQTL4.1 24,596,837 28,858,623 35.45 9.60 4.05 167 5 41, 43,141, 1

MQTL4.2 40,283,042 47,483,131 52.75 1.40 4.05 101 3 64, 66, 68, 70
a

,
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TABLE 1 Continued

Table Mean
R2

Avg. CI
(QTLS)

%
reduction

% reduction
by chr.

5.87 7 34.71

8.24 8.1 14.32

7.24 22.09 27.52

8.10 16.21 78.90 39.50

5.88 15.69 97.32

6.37 12.6 53.89

4.11 30.61 63.80

7.85 11.55 29.52

5.73 39.13 48.27

8.30 18.98 95.68

11.90 37.42 55.96 57.85

5.21 17.92 88.62

19.05 10 67.20

11.30 38.39 97.71 84.51

4.57 21.28 84.21

12.97 9.42 50.42

8.83 16.38 66.79

2.68 12.57 63.40

3.51 13.66 90.85 71.14

8.23 12.55 65.74

3.52 26.55 83.43

6.52 10.7 62.90

7.92 2.6 40.00

7.50 12.05 99.00 63.02

5.16 28.37 50.97

3.90 10.89 54.64 52.80
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Chr.* Meta-
QTL

Phys_start Phys_end Position
(cM)

CI
MQTL

Bin No.
genes

No.
QTLs

QTL_id (refer to Supplementary
S1)

MQTL4.3 59,153,102 62,957,079 73.35 4.57 4.05 43 2 2, 6

MQTL4.4 72,716,737 85,318,974 94.93 6.94 4.05 152 5 42, 44, 84, 142, 144

MQTL4.5 88,977,285 10,2303,692 114.90 16.01 4.05 93 7 353, 86, 87, 88, 111, 143, 186,

MQTL4.6 105,229,509 107605954 127.57 3.42 4.05 37 4 292, 90, 91, 113

MQTL4.7 111,372,475 111,722,075 134.01 0.42 4.05 20 3 93, 112, 187

5 MQTL5.1 2,629,715 7,925,603 5.79 5.81 5.01 286 3 61, 62, 355

MQTL5.2 23,808,709 33,908,268 31.66 11.08 5.03 196 5 114, 116, 145, 189, 354

MQTL5.3 59,202,741 66,622,453 69.02 8.14 5.03 157 2 3, 146

MQTL5.4 94,432,700 11,2881,714 113.72 20.24 5.04 136 4 45, 188, 190, 299

MQTL5.5 127,342,860 128,099,416 140.12 0.82 5.04 5 5 115, 296, 363, 364, 365

MQTL5.6 189,380,404 204,393,016 216.00 16.48 5.08 417 6 274, 300, 301, 303, 304, 305

6 MQTL6.1 46,670,810 48,661,785 48.84 2.04 6.01 15 8 69, 148, 191, 193, 194, 195, 212, 356

MQTL6.2 66,263,375 69,454,792 69.53 3.28 6.01 33 6 76, 79, 147, 149, 150, 196

MQTL6.3 103,276,977 104,135,829 106.26 0.88 6.04 24 3 89, 192, 225

7 MQTL7.1 14,126,073 16,526,862 21.45 3.36 7.02 35 6 92, 154, 197, 199, 200, 213

MQTL7.2 22,768,199 26,105,010 34.20 4.67 7.02 43 3 72, 83, 198

MQTL7.3 39,555,860 43,442,852 58.08 5.44 7.02 42 7 117, 118, 151, 152, 153, 155, 157

MQTL7.4 55,654,009 58,940,804 80.19 4.60 7.02 14 7 226, 251, 275, 276, 277, 278, 279

MQTL7.5 69,054,843 69,947,993 97.27 1.25 7.02 7 6 156, 158, 219, 239, 267, 268

8 MQTL8.1 25,114,407 28,609,648 32.97 4.30 8.03 59 3 63, 202, 357

MQTL8.2 37,909,921 41,494,784 48.73 4.40 8.03 44 4 159, 160, 201, 369

MQTL8.3 53,483,704 56,718,228 67.63 3.97 8.03 19 3 67, 358, 368

MQTL8.4 63,285,044 64,547,894 78.45 1.56 8.03 17 2 71, 367

MQTL8.5 70,141,094 70,238,863 86.15 0.12 8.03 3 4 47, 49, 74, 75

9 MQTL9.1 38,809,005 48,949,576 60.19 13.91 9.03 123 3 50, 119, 203

MQTL9.2 49,430,724 53,039,338 70.28 4.94 9.03 321 2 289,120, 359
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genes against the 3,384 genes identified 43 genes as candidates

differentially uniquely expressed upon A. flavus infection. These 43

genes with significantly differential expressions at different stages of

A. flavus infection (Supplementary Figure S2) were distributed over

all chromosomes except chromosome 6, with the maximum

number (14) in chromosome 5 and only one on chromosomes 1

and 8 (Supplementary Table S9).

These 43 genes were also queried against the gene list in qTeller,

a comparative maize RNA-seq expression platform. Interestingly,

29 out of 43 genes showed expression induction or repression under

abiotic stresses such as drought and/or salt (Supplementary Table

S10; Supplementary Figure S3). Therefore, the remaining 14 genes

were considered putative A. flavus-specific unique genes with no

reported expression under stresses other than A. flavus. Eight out of

the 14 genes did not have any assigned functional annotation. Two

genes, Zm00001d030855 and Zm00001d003677, encode

endosperm-specific proteins alpha zein and opaque endosperm

11, respectively. The remaining four genes, one each, coded for

fasciclin-like arabinogalactan protein (Zm00001d025672), the

mediator of RNA polymerase II transcription subunit 26b

(Zm00001d040506), carboxylesterase (Zm00001d050270), and

UDP-glycosyl transferase (Zm00001d013246) (Supplementary

Table S11, S12).

Alpha zein (Zm00001d030855) did not exhibit a specific

expression pattern although it showed higher upregulation at

most stages except at S3 and S7 where it showed downregulation

by -0.12 and -0.32-fold, respectively, and at S3, S9, S16, and S18

there was no significant change in its expression (Supplementary

Table S13; Figure 4). The expression was especially higher at late

stages of infection. On the other hand, Zm00001d049476 for alpha-

zein 19 kDa A-1 showed upregulation at all stages.

Expression of the Opaque 11 gene (Zm00001d003677), on the

other hand, was repressed at most stages except for slight

upregulation in S2, S5, S9, and S12. Zm00001d025672, coding for

fasciclin-like arabinogalactan protein, was overexpressed with time

postinfection, with its highest at S12 and S14, and then showed

downregulation (S17 and S18). A putative mediator of RNA

polymerase II transcription subunit 26b (Zm00001d040506)

remained unchanged or maintained low upregulation with its

highest at S5 and slight downregulation at S8. Zm00001d050270

(carboxylesterase) showed moderately high upregulation at all

stages, with its highest at S9; however, it was also downregulated

at S8. The transcript accumulation of UDP-glycosyltransferase

(Zm00001d013246) was repressed at all stages postinoculation of

the fungus (Figure 4).
Validation of MQTLs

A total of 272 MTAs were identified from five GWAS related to

A. flavus resistance-related traits in maize (six—Farfan et al., 2015;

222—Warburton et al., 2015; 25—Zhang et al., 2016; 11—Han et al.,

2020; and eight—Bertagna et al., 2021) (Supplementary Table S12).

Comparative analysis of the MTAs with MQTLs based on their

physical intervals identified eight MQTLs (two on chromosome 2,

one each on chromosomes 4 and 5, and three on chromosome 10)
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A

B
C

FIGURE 1

MQTLs associated with resistance to Aspergillus flavus and aflatoxin accumulation in maize. (A) Fifty-eight MQTLs distributed over 10 maize
chromosomes; (B) chromosomal distribution of QTLs and MQTLs; (C) reduction (%) of confidence interval (CI) of MQTLs relative to the original QTLs.
FIGURE 2

Gene ontology terms associated with biological processes, molecular function, and cellular component in Aspergillus flavus resistance associated 58
MQTL intervals in maize.
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that colocalized with 14 MTAs, all from three GWAS (Table 2). Of

14 MTAs, 11 were from one GWAS (Warburton et al., 2015) that

collocated with MQTL2.1, MQTL2.2, MQTL9.1, MQTL10.1,

MQTL10.4, and MQTL0.6, whereas two MTAs (Bertagna et al.,

2021) and one MTA (Farfan et al., 2015) co-located in the MQTL5.6

region. A total of 40 genes with functional divergence were

identified within 10 kb of the GWAS-identified SNPs in the

matching MQTL regions (Table 2). In total, 23 genes showed

differential expression at various stages of infection by Aspergillus

flavus (Supplementary Figure S4). Comparing these 40 GWAS

genes with the 43 putative unique candidate genes in MQTL

intervals showed that eight genes from GWAS were physically

close (≤4 Mb) to seven genes in MQTL intervals (Supplementary

Table S13).

In total, 12 SSR markers closely linked to MQTLs

(Supplementary Table S14) were tested with 22 maize lines with

known reactions to A. flavus. Among these, three markers,
Frontiers in Plant Science 10
umc1555, umc1757, and umc1817 linked to MQTL2.4, MQTL4.1,

and MQTL8.2 clearly discriminated between 14 and eight maize

genotypes with known A. flavus resistance and susceptible

phenotypes, respectively (Figure 5).
Discussion

Aspergillus flavus resistance is a quantitative trait, controlled by

both genetic and environmental determinants, which makes

breeding aflatoxin-resistant maize variety challenging. Aflatoxin

resistance is a trait with low heritability (21% for A. flavus

infection; Busboom and White, 2004), although H2 up to 63%

(Mideros et al., 2014) and 74% (Maupin et al., 2003) have been

reported. Several studies have identified QTLs for A. flavus

resistance in maize (Paul et al., 2003; Widstrom et al., 2003;

Busboom and White, 2004; Brooks et al., 2005; Alwala et al.,
FIGURE 3

Enrichment analysis of 30 KEGG pathways for genes in 58 MQTL intervals in maize.
FIGURE 4

Heatmap showing the differential expression of 27 (out of 29) genes that include 14 genes uniquely expressed under Aspergillus flavus infection and
15 genes that were physically close between MQTL intervals and SNPs from published GWA studies. The expression values at different stages were
retrieved from Musungu et al. (2020).
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TABLE 2 Forty genes within 10 kb of the SNPs associated with Aspergillus flavus resistance were identified from five genome-wide association studies.

MQTL/GWAS SNP Phys_start* Phys_end* Chr.* R2 Gene ID Annotation

MQTL2.1 4 QTLs 13,707,326 18,150,443 6.69 – –

Warburton et al. (2015) S10_139505158 17,084,882 17,090,696 2 8.16 GRMZM2G076841 Tetratricopeptide TPR-1

GRMZM2G379540 Membrane protein

GRMZM2G379546 Uncharacterized protein

GRMZM5G875167 Uncharacterized protein

GRMZM2G076834 Transposable_element

GRMZM2G379538 Uncharacterized protein

MQTL2.2 2 QTLs 38,746,143 40,967,702 6.66 – –

Warburton et al. (2015) S2_40498454 40,496,139 40,499,021 2 7.97 GRMZM2G151434 Hapless 8

GRMZM2G179268 Serine-threonine kinase 2 (stk2)

GRMZM2G179253 Uncharacterized protein

GRMZM2G042443 Mmediator of paramutation 1

GRMZM2G042532 Mediator of paramutation 2 (mop2)

MQTL4.1 5 QTLs 25,512,455 28,858,623 7.09 – –

Warburton et al. (2015) S4_26406913 26,401,952 26,408,946 4 5.60 GRMZM2G134625 NOL1/NOP2/sun family protein isoform 2

S4_26653796 26,652,767 26,655,098 9.02 GRMZM2G003814 Alcohol dehydrogenase

GRMZM2G101472 Uncharacterized protein

GRMZM2G076841 Probable methyltransferase PMT13

AC209759.2_FG006 Uncharacterized protein

GRMZM2G111261 F-box domain-containing protein

MQTL5.6 6 QTLs 189,380,404 204,393,016 11.90 – –

Farfan et al. (2015) S5_197707198 197,706,593 197,707,492 5 4.85 AC209208.3_FG002 pip1b

GRMZM2G057848 Uncharacterized protein

GRMZM2G702166 Uncharacterized protein

GRMZM2G057789 RING-H2 finger protein ATL1R

GRMZM5G874697 FCS-like zinc finger 26 (flz26)

AC207402.3_FG005 Uncharacterized protein

Bertagna et al. (2021) S5_192698173 192,697,941 192,702,593 9.20 GRMZM2G120922 Yellow stripe-like transporter 14 (ysl14)

S5_193181081 193,176,072 193,179,030 7.80 GRMZM5G841914 si687064f04

MQTL9.1 4 QTLs 49,430,724 53,039,338 9 4.70 – –

Warburton et al. (2015) S9_51159051 51,157,439 51,161,908 10.04 GRMZM2G122723 UDP-glycosyltransferase activity

GRMZM2G039940 Uncharacterized protein

GRMZM2G039911 Uncharacterized protein

MQTL10.3 5 QTLs 56,441,322 60,888,763 10 6.50 – –

Warburton et al. (2015) S10_59660506 59,660,107 59,662,383 7.66 GRMZM2G097509 Fatty acid desaturase 5

GRMZM5G851266 Polyphenol oxidase1 (ppo1)

MQTL10.4 10 QTLs 71,377,312 73,510,436 5.50 – –

Warburton et al. (2015) S10_73160824 73,159,828 73,160,988 8.50 GRMZM2G107616 Uncharacterized protein

Warburton et al. (2015) S10_73160845 73,159,828 73160988 8.51 GRMZM2G343519 Glutaredoxin domain-containing protein

(Continued)
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2008; Warburton et al., 2009; Mayfield et al., 2011; Warburton et al.,

2011; Willcox et al., 2013; Mideros et al., 2014; Yin et al., 2014;

Dhakal et al., 2016; Zhang et al., 2016). Except for Zhang et al.

(2016), where the authors combined linkage-based QTL mapping

with GWAS to resolve a major QTL for A. flavus to identify several

candidate genes for resistance, constitutive, robust, and large-effect

QTLs over multiple environments and across populations that are

critical for deployment of markers linked to the QTLs in genomics-

assisted breeding for aflatoxin resistance are lacking. Hence,

consensus genomic regions that include more than one QTL

surrogated by a single marker are important to incorporate one

or a few alleles from the constituent QTL to improve A. flavus

resistance. Thus far, only two studies have reported MQTLs using

QTL studies on A. flavus resistance traits identified until 2011

(Xiang et al., 2010; Mideros et al., 2014).

We undertook a combinatorial approach of meta-analysis of

QTLs reported until 2022 and gene expression data to pinpoint

candidate genes (and markers) associated with A. flavus resistance.

To identify consensus genomic regions with stable expression, we

performed a meta-analysis with all 10 maize chromosomes that
Frontiers in Plant Science 12
harbored at least six QTLs, so the possibility of poor performance

of the model because of over-parameterization was ruled out

(Courtois et al., 2009). The QTL dataset that we used for meta-

analysis was not representative of all individual QTLmapping studies

reported for A. flavus resistance in maize due to the lack of sufficient

information and/or heterogeneity of the data needed for the MQTL

analysis tool. A high-density linkage map is key to identifying stable

MQTLs and selecting candidate genes for functional characterization

or marker development for use in marker-assisted breeding.

Consensus genetic maps created in earlier QTL meta-analysis

studies (Truntzler et al., 2010; Mideros et al., 2014) rejected the

existence of the same genetic map for all mapping populations.

However, using markers related to the position of QTLs and (re)

ordering of the markers on some genetic maps based on both genetic

and physical positions, we developed an integrated high-density

consensus linkage map with 5,023 markers and 2,555 cM long,

much higher than 1,803 markers reported earlier (Mideros et al.,

2014). High collinearity between the consensus map and the physical

map obtained from the reference map B73 RefGen_v5 observed in

our study was in congruence with the study of Akohoue and
TABLE 2 Continued

MQTL/GWAS SNP Phys_start* Phys_end* Chr.* R2 Gene ID Annotation

MQTL10.6 2 QTLs 121,431,613 129,288,759 4.80 – –

Warburton et al. (2015) S10_125923329 125,923,482 125,924,714 7.85 GRMZM2G135470 Aldehyde dehydrogenase 26 (aldh26)

S10_127808418 127,807,908 127,810,700 7.60 GRMZM2G025054 Transglutaminase 15a (tgz15a)

GRMZM2G025366 Isocitrate dehydrogenase 3 (idh3)

GRMZM5G835117 Uncharacterized protein

GRMZM2G518361 Uncharacterized protein

AC214507.3_FG001 CRM family member 6 (cfm6)

GRMZM2G066162 Cellulase6 (endoglucanase)

GRMZM2G066059 Autophagy 10 (atg10)
*Chr., chromosome; Phys_start, physical position start (bp); Phys_end, physical position end (bp).
FIGURE 5

Polyacrylamide gel image showing amplicons generated by three SSR markers (umc1817, umc1555, and umc1757) linked to MQTL8.2, MQTL2.4, and
MQTL4.1, respectively, with 22 maize genotypes that included 14 resistant (samples 1–14) and eight susceptible (15–22) maize cultivars. 1–12:
TZAR102, TZAR103, TZAR104, TZAR105, TZAR106, MP715, MP10-127, MP04:127, MP494, MP717, MP317, MP313E, MP718, MP719, PHW79, VA35, TI73,
SA212M, HI-11, A188, B104, B73; B, blank; M, 1-kb plus DNA size marker (Invitrogen Inc.).
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Miedaner (2022), which led us to project 276 out of 278 QTLs in the

consensusmap.Most of theMQTLs reported byMideros et al. (2014)

were identified in our 58 MQTLs over all 10 chromosomes, whereas

62 MQTLs were reported by Mideros et al. (2014) on eight

chromosomes with no MQTL on chromosomes 9 and 10. The

disparity in the number was due in part to some single original

QTLs reported as MQTLs by Mideros et al. (2014).

As expected in a meta-analysis of QTLs, the CI (95%) of the

MQTLs in our study was 3.2-fold narrower with an average of 6.3

cM (range 0.12 cM to 23.36 cM) in comparison with 19.8 cM of the

initial QTLs. Previous studies in maize have shown comparable

reductions of MQTL 95% CI, such as 1.4- to 36.4-fold (Akohoue

and Miedaner, 2022), 3.8-fold (range 0.02 to 29.87 cM; Sheoran

et al., 2022), 32% to 91% (Wang et al., 2022), and 1.89 to 14.27 cM

(Kaur et al., 2021). Mideros et al. (2014) reported 8.1 cM as the

average 95% CI of MQTLs, whereas three MQTLs had a 95% CI of

less than 2 cM. However, we found six MQTLs, MQTL1.3,

MQTL1.6, MQTL5.5, MQTL6.3, MQTL7.5, and MQTL8.5 with

95% CI <1 cM and narrower physical interval (<1 Mbp) and shorter

genetic distance with at least three QTLs in those regions.

MQTLs are the target genomic regions for introgression via

marker-assisted breeding programs. Thus, constant validation of

identified MQTLs is needed for their effective utilization in

molecular breeding. In this study, the correlations of MQTLs with

MTAs obtained from GWAS were established, and the positions of

MQTLs were compared with 272 MTAs associated with A. flavus

resistance in five GWAS. Eight (MQTL2.1, MQTL2.2, MQTL4.1,

MQTL5.6, MQTL9.1, MQTL10.3, MQTL10.4, and MQTL10.6) of

58 MQTLs matched MTAs from three GWAS (Farfan et al., 2015;

Warburton et al., 2015; Bertagna et al., 2021), suggesting that the

effects of these genomic regions on A. flavus resistance traits with

moderate influence from the genetic background. Except for

MQTL5.6, these MQTLs were different than the nine MQTLs

distributed on chromosomes 1, 4, 5, 6, 7, and 8 (MQTL1.3,

MQTL1.4, MQTL1.5, MQT1.8, MQTL4.3, MQTL5.6, MQTL6.2,

MQTL6.3, and MQTL7.2) that were considered significant for their

association with A. flavus resistance based on the R2 ≥ 10 criterion.

This result suggests that PVE should not be the only focus while

selecting genomic regions of interest for their further validation and

marker development, especially for multigenic traits such as

resistance to A. flavus and aflatoxin accumulation.

Validation of the MQTLs was also performed using 12

microsatellite markers linked to a few selected MQTLs that were

either close to the SNPs from the GWAS studies, with an average R2

≥ 10 or with 95% CI of less than 1 cM. The three markers, umc1555,

umc1757, and umc1817, closest to MQTL2.4, MQTL4.1, and

MQTL8.2, respectively, were able to distinguish the A. flavus-

resistant and susceptible genotypes. While umc1757 at bin 4.05 of

chromosome 4 collocated with S4_26406913 at ~ and S4_26653796

at ~1.1 Mb (Warburton et al., 2015), umc1555 linked to MQTL2.4

at bin 2.04 on chromosome 2 was ~10 Mb distant from

S2_40498454 (Warburton et al., 2015) that was close to MQTL2.2

within the same bin. These three markers have great potential for

their use in marker-assisted selection for A. flavus resistance,

although only umc1555 and umc1757 with their discriminatory

power for contrasting disease response phenotypes can be
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considered for the development of potential diagnostic markers.

Sequences around these markers and additional sequence-based

markers must be identified from large, diverse maize genotypes with

known A. flavus resistance response to develop haplotype-specific

markers for use in breeding applications.

Identification of MQTLs allowed us to efficiently search for

candidate genes with potential involvement in maize–A. flavus

interaction leading to aflatoxin toxin accumulation. A thorough

comparative search of the 4,252 candidate genes in MQTL

intervals with our in-house compilation of the maize

transcriptome dataset identified 43 genes that were significantly

differentially expressed only following A. flavus infection

(Musungu et al., 2020). However, further interrogation of these

genes against the maize gene expression database qTeller at

maizeGDB showed that 14 genes were not induced/repressed

under any other stress. Concurrently, 40 genes involved in

various biological processes were identified as linked to the SNP

markers from GWAS that collocated with eight MQTL intervals.

Of the 15 genes that were close to each other between GWAS and

MQTL region genes within ≤4 Mb interval, 13 had functional

annotation. Therefore, these 29 genes (27 genes with functional

annotation) were considered significant for their possible

implications in A. flavus resistance. Specifically, the 13 genes out

of 27 (12 in the Turquoise module and one in the Blue module)

with a significant number of interactions with other genes in the

network can be important candidates for further validation.

Polyphenol oxidase (PPO) such as Zm00001eb413300 plays an

important role in plant defense mechanisms against biotic stresses.

PPO could modify proteins by alkylating different compounds

which reduces the bioavailability of proteins and prevents the

digestion/absorption of nutrients in fungi (Zhang and Sun, 2021).

Cysteine-rich proteins (CRPs) are involved in binding to known

receptors in plants (Huang W et al., 2014). Although the signaling

mechanisms and protein interactions are largely unknown, most

characterized genes function as short-range intercellular signals

during plant defense against pathogens (Marshall et al., 2011). A

pathogenesis-related protein belonging to cysteine-rich secretory

protein responded to A. flavus infection in maize (Hawkins et al.,

2018). In cotton, a cysteine-rich kinase was differentially regulated

in both pericarp and seed tissues following A. flavus infection

(Bedre et al., 2015). The gene Zm00001eb249940 linked to

MQTL5.6 was a plasma membrane intrinsic protein (PIP). PIPs

are highly hydrophobic aquaporin proteins with six membrane-

spanning domains that play important roles in channels that

facilitate the passage of water, small solutes, and possibly other

moieties through the membrane and confer abiotic stress tolerance

in plants. Although the pathways involving their role in plant

defense are not completely understood, the transport of H2O2,

produced in response to pathogen attack by aquaporins suggests

their functions in plant defense (Dynowski et al., 2008).

Downregulation of some members of PIPs in soybean leaves and

citrus plants upon Pseudomonas syringae and Candidatus

liberibacter infection highlight their correlation with the disease

development (Zou et al., 2005; Martins et al., 2015). A plasma

membrane-associated protein was differentially expressed in maize

upon infection by A. flavus (Dhakal et al., 2017).
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Plant-derived fatty acids (FA) have been shown to regulate A.

flavus colonization in the seeds by controlling pathogen

development and mycotoxin production (Upchurch, 2008).

Zm00001eb413200 codes for fatty acid desaturase 5 (FAD5),

which is a key regulator of FA desaturation, and FADs modulate

the activation of defense signaling pathways in plants, leading to PR

gene expression involved in plant disease resistance (Kachroo

et al., 2001).

The gene Zm00001d003378, a mediator of paramutation 1

(mop1), codes for RNA-directed RNA polymerase, which controls

paramutation, the directed, heritable alteration of the expression of

one allele at multiple loci (Alleman et al., 2006). The differential

regulation of this gene in maize postinfection with A. flavus

indicates that RdRP-mediated epigenetic changes via DNA

methylation or small RNA regulation could play an important

role in disease resistance responses. Poly(A)-specific ribonuclease

(PARN) influences the poly(A) status of cytoplasmic mRNA in

most eukaryotes. PARN might regulate the efficient translation of

mRNAs that control cytosolic Ca2+ elevation, leading to plant

responses to pathogenic fungi (Johnson et al., 2018). Plants are

known to regulate defense mechanisms using polyadenylation

controlled by PARN (Yang et al., 2014). The modulation of

expression of maize PARN gene (Zm00001d025651) in response

to A. flavus implies its involvement in alternative splicing of other

genes involved in resistance response. Pathogen infection triggers

dramatic transcriptome reprogramming, leading to a shift in plant

growth and development and an immune response. During this

rapid process, the mediator plays an important role in fine-tuning

gene-specific and pathway-specific transcriptional reprogramming

by acting as a coregulator bridge between gene-specific regulatory

proteins and basal RNA polymerase II transcription machinery

(Richter et al., 2022). The role of maize mediator of RNA

polymerase II transcription subunit 26b (Zm00001d040506) in A.

flavus has not been established, but the upregulation of its

expression in S6, S9, and S16 stages (Musungu et al., 2020)

suggests its possible involvement in resistance reactions against

the pathogen in maize. A ring finger protein (Zm00001eb250960)

was linked to the MQTL5.6, contained six QTLs, and was located

near S5_19770198 (Farfan et al., 2015). Expression of ring/zinc

finger proteins was upregulated in resistant maize cultivar MP715

(Dhakal et al., 2017) and cotton upon A. flavus inoculation (Bedre

et al., 2015).

Cell wall-modifying genes such as UDP-glycosyltransferase

(Zm00001eb382140) have been shown to be regulated by A.

flavus infection in cotton (Bedre et al., 2015). Carboxylesterase

(CXE) is an enzyme that catalyzes carboxylic ester and water into

alcohol and carboxylate. CXEs in plants have been implicated in

defense mechanisms. For example, a tobacco CXE suppresses the

accumulation of tobacco mosaic virus accumulation (Guo and

Wong, 2020). In maize, the CXE SOBER1 (Zm00001d050270)

may regulate HR-mediated plant defense against A. flavus by

possibly hydrolyzing a lipid or precursor required for HR

induction, as was observed in Arabidopsis, where SOBER1

resulted in low phosphatidic acid accumulation in response to

bacterial effector AvrBsT, causing suppression of plant immunity

(Kirik and Mudgett, 2009). Cell division control protein 48
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(CDC48) is an evolutionarily conserved major chaperone-like

protein component of ubiquitin-dependent protein degradation

pathways. In plants, CDC48 most likely contributes to protein

degradation through the ubiquitin-proteasome system (Bègue

et al., 2019), suggesting its role in the plant’s defense mechanism.

CDC48 caused an upregulation of the expression of the NB-LRR

gene SNC1 and downregulation of the ubiquitin E3 ligase CPR1,

leading to plant immunity against pathogens in Arabidopsis and

tobacco (Cheng et al., 2011; Huang Y. et al., 2014), which clearly

suggests the involvement of CDC48 in maize (Zm00001d025776) in

resistance response under A. flavus attack.

Plants accumulate several reactive molecules, including

aldehydes, which play dual roles in plant–pathogen interactions.

Aldehydes can kill pathogens directly or act as secondary defense

signaling molecules for activating durable host resistance against

invading pathogens (Norvienyeku et al., 2017). At the same time,

aldehydes are toxic to plant cells, and thus expression of aldehyde

dehydrogenase can help scavenge excess pathogen-induced reactive

aldehydes, contributing to disease resistance. Aldehyde

dehydrogenase (ALDH) is a member of a group of evolutionarily

conserved polymorphic enzymes that promote stress tolerance in

plants (Zhu et al., 2014). In cotton, ADH was induced in the

pericarp and seed tissues of cotton in response to A. flavus infection

(Bedre et al., 2015). The gene Zm00001eb425740 codes for atg10, a

member of the autophagy gene family. Most cytosolic proteins and

organelle materials are sequestered and transported to the lysosome

or vacuole for degradation via autophagy (Xie and Klionsky, 2007).

Expression of the ATG genes is induced by the oxidative stress

caused during necrotrophic fungal pathogen attack in plants (Lai

et al., 2011) and thus could play an important role in the regulation

of immunity-related programmed cell death or hypersensitive

reactions in response to A. flavus resistance in maize. Patel and

Dinesh-Kumar (2008) demonstrated that Arabidopsis plants with

antisense suppression of the ATG6 gene showed that RPM1

triggered a limited hypersensitive reaction in response to

Pseudomonas syringae pv. tomato DC3000.

Zm00001d030855 and Zm00001d049476, both coding for alpha

Zein proteins, showed mostly upregulation in their expression

patterns in maize. Alpha Zein 19C2 precursor (P1B10) was also

highly expressed after A. flavus infection in maize (Dhakal et al.,

2017). The gene Zm00001d003677 for Opaque11 is considered the

central hub of the regulatory network for maize endosperm

development and nutrient metabolism (Feng et al., 2018). Novel

insights are being proposed for plant storage proteins as

antimicrobial proteins (De Souza Cândido et al., 2011), yet the

role of storage proteins such as zein and Opaque 11 in plant defense

mechanisms has not been demonstrated. They possibly regulate the

A. flavus infection by modulating the amino acid (especially lysine)

profile of the seeds.

The gene Zm00001d049374 in MQTL4.1 codes for a protein

with the DUF295 domain. These plant proteins also contain an F-

box domain. F-box domain-containing proteins are well established

for their roles in regulating cell death and plant defense in response

to pathogen responses (Den Burg et al., 2008). An F-box protein

was downregulated in maize PRms RNAi lines, which suggested its

possible function in PR proteins-mediated resistance response
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(Majumdar et al., 2017). The involvement of F-box genes in A.

flavus was demonstrated by the upregulation of F-box3 in peanuts

during the late stages of infection by the fungus (Bhatnagar-Mathur

et al., 2021).
Conclusion

Understanding the genetic basis and molecular mechanisms

underlying A. flavus resistance is critical to developing maize

varieties with improved resistance against factors affecting aflatoxin

accumulation. Using a comprehensive meta-analysis of QTLs and

transcriptome data, we have provided evidence of the presence of

important MQTLs of possible significance in A. flavus resistance in

maize bins 2.04, 4.05, and 8.03. Furthermore, the meta-analysis

helped delimit the MQTLs to physical intervals of less than 1 Mb.

Our results suggest that, although A. flavus resistance is a trait with a

high genotype by environmental interaction effect, recurrent selection

involving markers linked to the significant MQTLs as discussed

above could lead to the accumulation of resistance loci that reduce

A. flavus infection, colonization, and subsequent aflatoxin

accumulation. A detailed omics study and functional validation of

the identified putative A. flavus-specific candidate genes through

genome editing or genetic engineering tools will enhance our

understanding of maize—A. flavus interaction. Further

characterization of identified MQTLs in this study to develop

haplotype-specific markers and subsequent marker-assisted

introgression of important MQTLs may significantly strengthen the

breeding efforts for developing A. flavus-resistant maize cultivars.
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