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Introduction: Phenomics has emerged as important tool to bridge the

genotype-phenotype gap. To dissect complex traits such as highly dynamic

plant growth, and quantification of its component traits over a different growth

phase of plant will immensely help dissect genetic basis of biomass production.

Based on RGB images, models have been developed to predict biomass recently.

However, it is very challenging to find a model performing stable across

experiments. In this study, we recorded RGB and NIR images of wheat

germplasm and Recombinant Inbred Lines (RILs) of Raj3765xHD2329, and

examined the use of multimodal images from RGB, NIR sensors and machine

learning models to predict biomass and leaf area non-invasively.

Results: The image-based traits (i-Traits) containing geometric features, RGB

based indices, RGB colour classes and NIR features were categorized into

architectural traits and physiological traits. Total 77 i-Traits were selected for

prediction of biomass and leaf area consisting of 35 architectural and 42

physiological traits. We have shown that different biomass related traits such as

fresh weight, dry weight and shoot area can be predicted accurately from RGB

and NIR images using 16 machine learning models. We applied the models on

two consecutive years of experiments and found that measurement accuracies

were similar suggesting the generalized nature of models. Results showed that all

biomass-related traits could be estimated with about 90% accuracy but the

performance of model BLASSO was relatively stable and high in all the traits and

experiments. The R2 of BLASSO for fresh weight prediction was 0.96 (both year

experiments), for dry weight prediction was 0.90 (Experiment 1) and 0.93

(Experiment 2) and for shoot area prediction 0.96 (Experiment 1) and 0.93

(Experiment 2). Also, the RMSRE of BLASSO for fresh weight prediction was

0.53 (Experiment 1) and 0.24 (Experiment 2), for dry weight prediction was 0.85
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(Experiment 1) and 0.25 (Experiment 2) and for shoot area prediction 0.59

(Experiment 1) and 0.53 (Experiment 2).

Discussion: Based on the quantification power analysis of i-Traits, the

determinants of biomass accumulation were found which contains both

architectural and physiological traits. The best predictor i-Trait for fresh weight

and dry weight prediction was Area_SV and for shoot area prediction was

projected shoot area. These results will be helpful for identification and genetic

basis dissection of major determinants of biomass accumulation and also non-

invasive high throughput estimation of plant growth during different

phenological stages can identify hitherto uncovered genes for biomass

production and its deployment in crop improvement for breaking the yield

plateau.
KEYWORDS

high-throughput phenotyping (HTP), RGB image, NIR image, machine learning, i-traits,
wheat, shoot area
Introduction

Wheat (Triticum aestivum L.) is one of the most important

cereal crops in the world since the beginning of agriculture, feeding

nearly 40% of the world’s population (Giraldo et al., 2019). It is

grown in about 217 million hectares across the globe, with an

annual production of about around 731 million tonnes (Ramadas

et al., 2020). Wheat crop production needs to be increased at least

by 60%, to feed the 10-billion people by 2050 (Misra et al., 2020).

India is the world’s second-largest wheat producer and a major

exporter of wheat. Hence wheat crop is given emphasis in crop

improvement programs in India as well as in different countries for

breeding better wheat varieties with enhanced yield and quality.

Recent advances in the next generation genotyping technologies

have helped to cut the cost and time while boosting genotyping

precision. At the same time, phenotyping continues to be a barrier

in establishing genotype-phenotype relationships (Yang et al.,

2020). The introduction and evolution of phenomics in plant

science occurred around 2010 with sensors to capture time series

information and plant characteristics from digital images, which

can ease the phenotyping bottleneck (Yang et al., 2020). Phenomics

is the multidisciplinary study of high-throughput accurate

acquisition and analysis of multidimensional phenotypes by using

digital sensors to capture the morphological and physiological

responses of plants (Kumar et al., 2016; Tardieu et al., 2017; Yang

et al., 2020). Throughout plant growth and developmental life cycle,

phenomics aids in the study of plant morphometry, physiology, leaf

color, biomass, seed characteristics, spike number, growth rate and

water use efficiency (Chen et al., 2014; Al-Tamimi et al., 2016; Guo

et al., 2018; Misra et al., 2020; Elangovan et al., 2023). Researchers

across the globe are targeting many plant traits to break the current

plateau of the yield (Rauf et al., 2015; Neeraj et al., 2022). The

harvest index is one of the most important traits as it links biomass

accumulation and grain yield in cereals (Reynolds et al., 2017) and
02
hence biomass is one of the key traits for crop improvement. Plant

leaf area is an important conventional physiological trait used for

plant developmental studies and leaf area index estimation (Wu

et al., 2022). It is an essential parameter for assessing crop growth

and is highly related to the crop biomass and yield (Qiao et al., 2019;

Wu et al., 2022).

Manual estimation of plant biomass and shoot area gives

accurate information but it is destructive, time and labour

intensive, less throughput, and the accuracy is affected due to

human errors (Buxbaum et al., 2022) thereby restricting its use in

breeding and commercial contexts. Hand-gathered allometric

approaches that connect plant volume and height data to biomass

are time-consuming, arduous, and may not generalize (Pottier and

Jabot, 2017). Also, by the conventional phenotyping, we could only

get biomass and leaf area as a single point data, while the high

throughput phenotyping empowered generation of time series

biomass data (Rahaman et al., 2017; Song et al., 2021). Predicting

biomass at multiple stages gives more insight into complex yield

architecture (Buxbaum et al., 2022), crop phenotypic (P) and

genotypic (G) along with G×E behaviour of plants (Xu, 2016;

Van Eeuwijk et al., 2019). As biomass is a time-dependent

variable in the plant life cycle, its non-invasive measurement at

multiple time points is essential to dissect the complex plant growth

characteristics and for its functional mapping (Wu and Lin, 2006; Li

and Wu, 2010).

Non-invasive biomass estimation was mainly carried out, in the

past, with a single sensor and very few image-based features

(Campbell et al., 2015; Al-Tamimi et al., 2016; Rahaman et al.,

2017; Asif et al., 2018). Researchers also have tried to predict

biomass as linear function of projected area (Golzarian et al.,

2011), multiple linear regression of different parameters,

considering both the volume of the plants and their density

(Busemeyer et al., 2013; Yang et al., 2014) and with four machine

learning based biomass estimation from multiple sensor traits
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(Chen et al., 2018b). Many well established machine learning

methods have been used earlier for various purposes, such as the

prediction of gene expression patterns due to chromatin features

(McLeay et al., 2012; Yang et al., 2014; Song et al., 2016), biomass

(Chen et al., 2018b), and classification of the disease status of plants

(Baranowski et al., 2015). Several models have been developed for

in-house experiments to predict biomass of Arabidopsis (Arvidsson

et al., 2011), barley (Bendig et al., 2015; Chen et al., 2018b), wheat

(Golzarian et al., 2011; Parent et al., 2015), and rice (Yang et al.,

2014; Campbell et al., 2015), but their reproducibility in other

experiments has not been characterized. Also, researchers have tried

to predict biomass at early stages (Golzarian et al., 2011; Chen et al.,

2018b) which might not cover all the phenotypic variability of plant

biomass. Machine learning model-based prediction of biomass and

leaf area in wheat under controlled environment condition have not

been reported yet.

So, we planned our experiment to develop a generalized robust

protocol for non-destructive estimation of biomass and shoot area

in wheat at peak vegetative stage by using open-source machine

learning tools from the large number of image-based features and

from multiple sensors which can be used to precisely predict plant

biomass in future experiments by plant scientists. The objectives of

this study were (i) to generate multi-experiment phenomics data

from multiple sensors to predict plant biomass and shoot area at

vegetative stage in wheat (ii) to select the best generic model for

accurate prediction of fresh weight (FW), dry weight (DW) and

shoot area (SA) by using open source machine learning tools (iii) to

identify best surrogate i-Trait for FW, DW and SA. As a result, we

screened a generalised model from a large set of machine learning

models which considers traits derived from multiple sensors

incorporating geometric features, RGB indices, colour class and

NIR features covering major determinants of plant growth and also

showing higher accuracy across experiments.
Materials and methods

Experimental design for
biomass estimation

Two independent experiments were conducted in the Nanaji

Deshmukh Plant Phenomics Centre (28°38’31.2”N, 77°09’39.6”E),

New Delhi, India, during the winter seasons (Nov-April, Rabi) of

2018 and 2019. In both experiments, wheat germplasm lines and

recombinant inbred lines (RILs) of Raj3765 x HD2329 were used.

Seeds were sown in pots (0.19 m diameter, 0.4 m high, 15 L volume)

containing uniformly filled soil (12.5 Kg per pot). Both experiments

differed in genotypes and RILs to validate the model’s effectiveness

in a wide range of biomass across experiments. Recommended dose

of fertilizer (120-80-60 kg/ha N-P-K respectively) was applied to

each pot. Well watered condition was maintained in all the pots and

recommended weed, pest and disease control practices were

followed. Plants were grown in the natural environment for

proper growth and biomass accumulation, and shifted to the

greenhouse in phase wise manner to capture the biomass at

different vegetative stages (before booting). The idea to capture
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biomass before booting was due to the fact that after booting the ear

creates erroneous result due to its variable weight than leaf and

stem. The age of plants were ranging from 30 to 70 days after sowng

at the time of imaging. This variability in plant age helped in

capturing wider range of FW, DW and SA. Before imaging of the

plant, ultra-low weight & solid polypropylene beads were applied

just over the soil surface to about 5cm height to arrest direct

evaporation from the soil surface, and also for easy segmentation

of image. Three hundred plants in 2018 experiment and 154 plants

in 2019 experiment were selected for image acquisition using the

LemnaTec-Scanalyzer 3D automated phenotyping and imaging

platform. Destructive sampling of plants was done to measure

above-ground biomass FW (g), DW (g), and SA (cm2). The SA of

the whole plant, along with stem and leaf, was measured by using

LI-3100C (LI-COR, Lincoln, NE, USA) automatic leaf area meter.
Image acquisition and processing

RGB and NIR images of the plants were taken using a

commercial grade RGB (Prosilica GT6600, sensor: ON Semi KAI-

29050, LemnaTec, GmbH, Aachen, Germany) and NIR camera

(Gold eye P-032 SWIR Cool cameras, sensor: InGaAs, LemnaTec,

GmbH, Aachen, Germany) using LemnaTec-Scanalyzer 3D

software. Three different side views of RGB images (angles: 0°,

120°, 240°), and one top view RGB image of the plants were

captured for each plant using the automated turning and lifting

system inside the imaging unit. Three side views were considered, as

it is hypothesized that the image from one direction cannot cover all

the plant parts; besides, it helps increase the data points

corresponding to one plant. NIR sensor captured one side view

and one top view image for analysis. A uniform white background

was maintained to increase the accuracy of separation between the

background and foreground in the images.

Images were processed by the wheat image analysis pipelines

developed in the commercial LemnaGrid software. Images were pre-

processed to segment the image into foreground and background

sections accordingly, and then feature extraction was done to produce

a trait list. Extracted traits from the whole dataset were exported in

CSV format via LemnaGrid and LemnaMiner functionalities, which

were used for post-processing and statistical analysis. A detailed data

set report is available in (Supplementary Table 1).
Feature analysis and data transformation

After feature extraction, all the features were categorized into

four groups: Geometrical features, colour class features, RGB-based

indices and near-infrared features. Finally, these features are

classified into two major categories namely architectural features

(geometric features) and physiological features (colour class, RGB

based indices and NIR features). Details of these features are

available in Supplementary Table 1. These features were specified

by considering the type of imaging sensors (RGB and NIR) and

object orientations (side and top views). All the traits were curated

for redundancy, processing error, outliers, and non-informativeness
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by both statistical approach (Multicollinearity removal, poor

heritability, etc.) and manual curation. We kept as much variation

and informative features as possible to improve the model accuracy

for biomass estimation.

Each experiment dataset was transformed into matrix Xn×m

where “n” is the number of plants and “m” is the number of

phenotypic traits. Plants represented rows, and different traits

represented columns. All missing value plants were discarded for

reduction of data analysis complicacy. Before applying regression

models, all datasets were normalized as described by (Chen

et al., 2018a).
Phenotypic data interpretation
and visualization

A phenotypic similarity tree was used to see the correlation

between all the traits and the similarity between experiments.

Principle component analysis was performed on the transformed

data matrix Xn×m in the same way as described by (Chen et al.,

2014) for all the experiments. Both correlation and PCA analysis

was done in R software (R Core Team, 2021). All visualization

graphs were produced using “ggplot2” package in R software

(R Core Team, 2021).
Modelling for predicting plant biomass

After i-Trait selection and phenotypic analysis, the next part

was to fit the selected data into the model to predict FW, DW, and

SA. We used the open-source tool “HTPmod” for modelling (Chen

et al., 2018a). In HTPmod (Shiny framework-based application),

the module predMod contains 16 models constructed with 16

different machine learning methods to regress input features to

output traits of interest. The description and details of all the

models is available in supplementary data sheet 1. We used the

default hyperparameters applicable for different machine learning

models present in the HTPmod application. All the model

parameters were controlled using respective R package (Given in

supplementary data sheet 1). Also, for additional tuning

functionality of “caret” R package was used.
Evaluation of the models performance

Model performance was evaluated using k fold cross-validation

method and N-times randomization, where we assigned k and N to

10. So, we adopted a 10-fold cross-validation strategy and ten times

randomization for model evaluation by considering the average

value. The data set was randomly divided into a training set of 90%

of plants and a testing set of the remaining 10% of plants. Then each

model was run to predict FW, DW, and SA for the testing data, and

then the predicted biomass was compared with the manually

measured FW, DW, and SA.

All the regression models were evaluated by the Pearson

correlation coefficient (PCC; r), the coefficient of determination
Frontiers in Plant Science 04
(R2) and the root mean squared relative error of cross-validation

(RMSRE) between the predicted and observed values (Chen

et al., 2018a).
Results

i-Trait extraction and characterization

We analysed two image datasets, 1800 images (Experiment 1,

2018) and 924 images (Experiment 2), collected from 300

(Experiment 1) and 154 plants (Experiment 2, 2019), respectively.

An overview of the experimental site and experiment is shown in

Figure 1. Each plant was imaged at a single time point by RGB (One

top view and three side view images at 0°, 120° and 240° angle) and

NIR sensor (One top view and one side view), then plants were

harvested to measure FW) and SA immediately, and oven dried to

record DW. To increase the variability in biomass range, we

conducted our experiment with germplasm and RILs with wider

variability in biomass, and phenotyping at different plant growth

stages. All the images retrieved from the server and processed by the

LemnaGrid image analysis pipeline, which was modified explicitly

for mid to large-sized important cereals such as wheat (challenging

due to its narrow leaf and compact character), resulting in nearly

200 phenotypic traits extracted from images of each plant

(Figures 2A, B). After quality control such as outliers,

multicollinearity and manual checking of all the extracted traits,

we selected 77 i-Traits (Figure 2C) which were divided into two

major categories of traits such as architectural (35 traits) and

physiological (42) traits (Supplementary Table 1).
Phenotypic profile analysis of plants in
both experiments

We observed broader range of phenotypic values in all the traits

in both experiments. The phenotypic value of FW, DW, and SA of

experiment 1 ranged 0.6-145.86 g, 0.15-27.35g and 18.43-3622.25

cm2, respectively. In the experiment 2, the FW, DW, and SA ranged

3.3-107.8 g, 0.5-22.2 g, and 26.15- 1434.01 cm2, respectively

(Figures 3C-E).

In both experiments, 77 selected i-Traits were analysed.

Principal component analysis (PCA) was carried out for both

experiments to see the global phenotypic variation present in the

population. The top 4 principal components (PCs) of experiment 1

and 2 accounted for 76.56% and 75.02% of the total phenotypic

variation explained by i-Traits. The first two PCs clearly

distinguished the experiments as the first two PCs of experiment

1 and 2 accounted for 39.41%, 17.77% and, 29.03%, 23.28%,

respectively (Figures 3A, B).

To access the patterns of trait correlations, we performed the

trait similarity analysis based on canonical Pearson’s correlation

coefficient (Figures 4A, B). We observed that the patterns of

correlation were similar in both experiments however i-Traits

were more correlated in experiment 1 than in experiment 2 as

suggested by the intensity of colour in Figures 4A, B but traits across
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experiments shows similar correlation with each other. Also, the

correlation of architectural traits with physiological traits was less,

and traits were both positively and negatively correlated in the two

experiments. Correlation among the physiological traits as higher

than the correlation among the architectural traits.
Phenotypic association of i-Traits with FW,
DW and shoot area

We further evaluated the association of i-Traits with the manual

traits in both experiments to see the relation between i-Traits and

manual traits and to observe the biological relevance of predicting
Frontiers in Plant Science 05
biomass from digital image-derived parameters (Figure 5). The direct

relatedness of architectural traits with biomass is well reported in

literature and the physiological traits that we included here having

some unique feature that have not been reported earlier such as RGB

colour class and RGB indices. The use of physiological traits in

biomass estimation is to incorporate the additional properties

presented by NIR grey value (water status of plant), RGB colour

class (greenness of different plant pixels) and RGB indices (reported

vegetation indices). The PCC of the i-Traits with FW, DW and SA in

experiment 1 ranged from -0.73 to 0.97, -0.76 to 0.92, and -0.76 to

0.93, respectively. While in the case of experiment 2, the FW, DW

and SA correlations with i-Traits ranged from -0.76 to 0.95, -0.74 to

0.93 and -0.73 to 0.95, respectively. Architectural traits had a higher
B C

D E F

A

FIGURE 1

Pictorial representation of experimental site and setup. (A) Nanaji Deshmukh Plant Phenomics Center (NDPPC), Indian Council of Agricultural
Research–Indian Agricultural Research Institute, New Delhi, India. (B) Four climate controlled green houses present within the facility. (C) Ongoing
wheat plant experiment for wheat non invasive biomass prediction. (D) LemnaTec system controller computer for image acquisition and processing.
(E) RGB, side view image of wheat plant inside imaging chamber. (F) Destructive sampling for biomass measurement.
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correlation with manual traits, than physiological traits. Among all

the traits, PSA and Area_SV had a correlation of >0.9 for FW, DW

and SA in both experiments. As expected, both boundary point count

and compactness of side view images are also highly correlated with

the manual traits. This explains that the biologically relevant traits,

such as area and architecture, are highly related to biomass traits. We

also found that physiological traits such as colour class correlated

with biomass traits. NIR_SV was negatively correlated with FW, DW

and SA ranging from -0.36 to -0.68 in both experiments. This also

suggests that physiological traits not directly measured as plant

architectural traits can also be used as biomass predictors. Indices

derived from the mean blue, green and red values of RGB images also

correlated with biomass, but the correlations were relatively lower

than other traits.
Frontiers in Plant Science 06
Modelling of plant biomass using
machine learning methods

HTP is particularly meaningful in dissecting complex genetics

of biomass development in plants. The relationship between i-traits

and above-ground shoot biomass accumulation were analysed by

digital phenotyping data containing structural (e.g., architectural

traits) and physiological traits (e.g., colour class, RGB based indices

and plant moisture content as reflected by NIR-intensity traits). The

results about i-Traits and manual traits suggested that these i-Traits

can be very useful in predicting plant biomass-related traits.

To develop the model by machine learning (ML) methods, we

used the available open-source tools. We used the predModmodule

from the HTPmod, a R program based shiny application. We used
FIGURE 2

Data analysis and modelling pipeline for biomass prediction by i-Traits. (A) Digital imaging based plant phenotyping by visible (or color) and near-
infrared sensors (NIR). (B) Image datasets were saved in data server and processed through LemnaGrid for feature extraction. (C) Phenotypic data
were subjected to quality check to remove low-quality data and classified into two categories such as architectural and physiological traits
(Commonly referred as i-Traits). (D) All the i-Traits were described by per plant basis and combined with manually measured data such as fresh
weight (FW), dry weight (DW) and shoot area. (E) Now the data matrix with all i_traits and manual traits were used to predict biomass by HTPmod (a
shiny based application) using eight machine learning method developed by Chen et al. (2018a). (F) The results of aal the models were interpreted by
R2, PCC and RMSRE value.
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16 ML methods available in predMod. From the 16 models, we

found eight models that were consistent for all the manual trait

estimations in both the experiments. The selected models were

Bayesian LASSO, Bayesian regularized neural networks (BRNN),

Lasso and elastic-net regularized generalized linear models

(GLMNET), Gaussian process with the polynomial kernel (GP-

Poly), multivariate adaptive regression splines (MARS), random

forest (RF), ridge regression (RIDGE) and Support vector machines

with linear kernel (SVM-Linear).
Biomass estimation model
performance evaluation

Since our aim was to produce a more generalized model that

can use genotypes and RILs to predict the biomass from image traits

over multiple time points, the models were tested in both

experiments to validate their performance and to evaluate their

generalized nature. Analysis was performed with all 16 models,

from which eight models that performed better for all the traits

irrespective of experiments were selected. Results of all the 16

models showed that the R2 for FW prediction was between 0.84

to 0.96, DW prediction was between 0.79 to 90 and SA prediction

was 0.85 to 0.97 in experiment 1 (Supplementary Data sheet 1). In

experiment 2 the R2 for FW prediction was between 0.88 to 0.96,

DW prediction was between 0.86 to 93 and SA prediction was 0.86
Frontiers in Plant Science 07
to 0.93 (Supplementary Data sheet 1). We found that eight models

performed relatively better than other eight models. Bayesian

Generalized Linear Model (BGLM), Gradient Boosting Machine

(GBM), Generalized Linear Model (GLM), Gaussian Process with

Radial Kernel (GP-Radial), K-Nearest Neighbors (KNN), Least

Absolute Shrinkage and Selection Operator Regression (LASSO),

Multivariate Linear Regression (MLR) and Support Vector

Machines with Radial Kernel (SVM-Radial) performed with

relatively less accuracy than other eight models namely Bayesian

LASSO, Bayesian regularized neural networks (BRNN), Lasso and

elastic-net regularized generalized linear models (GLMNET),

Gaussian process with the polynomial kernel (GP-Poly),

multivariate adaptive regression splines (MARS), random forest

(RF), ridge regression (RIDGE) and Support vector machines with

linear kernel (SVM-Linear). BGLM, GBM, GLM, GP-Radial, KNN,

LASSO, MLR and SVM-Radial had R2 value for prediction of FW

ranged from 0.84 to 0.90, for DW ranged from 0.79 to 0.87 and for

SA ranged from 0.85 to 0.95 in experiment 1 (Supplementary data

sheet 1). At the same time BLASSO, BRNN, GLMNET, GP-Poly,

MARS, RF, RIDGE and SVM-Linear had higher R2 value of 0.94 to

0.96 for FW, 0.87 to 0.90 for DW and 0.93 to 0.96 for SA prediction

in experiment 1 (Figures 6–8). Similar condition was there in

experiment 2 also. In experiment 2, BGLM, GBM, GLM, GP-

Radial, KNN, LASSO, MLR and SVM-Radial had R2 value of 0.88

to 0.92 for FW, 0.86 to 0.89 for DW and 0.86 to 0.90 for SA

prediction (Supplementary data sheet 1). While BLASSO, BRNN,
B

C D E

A

FIGURE 3

Characterization of all the i-Traits by phenotypic analysis for both experiments (Experiment 1 and Experiment 2). (A, B) Principal component analysis
of all the i-Traits for experiment 1 and experiment 2 respectively. Four PCs represented here which captured approximately all the variation in the
data. Variance proportion explained by the PCs is shown in parentheses. Individuals are represented by orange dots and traits are represented by
green lines. (C–E) Differences in the FW, DW and shoot area across experiments represented by box plot analysis.
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GLMNET, GP-Poly, MARS, RF, RIDGE and SVM-Linear had

higher R2 value of 0.94 to 0.96 for FW, 0.91 to 0.93 for DW and

0.90 to 0.93 for SA prediction in experiment 2 (Figures 6–8). We

also noticed that these eight models performed better than normal

multivariate regression (MLR) model. All eight selected models

BLASSO, BRNN, GLMNET, GP-Poly, MARS, RF, RIDGE and

SVM-Linear performed relatively similar in terms of estimation

accuracy, while we confined the results to select four best-suited

models for our experiments namely BLASSO, BRNN, GLMNET

and GP-Poly that were with less RMSRE value and with similar

estimation accuracy across experiments.
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In case of FW estimation, R2 and r value ranged from 0.95 to

0.96 and 0.97 to 0.98 in the two experiments for BLASSO, BRNN,

GLMNET and GP-Poly models (Figure 6). So, this represents the

generalized nature of the estimation, as almost all four models

showed similar results. DW’s estimation also showed promising

results as the R2 and r value ranged from 0.89 to 0.93 and 0.94 to

0.96 in the two experiments (Figure 7). In SA estimation, R2 and r

value ranged from 0.91 to 0.97 and 0.95 to 0.98 in both the

experiments (Figure 8). As per these four models, Experiment 1

had slightly higher estimation accuracy than experiment 2 for FW

and SA estimation but in the case of the DW, experiment 2 had
B

A

FIGURE 4

Assessment of trait similarity between i-Traits across experiments. (A) Canonical correlation analysis of i-Traits based on experiment 1 (Top) and
(B) experiment 2 (Bottom). Heatmap plot is organized by both architectural and physiological traits represented by two highlighted boxes. Top box
represents Architectural traits and bottom box represents physiological traits.
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better performance than experiment 1. RMSRE values were

relatively lower in experiment 2 than in experiment 1 in most of

the parameters but the difference was not large.

By observing the estimation ability of the models by R2 and r

and RMSRE we found out BLASSO, BRNN, GLMNET and GP-Poly

were relatively better-performing models in all the traits and across

all the experiments. Selecting a single model was interesting due to

the relatively similar and better estimation accuracy across models.

Nevertheless, BLASSO performed better in all the trait estimations

in all the experiments with the highest R2 and lowest RMSRE values.

The R2 of Bayesian Least Absolute Shrinkage and Selection

Operator BLASSO for FW prediction was 0.96 (both year

experiments), for DW prediction was 0.90 (Experiment 1) and

0.93 (Experiment 2) and for SA prediction 0.96 (Experiment 1) and

0.93 (Experiment 2). Also, the RMSRE of BLASSO for FW

prediction was 0.53 (Experiment 1) and 0.24 (Experiment 2), for

DW prediction was 0.85 (Experiment 1) and 0.25 (Experiment 2)

and for SA prediction 0.59 (Experiment 1) and 0.53 (Experiment 2).
Evaluation of i-Traits for predictive power
and relative importance

For each i-Trait, the predictive power and relative importance

were calculated by the degenerate model using the predMod

module. In both experiments, the predictive power and feature

importance of i-Traits were similar, so here we explained the
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individual capability of each i-Trait as a predictor of biomass in

experiment 1 (Figure 9) and experiment 2 (Supplementary data

sheet 1). Both predictive power and relative importance of most

architectural traits were higher than physiological traits. The top 10

important features contained architectural and physiological traits,

but more architectural traits were present than physiological ones.

PSA, Area_SV, and BPC_SV have higher predictive power and

relative importance among all the i-Traits for FW, DW and SA.

Area_SV had R2 of 0.94 for the estimation of FW, which was highest

than the DW (R2 of 0.79) and shot area (R2 of 0.89) estimation.

Among physiological traits, PSCC_17, 16, 13, NIR_TV and SV,

B_SV, G_SV, SLR5_SV, Gray_TV, etc., had higher predictive power

and relative importance than other physiological traits. NIR_TV

and NIR_SV also had significant predictive power and relative

importance ranging from ~0.1 to 0.5 (R2) and ~5 to 59% (Inclusive

MSE) relative importance. The best predictor i-Trait for FW and

DW prediction was Area_SV and for SA prediction was projected

shoot area. These results give deep understanding into major

determinants of plant biomass and also suggests that along with

architectural traits, physiological traits also help to improve

estimation accuracy and are determinants of plant growth.
Discussion

Aided by multiple imaging sensors and computer vision

optimization by machine learning methods, high throughput
B

C D

E F

A

FIGURE 5

Pearson’s correlation coefficients (PCC) in each experiment were calculated to assess the relationship between i-Traits and manual traits. The PCC
were consistent in both experiments and most of the features were having more than 0.5 positive or negative correlation coefficients with FW, DW
and shoot area. (A, B) PCC between FW and i-Traits in experiment 1 and 2 respectively. (C, D) PCC between DW and i-Traits in experiment 1 and 2
respectively. (E, F) PCC between shoot area and i-Traits in experiment 1 and 2 respectively.
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phenotyping has emerged as a major technology helping to dissect

plant biological characters unseen before (Kumar et al., 2016; Singh

et al., 2016; Strock et al., 2022). So, gathering multi-dimensional

data over multiple time points at multiple organ levels is the critical

component of HTP, which has boosted crop improvement

programs (Roth et al., 2021; Pérez-Valencia et al., 2022). Harvest

index has been a critical trait for cereal breeders for decades in crop

improvement programs, which is closely related to the ability of the

plant to accumulate plant biomass and convert it into yield (Chao

et al., 2019; Porker et al., 2020). Since, already we have reached a

plateau in improving harvest index, for further improvement in

yield, we must improve biomass. We need to characterize accurate

biomass of plants at different stages to identify genes working at

different phenological stages for biomass production (Chang et al.,

2019; Chen et al., 2020; Rabab et al., 2021). Also, data at multiple
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time points are needed for the functional mapping of plant biomass

accumulation. Functional mapping can be a powerful tool to reveal

transient and deterministic quantitate trait loci (QTLs) for a

complex trait such as biomass (Wu & Lin, 2006; Camargo et al.,

2018; Jiang et al., 2019; Lyra et al., 2020). Plant leaf area is a critical

physiological parameter which determine the ability of plant to

produce economic yield and also it helps to determine the plant leaf

area index which is an important conventional physiological trait

used for plant developmental studies (Wu et al., 2022). Leaf area

index (LAI), is a critical parameter of wheat growth, can provide

dynamic information during wheat growth phases and closely

associated with crop biomass and yield. So, shoot area estimation

by non-destructive methods will definitely help to the plant science

community in the future. As per our knowledge no work has been

done particularly for image-based shoot area estimation by
B

C

A

FIGURE 6

Non destructive estimation of above ground plant biomass (AGPB) with i-Traits, using predmod in HTPmod. Scatter plots of observed FW vs
predicted FW values using 8 prediction models based on machine learning methods BLASSO, BRNN, GLMNET, GP-Poly, MARS, RF, RIDGE and SVR.
The prediction models were evaluated by Pearson’s correlation coefficient (r), its corresponding P-value, R2 and RMSRE. (A, B) Prediction of FW in
experiment 1 and 2 respectively. (C) Evaluation of the model performance of each regression model used for AGPB prediction.
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validating with actual shoot area in wheat as it has a compact plant

architecture. Traditionally, biomass measurement has been done by

destructive methods, which is laborious and time-consuming. Also,

one of the other major lacuna was the inability to take data points at

multiple time scales (Tackenberg, 2007; Buxbaum et al., 2022).

Therefore, to address this major bottleneck, automated, non-

destructive biomass estimation by digital imaging method is

gaining importance since the evolvement of high throughput

phenotyping (Golzarian et al., 2011; Rahaman et al., 2017; Chen

et al., 2018b; Buxbaum et al., 2022).

Several studies in the recent past have developed different

models for biomass estimation, but their applicability in other in-

house experiments has not been tested widely. Golzarian et al.

(2011) and Chen et al. (2018b) predicted biomass in wheat at the

age of 15 to 43 days after sowing and in barley at the age of 27 to 58

days after sowing respectively, where crop biomass is not very high

and overlapping of leaves are less. But it is challenging to predict the
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biomass of wheat plant at peak vegetative growth. Also, different

crops pose different plant architecture such as leaf distribution, tiller

numbers overlapping of leaves etc which affects the biomass

prediction model accuracy. So, a robust and open-source model

that excludes the need for repeated destructive measurement is the

need of the hour for any high throughput phenotyping facility

worldwide. To address this, we conducted an experiment to

estimate wheat biomass and related traits non-destructively in the

largest phenomics facility in India, Nanaji Deshmukh Plant

Phenomics Centre (NDPPC). We aimed to develop a pipeline to

predict plant FW, DW and SA non-destructively by open-source

tools, which can be used in future experiments by different

researchers. We conducted two experiments in consecutive years

to see if the models work equally well in different datasets.

The selection of predictor variables for the estimation of a trait

is necessary. In the past, single i- trait based biomass estimation

(Tackenberg, 2007; Golzarian et al., 2011; Campbell et al., 2015) and
B

C

A

FIGURE 7

Non destructive estimation of DW by using i-Traits. (A, B) Prediction of DW in experiment 1 and 2 respectively. (C) Summary of the predictive power
of each regression model.
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modified experiments with multiple traits have been carried out

(Yang et al., 2014; Rahaman et al., 2017; Chen et al., 2018b).

Previous studies have suggested that combining multiple traits

such as vegetation indices and plant-height information can

improve biomass estimates (Bendig et al., 2015; Han et al., 2019).

Reports have shown that multiple traits and multi-sensor based

estimation of biomass have more accuracy and biological meaning

(Chen et al., 2018b) which includes different categorical features

such as geometric or architectural traits, colour based and NIR

based physiological traits. NIR reflectance have been reported to

determine water status of plants (Neilson et al., 2015; Jin et al.,

2017). As two plants having same plant architecture but different

water status will differ in their fresh weight due to the differences in

water status. By taking a leaf out of the literature review of non-

destructive plant biomass, we selected both RGB and NIR-based

traits for our study. We included architectural, colour class based,

mean red, blue and green-based indices and mean grey values to
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improve the estimation accuracy and make a robust model. We

selected 77 high-quality i-Traits by removing redundant, non-

informative traits using statistical and manual methods. Both

experiments 1 and 2 have differed in phenotypic responses as

accessed by principal component and box plot analysis (Figure 3)

which emphasizes the independent nature of experiments. So, this

will help in understanding the generalised nature of the models

across experiments.

We predicted FW, DW and SA using 77 i-Traits by 16 machine

learning methods which was available in open-source tool

“HTPmod”. To validate the results, we also ran all the models in

another dataset (experiment 2) with the same i-Traits for the

estimation of FW, DW and SA. The estimation accuracy was

consistent in both experiments which suggests that all those

models were generalized in nature and selecting a particular

model will not discriminate much accuracy. By observing the

predictive power, PCC and RMSRE, we found eight models to be
B

C

A

FIGURE 8

Non destructive estimation of shoot area by using i-Traits. (A, B) Prediction of shoot area in experiment 1 and 2 respectively. (C) Summary of the
predictive power of each regression model.
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performing relatively similar with higher estimation accuracies. We

included multivariate adaptive regression splines (MARS), random

forest (RF) and support vector machine-Radial regression (SVR) in

our selected eight models as they had accurate biomass predicting

ability (Chen et al., 2018b). All the predictive models worked

accurately for FW, DW and SA in both experiments. But we

found that eight models namely BGLM, GBM, GLM, GP-Radial,

KNN, LASSO, MLR and SVM-Radial performed relatively poor

than other eight models namely BLASSO, BRNN, GLMNET, GP-

Poly, MARS, RF, RIDGE and SVM-Linear. Here it is interesting to

see that simple multivariate linear regression was in the relatively

poor performing group which suggests that use of complex machine

learning model improved the accuracy of prediction than simple
Frontiers in Plant Science 13
MLR model (Chen et al., 2018b). The main reasons for the

difference in the prediction accuracy of different machine learning

models depends upon factors such as model assumption

parameters, model architecture, overfitting of model, sensitivities

to extreme values, collinearity present within the data set,

complexity of the model and number of samples (Ogutu et al.,

2012; Arruda et al., 2015; Esposito et al., 2019; Adak et al., 2021).

From all the 16 models four models performed relatively poor than

other models namely BGLM, GP-Radial, KNN and SVM-Radial.

BGLM model is less suited for small scale data and affected by

multicollinearity (Koehrsen, 2018), GP-Radial has problem of

scalability, representational power and targeted optimisation

(Hensman et al., 2013; Krauth et al., 2016), KNN mostly used on
FIGURE 9

Estimation of predictive power and relative importance of features (i-Traits) used in regression models. Bayesian-LASSO (BLASSO) model was used
for wheat FW, DW and shoot area prediction, using i-Traits from two independent experiments. But as both experiments performed relatively similar
with respect to prediction power and relative importance, experiment 1 information is presented here for the ease of understanding. (A, C, E).
Relative importance of i-Traits used for FW, DW and shoot area prediction respectively. (B, D, F) Predictive power of i-Traits used for FW, DW and
shoot area prediction respectively.
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classification and detection based problems and has limitations of

poor performance under high dimensionality and sensitive to

extreme values (Uddin et al., 2022) and SVM-Radial has

sensitivities to extreme values, collinearity and more helpful for

classification problems. Although these are very good machine

learning algorithms cited in literature and worked well under

different datasets but in our dataset and type of data, they

performance were hampered.

However, for general use and model selection purposes, we made

the more stringent model selection with respect to robustness,

predictive power, PCC and RMSRE for ease of use in future

experiments. The four models BLASSO, BRNN, GLMNET and

GP-Poly were consistent across the experiments in FW, DW and

SA estimation with relatively similar predictive power, PCC and

RMSRE value. These four models had higher R2 and PCC value and

lower RMSRE value than other models. The estimation accuracies of

these models were at par with the accuracy that have been reported

(Neumann et al., 2015; Rahaman et al., 2017; Chen et al., 2018b) in

literature and also the reproducibility of the accuracy was validated by

the results from our second experiment. Also, the validation of actual

leaf area to predicted SA has been a unique feature of this undertaken

research. Among all these models we found BLASSO to be the best

model in terms of high accuracy and low RMSRE value for all the

biomass and related trait prediction and was also stable and

interpretable across experiments. BLASSO had highest R2 value

and PCC value for both year experiment and lowest RMSRE value

among all models. BLASSO is a popular high dimensional data

analysis method. It can perform regularization and variable

selection at the same time. This can increase the precision of

predictions and interpretation of a problem (Vasquez et al., 2016).

It has major advances in terms of assumptions regarding the sample

distribution as it is independent of normality of sample distribution,

very efficient in handling large data set and dimensionality also helps

to overcome underfitting of model data. So, with the help of this

model along with multi-sensor dataset, we were able to predict FW,

DW and SA accurately in wheat.

Our results showed that by using open-source tools, we can

predict FW, DW and SA of wheat plant accurately in any in-house

experiment. The estimation accuracy of all the traits, such as FW,

DW, and SA, across both experiments was consistent with past

studies (Golzarian et al., 2011; Campbell et al., 2015; Neilson et al.,

2015; Neumann et al., 2015; Rahaman et al., 2017; Chen et al.,

2018b). It also reflected how individual trait impact estimation by

analysis of the relative importance and predictive power of each

trait. The critical features such as PSA, Area_SV, BPC_SV,

PSCC_17, 16, 13, NIR_TV, SV, B_SV, G_SV, SLR5_SV and

Gray_TV, which had consistently higher predictive power and

more significant correlation with FW, DW and SA can be used as

a surrogate for biomass accumulation and dissection of their genetic

basis in crop improvement programs. As biomass is a complex trait

showing both spatio-temporal variations upon different

environments, its characterization can be done using the above-

said i-Traits and models effectively at multiple time points.

There was no major limitation of this study but found some

interesting challenges which can be addressed by conducting

further research. This study was conducted in the controlled
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greenhouse conditions so the models selected here have to be

tested to predict the biomass under field condition to check the

generalised nature of the models. Increase in number of samples

and testing of models in different abiotic stress conditions will give

deeper insights into biomass modelling. As we have witnessed

increase in prediction accuracy was achieved by multiple sensor

data, use of advanced hyperspectral sensor data and LIDAR sensor

data in further research can give new insight into prediction

accuracy of machine learning models.
Conclusion

We developed the biomass and leaf area estimation model using

the Bayesian Least Absolute Shrinkage and Selection Operator

(BLASSO) machine learning method with high accuracy, which

will be helpful to future researchers in predicting biomass and leaf

area with high accuracy and robustness. We used the broad genotypic

base to include all possible variations in the biomass estimation

model to make it more robust. In order to bring out novelty in our

research, we used 16 machine-learning models to identify the best

estimation model. Wide range of phenotypic variations were taken

into consideration bymixing genotypes and recombinant inbred lines

(RILs) at different phenological stages. We predicted SA with higher

accuracy in wheat crop having compact plant architecture which had

not been validated earlier. We considered consecutive-year data set to

evaluate the model replicability. We found Bayesian Least Absolute

Shrinkage and Selection Operator (BLASSO) to be the best model

which gives prediction accuracy of 0.96 for FW, 0.90 for DW and 0.96

for SA. So, this model can be used as a generic model to predict the

vegetative stage biomass and leaf area in wheat. The use of leaf area

for estimation of conventional physiological parameters such as leaf

area index will be useful in crop improvement programmes. As

unique research, it included many biologically relevant image-based

traits, including NIR mean gray value, RGB colour class data and

mean RGB-derived indices. This work showed the vast potential for

future applicability in discovering novel QTLs for biomass and

growth-related traits at different phenological stages. Precise

phenotyping of biomass at multiple time points in the plant life

cycle will serve as a seed for the functional mapping of dynamic traits.

It also has future implications in characterizing and quantifying

nutrient deficiency effects at the different phenological time scale.
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