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Assessing water stress in a
high-density apple orchard
using trunk circumference
variation, sap flow index
and stem water potential

William D. Wheeler1*, Brent Black2 and Bruce Bugbee1

1Crop Physiology Laboratory, Department of Plants, Soils, and Climate, Utah State University, Logan,
UT, United States, 2Pomology Extension, Department of Plants, Soils, and Climate, Utah State
University, Logan, UT, United States
Introduction: Automated plant-based measurements of water stress have the

potential to advance precision irrigation in orchard crops. Previous studies have

shown correlations between sap flow, line variable differential transform (LVDT)

dendrometers and fruit tree drought response. Here we report season-long

automated measurement of maximum daily change in trunk diameter using band

dendrometers and heated needles to measure a simplified sap flow index (SFI).

Methods:Measurements were made on two apple cultivars that were stressed at

7 to 12 day intervals by withholding irrigation until the average stem water

potential (YStem) dropped below -1.5 MPa, after which irrigation was restored and

the drought cycle repeated.

Results: Dendrometer measurements of maximum daily trunk shrinkage (MDS)

were highly correlated (r² = 0.85) with pressure chamber measurements of stem

water potential. The SFI measurements were less correlated with stem water

potential but were highly correlated with evaporative demand (r² = 0.82) as

determined by the Penman-Monteith equation (ETr).

Discussion: The high correlation of SFI to ETr suggests that high-density

orchards resemble a continuous surface, unlike orchards with widely spaced

trees. The correlations of MDS and SFI to YStem were higher during the early

season than the late season growth. Band dendrometers are less labor intensive

to install than LVDT dendrometers and are non-invasive so are well suited to

commercialization.

KEYWORDS

band dendrometer, sap flow, stem water potential, water stress, Fuji, Scilate, high
density, dwarfing rootstocks
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1 Introduction

Commercial apple production in many areas of the world is almost

exclusively accomplished through grafting of genetically different fruit

bearing scions to well adapted rootstocks. Newly established orchards

have shifted toward dwarfing rootstocks and high planting densities

(Robinson, 2006). Furthermore, one of the most common and widely

planted apple rootstocks is M.9 due to its highly dwarfing nature,

precociousness and high fruit set (Fallahi et al., 2002). Dwarfing

rootstocks have reduced root volumes, which makes them more

prone to drought stress and necessitates careful irrigation

management (Gonçalves et al., 2006). In pome fruit, regulated deficit

irrigation during fruit development has been found to increase fruit

number and soluble solids content while decreasing fruit size (Marsal

et al., 2002). When deficit irrigation was applied during vegetative

growth, vigorous shoot growth and trunk expansion was suppressed

(Ebel et al., 1995). Without precise regulation of this irrigation deficit

however drought can quickly reduce yields and can lead to tree

mortality. Conversely, over application of irrigation can promote

excessive vegetative growth, increased pathogen pressure and leach

nutrients from the rootzone (Bonany and Camps, 1996). Precise

understanding of tree water status can inform irrigation timing,

ensure tree health and maximize productivity. An accurate and cost-

effective method that can be easily implemented in the field is urgently

needed to help orchard producers advance precision irrigation

methodology and maximize yields

Evapotranspiration (ET) modeling is a widely used tool for

estimating crop water loss in commercial orchard management to

estimate tree water status. Numerous models exist to compute potential

evapotranspiration (ET) (e.g. Priestley and Taylor, 1972 (Priestley and

Taylor, 1972), Hargreaves and Samani, 1985 (Hargreaves and Samani,

1985), Shuttleworth and Wallace, 1985 (Shuttleworth and Wallace,

1985)); the most widely used is the FAO - 56 Penman-Monteith

equation. Reference evapotranspiration values for a grass (ET0) or

alfalfa-like (ETr) crop are commonly reported from weather stations

and are then used in conjunction with empirically derived crop

coefficients to estimate specific crop water losses. While this

methodology is effective in many annual crops, results in orchard

crops have been mixed (Naor et al., 2008; Dzikiti et al., 2018). The

height of orchard trees and low planting densities compared to those of

reference crops have been cited as reasons for divergence of orchard ET

from modeled ET with modifying crop coefficients (Jarvis, 1984). For

these reasons, the use of reference models as an accurate predictor of

tree water status has been questioned (Annandale and Stockle, 1994).

Soil moisture measurements are a relatively inexpensive and

intuitive method for controlling irrigation in commercial orchards

but have several limitations. Soil moisture is an indirect measure of

tree hydration, and tree hydration is determined by both soil water

availability and environmental demand (Jones, 2004). Moreover,

soil heterogeneity and the extensive spread of tree roots mean that

soil moisture availability can vary greatly within an orchard, making

it necessary to use a large number of soil moisture sensors to capture

this variability (Pardossi et al., 2009).

Direct plant-based measurements of water stress have long been

considered the best approach for automating irrigation in orchard
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crops (Jones, 2004). Midday stem water potential (YStem) is

considered a reliable indicator of peak water stress for fruit trees

(Naor et al., 1995; Doltra et al., 2007), but the use of Scholander type

pressure chambers to determine Ystem is labor intensive, time

consuming and cannot easily be automated. To achieve accurate

deficit irrigation, orchard managers need plant-based measurements

that are easily automated and interpreted.

Sap flow sensors can provide a direct, near instantaneous

method for measuring sap flow, which is highly correlated with

tree transpiration (Burgess et al., 2001). However, calibrating these

types of sensors for absolute values is complex and prone to error,

even for experienced researchers (Forster, 2017). Relative values of

heat velocity and sap flow are well correlated to environmental

demand and transpiration (Burgess and Dawson, 2007; Ballester

et al., 2012; Forster, 2017). If the primary objective is to analyze and

leverage sap flow responses to biotic or abiotic stressors, sap flow

sensors can be used to estimate relative transpiration without

extensive calibration.

Diurnal trunk diameter variation has also been proposed as an

automated measure of plant water status for irrigation scheduling

(Goldhamer and Fereres, 2001). During the night, the stem rehydrates

and its diameter reaches its maximum near sunrise. Stem diameter

then contracts during the day and reaches its minimum diameter a few

hours after solar noon when evaporative demand is highest (Ginestar

and Castel, 1995). The difference between the maximum and

minimum trunk diameters in a 24-hour period is referred to as the

maximum daily shrinkage (MDS) and is well correlated with Ystem

(Fernández and Cuevas, 2010). However, the use of point

dendrometers, which are sensitive to position on the tree, has limited

the effectiveness of dendrometers for irrigation scheduling due to the

high degree of variability between measurements (Ortuño et al., 2010).

Band dendrometers, on the other hand, measure changes in trunk

circumference and can minimize position errors (Corell et al., 2014).

Although widely used in forestry, band dendrometers have seen limited

use in horticulture applications.

We sought to evaluate the effectiveness of a simplified relative

sap flow index (SFI) and trunk circumferential fluctuations from

band dendrometers as indicators for tree water status and irrigation

scheduling in high density apple plantings. We investigated the

correlation between atmospheric evaporative demand and sensor

readings compared to midday YStem. We hypothesized that

declining SFI values would be strongly correlated with decreasing

YStem, indicating water stress. Additionally, we expected to observe

a strong correlation between MDS from band dendrometers

and YStem.
2 Materials and methods

2.1 Site description

Research was conducted at the Utah State University Research

Farm located in Kaysville, UT (41° 01’ 21” N by 111° 55’ 51”W,

elevation 1325 m) during the 2020 growing season (5/9/2020 – 10/

7/2020). The region has a semi-arid continental climate under the
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Köppen classification system with average annual rainfall of

380 mm and an annual average pan evapotranspiration is

995 mm (57-year average). Sampling was done in a 0.5 ha, 6th

leaf, high density apple (Malus x domestica Borkh.) planting, with

1.5 m in row spacing and approximately 3 m between rows oriented

north to south. Trees were trained to a tall spindle system with

trunk diameters averaging 6-7 cm, 30 cm above the soil surface

(Robinson et al., 2008). The orchard was originally established to

examine the potential relationship between initial graft union

strength and subsequent drought tolerance (Adams, 2016) and

these goals ran concurrently with our trial. For this study two

scion and rootstock combinations consisting of fruiting scions

‘Scilate’ (Envy™) (Scilate) (White, 2009) and ‘Aztec Fuji’ (Fuji)

grafted with M.9 rootstocks were planted in blocks of six trees and

replicated four times in a randomized complete block design.

To investigate drought responses irrigation was withheld from

the entire plot until midday Ystem from an average of twenty

randomly selected trees dropped below -1.5 MPa. Then, between

20 and 80 mm of irrigation water was applied to recharge soil water.

Initial applications of irrigation water were around 20 mm (~6 hrs

run time) based on historical practice. However, this was deemed

insufficient for deep soil recharge and irrigation was increased to 50

to 80 mm (~24 hrs cumulative run time) for subsequent

applications. Trees were irrigated with micro-spray emitters with

a 2 m overlapping spray radius with an approximate application

rate of 3.4 mm hr-1. Over the course of the study, three irrigation

events were initiated to return trees to non-drought stressed

conditions, in addition to precipitation events that occurred

mostly in the beginning of the season and naturally brought trees

out of drought conditions. Soils were a well-drained Kidman series

fine sandy loam. Four CR1000 dataloggers (Campbell Scientific,

Logan UT, USA) were used to collect data from sap flow,

dendrometer, and soil moisture sensors (Figure 1).
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2.2 Stem water potential

Stem water potential (YStem) was measured twice weekly using a

Scholander pressure chamber (Model 610; PMS Instrument

Company, Albany, OR, USA). Three fully expanded leaves

located near the main trunk of one tree per block (n=4) were

covered with mylar bags for at least 2 hours before excision and

measurement. Readings from the 3 leaves were averaged per tree

and used in statistical analysis. Measurements were taken during

midday (12:00 – 14:00) to ensure consistency and minimize the

effects of diurnal variation.
2.3 Soil moisture

Soil water content was measured using dielectric sensors (GS3;

Decagon Devices, Inc., Pullman, WA) installed between replicated

plots (n=4). Readings were used to represent soil moisture for both

Scilate and Fuji scions in each replicate plot. Sensors were buried

one meter into the row at depths of 20 cm and 80 cm. The Topp

equation (Topp et al., 1980) was used to convert dielectric

permittivity volumetric water content (q) . Soil water

measurements were used to evaluate the effectiveness of irrigation

treatments and their impact on plant water status.
2.4 Sap flow index

Sap flow index (SFI) was measured using three-needle heat-

pulse sensors (East 30 Sensors; Pullman, WA). Needles were made

of stainless steel and were 1.2 mm in diameter, 35 mm long and

spaced 6 mm apart. The outermost needles contained three

precision thermistors, located at 5 mm, 17.5 mm and 30 mm
A B

FIGURE 1

Representative experimental setup in a high-density apple block in which ‘Aztec Fuji’ and ‘Scilate’ (Envy™) fruiting scions were grafted to Malling 9
Selection NICTM 29 rootstocks. (A) A band dendrometer (above) and sap flow sensor (below) were installed 0.5 m above the soil surface, above the
graft junction and were continuously monitored throughout the trial. (B) One of four dataloggers with insulation (center box) connected to two
sensor instillations with thermal and protective shielding (left and right of center box).
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from the needle base. For this study the thermistors located at

30 mm were not used as they were in the non-conducting

heartwood. The innermost needle housed a 45 W nichrome wire

heater, excited with 12 V for 8 sec every half hour. Individual trees

within the blocks were selected to accommodate sensor cable

lengths with one tree instrumented per block (n=4). A drill guide

was used during installation to ensure accurate spacing and prevent

probe misalignment. Sensors were placed approximately 0.5 m from

the soil surface, above the graft junction and below the lowest

branches; care was taken to avoid knots and deformities (Figure 1).

Heat velocity was determined using the dual method approach to

resolve low and high rates of flow as suggested by Forster (2020)

(Forster, 2020). Briefly, the dual method approach utilizes the Péclet

equation to transition between the heat ratio method (Burgess et al.,

2001) and temperature maximum method (Cohen, 1991) based on

whether conduction or convection is the dominant process of heat

transfer. Thermal diffusivity was assumed to be 0.0023 cm2 s-1 based on

previously reported values for apple (Forster, 2020). Measurements

were made every 30 min and averaged hourly and daily. A polynomial

wounding correction was applied to measurements based on a 1.7 mm

drill diameter (Burgess et al., 2001). Average daily wound corrected

heat pulse velocity measurements provided an index of sap flow and

used in all statistical analyses.
2.5 Trunk circumferential variation

Tree trunk circumferential variation was measured using band

dendrometers (D6; UMS, Munich, Germany). Maximum daily

shrinkage was calculated by the difference in a 24-hour period

between the maximum and minimum trunk circumference.

Maximum daily trunk circumference was determined once a day

from the maximum circumference measurement that occurred

between midnight and noon. Daily trunk growth rate (TGR) was

calculated from the change in the maximum daily circumference from

one day to the next (TGR = max. circumference day (n+1) – max.

circumference day (n)). Circumferential growth patterns were analyzed

by normalizing ending dendrometer voltages to final average scion

circumferences. Dendrometers were installed approximately 0.5 m

above the soil surface just above sap flow sensors on the North side

of the tree (Figure 1). A cable made of Invar steel, which has an

expansion coefficient close to zero, was used to secure the dendrometer

around the stem (Katerji et al., 1994). Teflon mesh was placed between

the sensor apparatus and tree trunk to allow the dendrometer to

smoothly expand and contract diurnally and slowly expand to

accommodate trunk growth over the growing season. Both the band

dendrometer and sap flow sensors were shielded using a ridged metal

frame that was insulated to minimize thermal loading.
2.6 Harvest and growth measurements

Fruit was harvested on day of the year (DOY) 281 and total

harvest weight and crop load were determined per tree (n= 24).

Average fruit size was calculated from the harvest weight and number

of fruit per tree. Final trunk circumferential measurements were taken
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30 cm above the soil surface for all trees using a flexible tape measure.

Trunk cross sectional area (TCSA) was computed from these

measurements. Stem elongation measurements were taken from

three shoots per tree (n = 24), measuring from the last year’s

growth to the tip of the new shoot.
2.7 Environmental measurements

Environmental data were collected by a weather station

maintained by the Utah Climate Center located approximately

0.25 km to the southwest of the block. Sensors included a

propeller blade and vane wind sensor (Model 05103, R.M. Young,

Traverse City MI, USA), temperature/humidity probe (EE08, E+E

Electronik, Engerwitzdorf, Austria), solar pyranometer (SP-230,

Apogee Instruments, Logan UT, USA), and tipping bucket rain

gage (TE525, Texas Electronics, Dallas TX, USA). Alfalfa reference

evapotranspiration was estimated from these data using the

American Society of Civil Engineers standardized reference ETr

equation (Allen et al., 2005).
2.8 Statistics

Four replicate blocks per scion were instrumented with sap flow

sensors (n =4) and three blocks per treatment were instrumented with

band dendrometers (n = 3). With the exception of one replicate block

where only sap flow sensors were used, the same trees were

instrumented with both sap flow and band dendrometers and YStem

was collected from the instrumented trees. When analyzing

correlations to YStem, data were adjusted to reflect sample sizes of

sap flow sensors and band dendrometers. Harvest, final trunk

circumference, and stem elongation data were analyzed from all

blocks in the plot. Data were separated into “early” and “late”

seasonal responses based on understanding of phenological stages

and analysis of circumferential growth (Liu et al., 2012). Late season

responses were judged to begin at day of the year 185 based on

plateauing of Fuji circumferential growth which corresponded roughly

with date of the end of spur leaf expansion and beginning of fruit

development. Sap flow index, MDS and YStem were examined for

correlations to environmental variables using linear regression. Sap

flow index and MDS were also examined for correlations to YStem

using linear regression. Differences between grafted scions over the

course of the season in SFI,MDS andYStem were determined utilizing a

linear mixed effects regression. A multiple linear regression model was

used to identify the relationship between independent environmental

variables and SFI. Statistical analysis was conducted using R statistical

software (R Foundation for Statistical Computing, Vienna, Austria).
3 Results

3.1 Environmental conditions

Daily averages for the most significant environmental variables:

air temperature (Ta), vapor pressure deficit (VPD), alfalfa reference
frontiersin.org
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evapotranspiration (ETr), and soil moisture (q) readings at 20 cm

and 80 cm below the soil surface are shown in Figure 2. Average

daily air temperature was 21.9°C and ranged from 7.1 to 31°C.

Vapor pressure deficit averaged daily over the season was 1.85 kPa

and ranged from 0.28 to 3.58 kPa. Correlations of physiological

measurements to average daily VPD were compared to maximum

observed VPD, and VPD averaged two hours before and after solar

noon. This restricted time interval VPD averaging (e.g. daylight

hours only, mid-day hours only) did not improve correlations

compared to average daily VPD. Average daily ETr was 5.47 mm

d-1 over the season and ranged between 2.03 and 8.38 mm d-1. Rain

fall occurred primarily in the beginning of the season and rainfall

values totaled 97 mm over the course of the trial. There were 13

irrigation events over the course of the trial, accounting for

approximately 555 mm of applied water. Soil moisture 20 cm

below the surface of the soil averaged 0.21 m3 m-3 and ranged

from 0.09 to 0.34 m3 m-3 while q-80 cm below the soil surface

averaged 0.22 m3 m-3 and ranged from 0.13 to 0.29 m3 m-3. Daily

wind speed averaged 1.8 m s-1 over the course of the trial and solar

radiation (Rn) averaged 24.9 MJ m-2 d-1 ranging from 9.4 to 31.7 MJ

m-2 d-1. There was a severe weather event that occurred on DOY

252 during which gusts of wind around 40 m s-1 were recorded,

equivalent to wind speeds of that of a category 2 hurricane. As a

result of this severe weather event, several trees (8) were uprooted

and a significant portion (>50%) of fruit was blown from the trees.

Fortunately, none of the instrumented trees were uprooted. Fruit

loss was judged to have affected both scions similarly and harvest

data was deemed useful for analysis.
3.2 Trunk circumferential variation

Starting average circumferences were significantly different

between Fuji and Scilate, with Fuji averaging 21.4 ± 0.02 cm and

Scilate averaging 19.0 ± 0.09 cm (P = 0.01). This significant difference

(P = 0.03) persisted at the end of the trial period with final trunk

circumference of Fuji averaging 22.3 ± 0.7 cm and Scilate averaging

21.0 ± 0.8 cm (Table 1). Total circumferential growth was greater in

Scilate (P< 0.01), with circumferences increasing by an average of 2.0

± 0.4 cm while Fuji circumferences increased by an average of 0.9 ±

0.3 cm over the trial period (Figure 3). Differences in the pattern of

circumferential growth were also noted, with Fuji rapidly putting on

growth early in the season and then plateauing later season, while

Scilate steadily put on growth until late in the season.

Daily TGR was significantly different (P = 0.02) between the two

cultivars over the course of the trial, with Scilate cultivars averaging

higher TGR. Analysis of TGR did not find strong correlations to

atmospheric drivers Rn (Fuji, r² = 0.05; Scilate, r² = 0.23), Ta (Fuji,

NS; Scilate, r² = 0.13), VPD (Fuji, r² = 0.03; Scilate, r² = 0.08) or ETr

(Fuji, NS; Scilate, r² = 0.30) (S1 Figure). Daily TGR was also not

significantly correlated to q at the 20 cm level and poorly correlated

at the 80 cm level (Fuji, r² = 0.28; Scilate, r² = 0.12). Poor or not

significant correlations of TGR to Ystem were observed (Fuji, r² =

0.10; Scilate, NS) (S1 Figure).

Measurements of MDS were not significantly different over the

trial period (P = 0.30). Data were still segregated by scion for
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analysis because of differences in crop load and ending

circumferences. Linear regression analysis was used to examine

correlations to environmental variables while controlling for

phenological stage (before and after DOY 185) (Table 2).

Early in the season, MDS of both Fuji and Scilate were most

highly correlated to Ta (Fuji, r² = 0.61; Scilate r² = 0.64), followed by

VPD (Fuji, r² = 0.53; Scilate r² = 0.56), and ETr (Fuji, r² = 0.46;

Scilate r² = 0.45). Later in the season, scion correlation patterns to

environmental drivers differed, with Fuji being most correlated to

Rn (r² = 0.71), followed by ETr (r² = 0.69) and then Ta (r² = 0.45)

and VPD (r² = 0.45). In the Scilate scions the two most significant

correlations were flipped compared to Fuji, with ETr (r² = 0.75)

being the most highly correlated followed by Rn (r² = 0.68), and Ta

(r² = 0.45) and VPD (r² = 0.45) being equal. Maximum daily

shrinkage was less correlated to q than atmospheric variables. Early

in the season q at 80 cm depth was more correlated to MDS (Fuji r²

= 0.30; Scilate r² = 0.22) than q at 20 cm (Fuji r² = 0.17; Scilate r² =

0.19). This pattern flipped later in the season with q at 20 cm being

better correlated to MDS (Fuji r² = 0.39; Scilate r² = 0.30) than q at

80 cm (Fuji NS; Scilate r² = 0.08). When pooling MDS data by scion

and across early and late season, linear regression analysis identified

ETr as the most significant atmospheric determinant of MDS and q
at 20 cm the most significant soil moisture depth. Multiple linear

regression model utilizing ETr and q at 20 cm accounted for 77% of

variation in MDS.
3.3 Stem water potential

There was no significant difference in YStem (P = 0.93) between

the Fuji and Scilate scions with Fuji averaging -1.39 ± 0.07 MPa and

Scilate averaging -1.23 ± 0.08 MPa over the course of the growing

season (Figure 2). Scions were separated for analysis based on

differences in harvest and final growth data. Responses to all

environmental variables were examined using linear regressions

(Table 2). Early season responses of YStem in both Fuji and Scilate

showed strong correlations to VPD (Fuji, r² = 0.76; Scilate, r² =

0.77), Ta (Fuji, r² = 0.70; Scilate, r² = 0.67) and ETr (Fuji, r² = 0.70;

Scilate, r² = 0.64). During the late season YStem responses showed

medium correlations to almost all measured environmental

variables, apart from wind speed. For Fuji scions the most

significant correlations in declining order were q at 20 cm (r² =

0.59), ETr (r² = 0.46), Ta (r² = 0.42), Rn (r² = 0.39), VPD (r² = 0.31),

and q at 80 cm (r² = 0.25). In Scilate scions most significant

correlations were: Ta (r² = 0.46), ETr (r² = 0.45), q at 20 cm (r² =

0.42), VPD (r² = 0.40), Rn (r² = 0.37), and q at 80 cm (r² = 0.25).

When pooling YStem data across scion and phenological stage,

multiple linear regression modeling utilizing ETr and q at 20 cm

accounted for 41% of variation in YStem. Pooled scion YStem was

also examined for correlations to pooled MDS and SFI (Figure 4).

Controlling for seasonality improved correlation coefficients

between SFI and MDS. Early season data were more correlated

with MDS measurements (r² = 0.85) than SFI (r² = 0.69). Late

season correlations declined in both MDS and SFI, though MDS

remained well correlated (r² = 0.71), while SFI correlations declined

significantly (r² = 0.36).
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3.4 Sap flow index

Sap flow index was not significantly different (p = 0.97) between

the two grafted scions over the course of the season (Figure 2). Early

in the season, both scions were highly correlated to Ta (Fuji, r² =
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0.84; Scilate, r² = 0.88), VPD (Fuji, r² = 0.77; Scilate, r² = 0.87), and

ETr (Fuji, r² = 0.76; Scilate, r² = 0.83) (Table 2). Later in the season

this trend remained the same with correlations to ETr improving

(Fuji, r² = 0.88; Scilate, r² = 0.89) followed by Ta (Fuji, r² = 0.79;

Scilate, r² = 0.80), VPD (Fuji, r² = 0.78; Scilate, r² = 0.82), and Rn
FIGURE 2

Time series of environmental data over the trial. Data for average air temperature (Ta), vapor pressure deficit (VPD), evapotranspiration (ETr) and
precipitation/irrigation collected by a weather station approximately 0.25 km away from the experimental apple block. This was compared to
maximum daily shrinkage (MDS) (n=3), sap flow index (SFI) (n=4) and stem water potential (Ystem) (n=4). Lighter colors used for MDS, SFI and YStem

denote early season data while darker colors denote late season data. Error bars represent standard error.
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(Fuji, r² = 0.74; Scilate, r² = 0.73). There were no significant

correlations to wind speed or q at either the 20 or 80 depth

during either the early or late season. When pooling data by scion

and season, linear regression analysis found that ETr (r² = 0.82) was

the most significant atmospheric driver and q at 20 and 80 cm were

not significantly correlated (Figure 4)(S2 Figure). Multiple linear

regression modeling using ETr and q at 20 cm accounted for 84% of

variation in SFI readings.
3.5 Measurement variability

Stem water potential had a combined season long coefficient of

variation (CV = Standard   deviation
Mean ) of 12.4% with average CV values
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being slightly lower for Fuji (9.5%) than Scilate (11.2%) (Table 3).

Maximum daily shrinkage had a combined CV of 31.9% with Fuji

being slightly more variable (29.3%) than Scilate (25.8%). Sap flow

indexes were the most variable, having an overall CV of 37.1% with

Fuji being significantly (47.0%) more variable than Scilate (25.7%).
3.6 Harvest and final growth

‘Aztec Fuji’ scions had significantly higher (P > 0.01) fruit

harvest mass per tree averaging 22.2 ± 4.0 kg per tree while the

Scilate averaged 11.7 ± 1.8 kg per tree (Table 1). Individual fruit

mass was higher (P = 0.02) in Scilate averaging 227.6 ± 9.2 g per

fruit compared to Fuji which average 192.9 ± 10.3 g per fruit. ‘Aztec
TABLE 1 Fruit harvest parameters and final trunk and stem measurements for ‘Aztec Fuji’ and ‘Scilate’ (Envy™) scions grafted to Malling 9 Selection

NIC™ 29 rootstocks.

Harvest
Weight

Crop
load

Crop load/
TCSA

Fruit
Size

Ending
circumference

Trunk cross sectional area
(TCSA)

Shoot
elongation

Scion kg fruit/tree #/tree #/cm2 TCSA g/fruit cm cm2 cm

Fuji 22.2 119 3.08 193 22.3 40.1 33.7

Scilate 11.7 52 1.49 228 21 35.3 31

p value < 0.01 < 0.01 < 0.01 < 0.01 0.03 0.03 0.07
A severe weather event occurred on day of the year 252 in which gusts of wind reached up to 40 m/s causing a significant amount of fruit loss (~50%).
A

B

FIGURE 3

Maximum daily circumference (A) and daily circumferential growth rate (B) measured by band dendrometers of three replicate trees from five-year-

old ‘Aztec Fuji’ and ‘Scilate’ (Envy™) fruiting scions on Malling 9 rootstocks over the course of the growing season. Data are normalized to average
ending circumference, measured by hand, for each scion to show growth patterns. A severe weather event occurred on day 252 of the year in
which gusts of wind reached up to 40 m/s caused severe damage to the orchard.
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Fuji’ had more (P > 0.01) fruit per tree, averaging 119 ± 15

compared to Scilate which averaged 52 ± 4 fruit per tree.

Normalizing for trunk cross sectional area (TCSA) Fuji

maintained higher numbers of fruit averaging 3.1 ± 0.6 fruits per

cm² of TCSA while Scilate averaged 1.5 ± 0.2 fruits per cm² of

TCSA. Stem elongation in Fuji appeared slightly more (33.7 ±

0.6 cm) than Scilate (31.0 ± 1.4 cm), but differences were not

significant (p = 0.07).
4 Discussion

4.1 Trunk circumferential variation
and growth

Studies have shown that the phenological stages of growth in

orchard trees can impact the response of MDS to environmental

drivers and YStem (Egea et al., 2009; Marsal et al., 2015). In

particular, Liu et al. (2012) identified two seasonal stages of

growth in apple (cv. Golden Delicious) based on trunk diameter

growth and leaf area index. During the first stage, which was

characterized by rapid leaf area and trunk expansion, trees

emerged from dormancy and anthesis occurred. The second stage

was marked by a plateauing of trunk growth and leaf area index,

coupled with rapid expansion and maturing of fruit. In this study,

we observed a plateauing of maximum daily trunk circumference in

the Fuji scion around day 185 (3 July), although it was less

pronounced than reported by Liu et al. (2012) (Figure 2). On the

other hand, we noticed only minor slowing of growth in the Scilate

cultivar, with circumference measurements continuing to increase

until late in the growing season. While fruit size was larger in the

Scilate scions, overall crop load (fruit #/cm2 TCSA) was lower
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(Table 1). Shoot elongation was not statistically different at a of

0.05, which, given smaller TCSA and lower crop load in the Scilate,

suggests greater carbon allocation to vegetative growth.

Furthermore, continued circumferential growth later in the

season in Scilate scions was likely due to lighter crop load and

reduced carbon allocation to fruiting compared to Fuji.

After controlling for phenological stage of growth, it was

observed that the correlations of MDS to YStem were strongest

early in the season and declined after DOY 185 (July 3rd) when fruit

development became the dominant factor affecting tree responses.

This finding was consistent with previous studies using point

dendrometers that have documented declining correlations of

MDS to YStem in plum and peach as the season progressed

(Intrigliolo and Castel, 2006; Marsal et al., 2015). In this study,

reduced correlations of MDS to YStem in the late season are

attributed to a combination of factors, including fruit load and

extended drought.

The onset of fruit development increases osmotic loading of the

phloem, which impacts water storage dynamics of the tree (Ortuño

et al., 2010). Under well-watered conditions, osmotic loading can

result in greater swelling of cambium tissues during nighttime

recharge of water (Wang et al., 1995), resulting in increased MDS

readings in relation to YStem (Intrigliolo and Castel, 2007).

However, in this study, MDS values decreased for the same YStem

(Figure 5), indicating that the opposite trend was observed.

Moreover, although the Fuji had higher yield and crop load at

harvest, MDS values were not significantly higher (p = 0.30) than

those of the Scilate (Table 1). Soil moisture content and YStem were

on average lower throughout the plot after DOY 185 indicating

greater water stress during fruiting. This limited soil water

availability could have inhibited nighttime recharge of stem water

and diurnal trunk expansion. Additionally, stored water can
TABLE 2 Coefficients of determination.

Parameter Season Cultivar
Rn Ta VPD ETr q at 20 cm q at 80 cm

(MJ m-2 d-1) (C) (VPD) (mm day-1) (cm3 cm-3) (cm3 cm-3)

MDS

Early
Fuji 0.2 0.61 0.53 0.46 0.17 0.3

Scilate 0.15 0.64 0.56 0.45 0.19 0.22

Late
Fuji 0.71 0.45 0.45 0.69 0.39 NS

Scilate 0.68 0.61 0.61 0.75 0.3 0.08

SFI

Early
Fuji 0.37 0.84 0.77 0.76 NS 0.04

Scilate 0.33 0.88 0.87 0.83 NS NS

Late
Fuji 0.74 0.79 0.78 0.88 0.12 NS

Scilate 0.73 0.8 0.82 0.89 0.11 NS

YStem

Early
Fuji 0.22 0.7 0.76 0.7 0.12 0.12

Scilate 0.19 0.67 0.77 0.64 0.03 0.04

Late
Fuji 0.39 0.42 0.31 0.46 0.59 0.23

Scilate 0.37 0.46 0.4 0.45 0.42 0.25
Coefficients of determination (r²) between environmental inputs and maximum daily trunk shrinkage (MDS), sap flow index (SFI), and mid-day stem water potential (YStem) for ‘Aztec Fuji’ and
‘Scilate’ (Envy™) scions grafted to Malling 9 Selection NIC™ 29 rootstocks. Both scion/rootstock combinations were subjected to multiple dry down events over the course of the trial. NS
indicates no statistically significant regression.
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TABLE 3 Variability of measurements.

Scion YStem MDS SFI

Fuji 9.50% 29.30% 47.00%

Scilate 11.20% 25.80% 25.70%

Combined 12.40% 31.90% 37.10%
F
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Coefficients of variation (%) of midday stem water potential (YStem), maximum daily shrinkage (MDS) and sap flow index (SFI) measured on fruiting ‘Aztec Fuji’ and ‘Scilate’ (Envy™) both
grafted to Malling 9 Selection NIC™ 29 rootstocks. Values are presented for data over the course of the season from four replicate trees for measures of SFI andYStem and three replicate trees for
MDS. SFI and MDS are daily averages for a 151 day trial period while YStem average 43 different measurements over the course of the season.
FIGURE 4

Correlations to principal above and below ground environmental drivers across scion type. Correlations between maximum daily trunk shrinkage,

sap flow index, and mid-day Ystem and ETr and volumetric water content at 20 cm. Data were pooled for ‘Aztec Fuji’ and ‘Scilate’ (Envy™) scions on
Malling 9 rootstocks and over the entire season. NS indicates no statistically significant regression.
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account for up to 50% of transpirational demand (Köcher et al.,

2013). More negative osmotic potential in the cambium tissues

could have acted as a competitive sink for stored water, limiting

trunk contraction due to transpirational loss. The combination of

greater osmotic loading and limited soil water availability could in

this way depress MDS responses.

Previous studies have suggested that MDS values follow a

parabolic response to YStem, with MDS values increasing until a

species-specific threshold is reached, after which they decline

(Ortuño et al., 2010). This response has been attributed to various

factors, including depletion of water reservoirs in the phloem and

surrounding xylem tissues as well as stomatal and osmotic

regulation (Garnier and Berger, 1986; Remorini and Massai,

2003). However, in this study, MDS values increased linearly with

more negative YStem. Ortuño et al. (2010) reported MDS began to

decline after YStem values reached -2.5 MPa in potted apple trees.

Minimum YStem values in this study reached ~ -2.0 MPa at which

time leaf curling, tip burn and low q were observed. This was judged
to be significant water stress, beyond what would be tolerated in

commercial production.

Although previous research has suggested that daily growth is a

better indicator of drought stress than MDS in rapidly growing

young trees (Nortes et al., 2005), significant correlations between

daily growth and environmental parameters or YStem were not

observed in this study. Trees were at the 6th leaf at the time of the
Frontiers in Plant Science 10
study, which is considered to be mature and past the stage of initial

rapid growth in which daily growth is the most sensitive parameter

for water stress.
4.2 Sap flow index

Previous research has indicated that the correlation between sap

flow and environmental drivers can vary depending on the

phenological stage of the tree (Chen et al., 2014; Tie et al., 2017).

For instance, daily sap flow rates presented by Liu et al. (2012)

showed that correlations of sap flow to Ta, VPD, and ETr improved

over the course of the season. Similarly, data presented in this study

found that correlations of Rn and ETr with sap flow increased over

the season. However, correlations to Ta and VPD showed no

significant improvement (Table 2). Liu et al.’s (Liu et al., 2012)

findings could be attributed to the inclusion of data from early

spring when trees had fully leafed out, resulting in low sap flow

readings and thus low correlations. Tie et al. (2017) addressed this

issue by normalizing the data to leaf area index, leading to improved

correlation coefficients throughout the season. In this study, data

collection was initiated after trees had leafed out, which improved

early season correlations and more closely matched data from Tie

et al. (2017). Previous studies have identified VPD, Ra, Ta, q, and
leaf area index as predominant drivers of sap flow in various trees
FIGURE 5

Early and late season correlations to stem water potential. Correlations of maximum daily trunk shrinkage and sap flow index to mid-day Ystem for

fruiting scions ‘Aztec Fuji’ and ‘Scilate’ (Envy™) on Malling 9 rootstocks. Data were segregated into early (light grey and red circles) season responses
that corresponded with spur leaf development and fruit set, and late season (black and dark red triangles) responses which corresponded with
elongation of terminal and bourse shoots. NS indicates no statistically significant regression.
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and environmental conditions (Ford et al., 2004; Dragoni et al.,

2005; Agam et al., 2013; Mobe et al., 2020). In this study ETr, VPD,

and Ta were most strongly correlated to SFI, while Ra was only well

correlated later in the season. Interestingly, q was not significantly

correlated to SFI at any point in time. Shifts in seasonal SFI response

were most likely due to older leaves accounting for a larger portion

of the tree canopy, which are less responsive to environmental

drivers due to greater internal shading and reduced stomatal

conductance compared to recently matured leaves (Constable and

Rawson, 1980; Flore and Lakso, 2011).

Correlations to ETr were high during both the early and late

season and showed significant overlap, and seasonal correlations

pooled across scion type were also strong (Figure 4). High

correlations of SFI to ETr was unexpected given the published

literature which points to divergence in orchard ET from reference

ET (Jarvis, 1984; Dragoni et al., 2005). Reference ET models utilize

idealized values for canopy characteristics that reflect a continuous,

short, dense, and homogenous crop with a relatively large boundary

layer. Because of these assumed canopy characteristics and

boundary layer effects, reference ET models have been better

correlated to incoming solar radiation than bulk atmospheric

conditions (Jarvis, 1984). Tall, widely spaced trees coupled with

the large amount of self-shading mean that bulk atmospheric

conditions (e.g. VPD) is often a better predictor of orchard ET

values (Dragoni et al., 2005). We hypothesize that in high density

orchard plantings with interconnected canopies, aerodynamic

resistance is higher creating boundary layer effects that decouple

orchard ET from bulk air properties, especially later in the season as

leaf area index reaches a maximum. Additionally, highly managed

fruit tree orchards utilize pruning and training techniques to

maximize canopy radiation capture.

Previous research has shown linear correlations of sap flow

readings toYStem under non-limiting soil water conditions (Ortuño

et al., 2010). Both early and late seasonal responses followed this

same pattern of increasing sap flow with decreasing YStem

(Figure 5). Correlations of SFI to YStem were stronger in the early

season while late season correlations decreased. Declining

correlations later in the season could be a function of stomatal

regulation, however fruiting deciduous orchards have been shown

to have higher stomatal conductance, transpiration and carbon

assimilation than de-fruited trees of the same age (Naor et al., 2008).

Similar to depressed correlations of MDS, SFI correlations to YStem

most likely declined due to limited soil water availability combined

with solute loading, leaf age and crop load.

Several studies have reported reductions of peak sap velocities

following severe drought. Researchers have also noted an inward

radial shift of peak velocities toward the heartwood (Cermak and

Nadezhdina, 1998; Ford et al., 2004). Based on these findings

Nadezhdina et al. (2007) suggested that analysis of the shape of

the sap wood profile might be a reliable indicator for irrigation

scheduling. Studies in olive, apple and Asian pear however did not

find significant variation in sap velocity profiles under a range of

soil water availability and atmospheric demand (Fernández et al.,

2008). Our analysis of the ratio of outer to inner SFI found a

moderate correlation to YStem when pooling scions (r² = 0.48) (S3

Figure). It may be possible that the proposed technique is not
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applicable for diffuse porous species such as apple, but could work

for ring porous species which have a bimodal radial distribution of

vessel diameters. This means that they do not produce steep

gradients in sap velocity between the inner and outer sapwood

(Bush et al., 2010; Tyree and Zimmermann, 2013).
4.3 Stem water potential

A saturating response of season long YStem to VPD has

previously been reported in apple (De Swaef et al., 2009) where a

linear relationship has been described in olive (Moriana et al.,

2012), prune (Fereres and Goldhamer, 2003) and plum (Intrigliolo

and Castel, 2006). De Swaef et al. (2009) (De Swaef et al., 2009)

speculated that the saturating response seen in apples may be due to

restricted root volumes. In dwarfing rootstocks, like the one used in

this study, lower rootzone volumes have been associated with

reduced drought tolerance (Tworkoski et al., 2016). When YStem

is pooled across scions and seasonally a polynomial function

produces a greater fit (r² = 0.62; S4 Figure) than a simple linear

one (r² = 0.53; S4 Figure) making data presented here in line with

observation by De Swaef et al. (2009). Overall YStem was less

impacted by environmental drivers then SFI and MDS with

division of readings by seasonality improving early season

correlations and depressing correlations later in the season. It is

unclear from this study if phenological stage of growth affectsYStem

response or if drier conditions later in the season caused seasonal

differences in response.
4.4 Discussion of relative sap flow index

The accurate calibration of absolute sap flow using heat pulse

techniques involves several technical calibrations, including

measuring sapwood density, sapwood moisture content, area of

conducting tissue, correcting needle misalignment, and

determining the thermal diffusivity of the sapwood (Taylor et al.,

2013). However, these complex calibrations present significant

challenges to the adoption of sap flow as an irrigation tool in

commercial orchards where equipment and expertise may not be

available. Even in research settings, accurate calibration for absolute

sap flow is difficult, with an average error rate of 34% in published

studies and most measurements underestimating tree water usage

(Forster, 2017).

Determinations of sap flow rely on measured changes in

temperature and time elapsed to calculate the velocity of a pulse

of heat as it is carried through the trunk (Swanson and Whitfield,

1981; Cohen, 1991; Burgess et al., 2001). Thermal accounting of

conductive and convective properties of the trunk and sap are then

employed to derive sap velocity from heat velocity and estimates of

conducting tissue area are subsequently used to estimate sap flow.

Typically, thermal properties are determined through either coring

the tree before the trial or destructively harvesting the tree after the

trial, and these properties are then treated as constants throughout

the measurement campaign. In this study we focused solely on

measurements of heat velocity, without attempting to derive
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accurate measures of sap flow. By simplifying the application and

removing the need for technical calibrations, we remove barriers to

use. The use of relative measures of sap flow is not without

precedent, several researchers have used either indexes

(Nadezhdina, 1999), normalized values (Burgess and Dawson,

2007; Ballester et al., 2012) or relative measures (Doronila and

Forster, 2015) of sap flow in tree water use analysis. We argue that

understanding the underlying pattern of sap flow is essential in

informing tree responses to water stress, and absolute

measurements are not necessary for this purpose. The SFI values

presented here follow trends seen in the literature of calibrated sap

flow, as described above.
4.5 Measurement variability

High tree-to-tree measurement variability has been cited as a

reason for limited adoption of sap flow sensors and dendrometers as

irrigation tools in commercial orchards (Ortuño et al., 2010;

Fernández, 2017). In analyzing coefficients of variation

(CV = Standard   deviation
Mean )for this trial we found that MDS and SFI

were more variable than YStem (Table 3). Naor and Cohen (2003)

(Naor and Cohen, 2003) noted the same pattern in apple withYStem

having the least tree to tree variability, followed by MDS and SFI.

The study authors attributed high variability of MDS to variability

in vasculature area and tree hydraulic conductance. Variability in

SFI was speculated by the authors to be due to tree-to-tree

differences in canopy size and thus rates of transpiration. Plant

water status on the other hand is a more holistic measure of plant

response that incorporates many different crop characteristics and

physiological responses (Naor et al., 2005). The higher degree of

variability in MDS and SFI is also partially explained by the high

degree of environmental correlation of these measures. When

pooling data by scion and season, multiple linear regression

utilizing ETr and q at 20 cm accounted for 41% of reading

variation of YStem compared to 77% of the reading variation in

MDS, and 85% of SFI. Previous studies have compared the signal

intensity (SI) of MDS, sap flow and YStem by contrasting readings

from well-watered trees to those of deficit irrigated or drought

stressed trees. While utilizing SI reduced the amount of

environmental variability, physiological parameters followed the

same pattern seen in this study with YStem having the lowest

variability, followed by MDS and SFI (Fernández and Cuevas,

2010). Overall CV of MDS from band dendrometers used in this

study was 31.9% which is higher than studies CV values for point

dendrometers summarized by Fernández and Cuevas (2010), which

averaged 12.5% for fruit trees. This result was surprising given that

circumferential measurements incorporate a larger area and reduce

viability. Greater variability necessitates more instrumentation to

reduce sampling errors, this in turn drives up the initial investment

cost of any sensor-controlled irrigation system. These costs

however, should be measured against the amount of labor and

time needed to collect YStem measurements and the ability of

automated measurements to more comprehensively capture

seasonal records.
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4.6 Irrigation scheduling and
future considerations

Previous researchers have automated irrigation based on set

thresholds of MDS (Bussi et al., 1999) or sap flow (Cohen, 1991).

Some researchers have sought to overcome the impact of

environmental drivers and phenological stages on MDS and sap

flow by using ratios of automated irrigation treatments to well-

watered controls (Ortuño et al., 2006). Other studies have relied on

mechanistic models based on sap flow and trunk water storage have

been used to estimate YStem and automate irrigation (Steppe et al.,

2008). However, the long-term adoption and large-scale application

of these strategies are hindered by the issue of sensor variability and

the technical expertise required for implementation. This study

primarily focused on sensor responses in high density apple and the

evaluation of alternative sensors and sensor readings. Although

more easily adopted for commercial application, the variability of

these alternative sensors and sensor readings was similar or greater

than that reported in the literature. Future research should focus on

easily adopted sensor readings that can reliably distinguish

physiological responses related to drought from responses due to

simple environmental variation and changes in phenological stage.

In addition to addressing sensor responses, sensor-based

irrigation scheduling must also consider how signals can inform

irrigation application amounts. Steppe et al. (2008) based irrigation

amounts on measured sap flow, while other researchers have used

trunk diameter and sap flow trigger a timed irrigation application.

One limitation of using a sap flow index as suggested in this study is

it does not provide an absolute measure of sap flow and thereby an

estimation of tree water usage. However, a responsive enough signal

of plant water stress that can directly trigger on demand irrigation

could bypass the need to calculate specific irrigation amounts

(Jones, 2004). Furthermore, tree-derived estimates of irrigation

amount must take into account not only tree water uptake but

also percolation, competitive uptake from surrounding crops,

evaporative loss and ground water recharge from below. When

considering water use from instrumented crops alone, this may lead

to underest imation irr igat ion amounts that need to

be compensated.

Finally, irrigation application must consider its effects on yield

and growth which are the ultimate goals in irrigation management.

Previous research focusing on regulated deficit irrigation has shown

controlled drought through the withholding irrigation applications

to be effective in a number of fruit tree species. This practice has the

additional documented benefits of: reduced vegetative growth and

reductions in labor hours associated with pruning, improved

postharvest quality and fruit shelf life, and greater resilience to

pathogens (Goldhamer et al., 2005). Much research has focused on

linking physiological measurements determined through

automated data acquisition to YStem, for which there is a large

body of reported literature linking values to yield and fruit size. A

mechanistic approach could consider photosynthetic rate and

carbon partitioning of the tree and develop a predictive model

that would incorporate automated irrigation amounts and timing to

control fruit development (Steppe et al., 2008). However,
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implementing such an approach would again require technical

expertise to implement, posing a barrier for adoption.
5 Conclusions

Given the difficulty of calibrating heat pulse sensors to derive

absolute sap flow, relative values provide a reliable indication of sap

flow responses to environmental conditions while lowering barriers

to entry. However, even relative sap flow is not a reliable method for

irrigation scheduling and sap flow sensors must be replaced

each year.

Band dendrometers provide significant advantages over point

dendrometers because they can be quickly and non-invasively installed

or removed. Maximum daily shrinkage (MDS) measurements were well

correlated to YStem. In semiarid regions, MDS measurements could

replace labor intensive YStem measurements.

Controlling for seasonality improved correlations of MDS and

SFI to YStem. Correlations declined as the season progressed, likely

due to crop loading, soil water availability and leaf age. SFI,

however, was highly correlated with ETr throughout the season.

Our results suggest that high density plantings create a more

continuous surface for aerodynamic resistance so that ETr is

more highly correlated than in widely-spaced trees in traditional

orchards. Thus, orchard density needs to be considered when

scheduling irrigation.

This study highlights the complex interplay between

environmental conditions and tree water use dynamics, which

can vary depending on species and phenological stage. MDS and

sap flow measurements can provide insights into tree water status,

but it is important to consider fruit load and soil moisture content

when interpreting these data.
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