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Measurements of rice physical traits, such as length, width, and percentage of

filled/unfilled grains, are essential steps of rice breeding. A new approach for

measuring the physical traits of rice grains for breeding purposes was presented in

this study, utilizing image processing techniques. Backlight photography was used

to capture a grayscale image of a group of rice grains, which was then analyzed

using a clustering algorithm to differentiate between filled and unfilled grains based

on their grayscale values. The impact of backlight intensity on the accuracy of the

method was also investigated. The results show that the proposed method has

excellent accuracy and high efficiency. Themean absolute percentage error of the

method was 0.24% and 1.36% in calculating the total number of grain particles and

distinguishing the number of filled grains, respectively. The grain size was also

measuredwith a littlemargin of error. Themean absolute percentage error of grain

length measurement was 1.11%, while the measurement error of grain width was

4.03%. The method was found to be highly accurate, non-destructive, and cost-

effective when compared to conventional methods, making it a promising

approach for characterizing physical traits for crop breeding.

KEYWORDS
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1 Introduction

Breeding researchers have long been exploring various ways to effectively improve rice

yield, quality, and stress resistance characteristics (Zhang et al., 2007; Araus et al., 2008;

Wang et al., 2015). Measurements of rice physical traits, such as length, width, and

percentage of filled/unfilled grains, are essential steps of rice breeding. An accurate

estimation of the physical traits will increase the effectiveness of rice breeding (Ge et al.,

2021; Luo et al., 2019). However, the conventional manual measurement of these traits is

time-consuming and prone to fatigue, resulting in large errors in the results. Moreover,

Duan et al. (2011) suggested that it is challenging to manually distinguish filled grains from
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unfilled grains. Therefore, an accurate, automatic, and rapid

assessment of the physical traits is necessary to effectively and

efficiently improve rice yield and quality through rice breeding.

Due to the advancement of computer performance, the digital

image processingmethod has been widely used in seed analysis due to

its high efficiency (Al-Tam et al., 2013; Crowell et al., 2014; Liu et al.,

2017). A Panicle Trait Phenotyping method (P-trap) was developed

for high-throughput measurements of panicle architecture and seed-

related traits (Faroq et al., 2013); A method to measure grain size and

color from images captured with consumer-level flatbed scanners was

also developed (Whan et al., 2014); A grain detection model was

proposed to recognize and count grains on primary branches of rice

plant by (Deng et al., 2021; Deng et al., 2022). These methods and

models can detect the total grain number and size parameters with

reasonable accuracy. However, they cannot distinguish filled and

unfilled grains, and thus cannot count the number of filled grains.

Alternative imaging modalities, such as magnetic resonance

imaging (MRI) and positron emission tomography (PET), have

been explored for the investigation of plant traits, albeit their

adoption remains limited in the research community (Borisjuk et

al., 2012; Hubeau et al., 2015). This constrained utilization can be

attributed to the predominant presence of MRI and PET scanners

within the confines of hospitals and medical research centers,

primarily due to the substantial capital investment and ongoing

maintenance exigencies associated with these instruments. Notably,

recent endeavors have employed nuclear magnetic resonance (NMR)

to gauge grain weight and composition on a population scale,

although this was predominantly executed on discrete,

unconsolidated grains (Corol et al., 2016). Despite these

incremental strides, a critical gap persists in the arsenal of

techniques dedicated to the expedient and non-destructive

assessment of crop yield impacts and, more specifically, grain

characteristics, whilst preserving critical spatial information. In

concert with controlled-environment growth facilities, the

integration of advanced imaging capabilities holds the potential to

furnish an unprecedented level of precision in scrutinizing the

influence of environmental factors on phenotype. X-ray micro-

computed tomography (mCT) emerges as a non-invasive imaging

modality grounded in the principle of differential X-ray attenuation

by biological specimens, offering a viable and cost-effective alternative

(Rousseau et al., 2015; Tracy et al., 2017). The μCT apparatus

comprises essential components, including an X-ray source, a

sample rotation stage, and an X-ray detector. The attenuation of

X-rays during their traversal through the specimen corresponds to

the density and atomic composition of the material and is captured

by the imaging detector as grayscale values. By systematically altering

the orientation of either the X-ray beam or the sample, an array of

projections is acquired from diverse angles, which can subsequently

be reconstructed to yield an accurate three-dimensional

representation or model of the object under scrutiny (Hughes et al.,

2017; Dhondt et al., 2010). Originally devised for medical diagnostic

purposes, recent advances in μCT technology have yielded

enhancements in scan resolution, overall quality, and scan duration

reduction, rendering it amenable to the investigation of intricate plant

traits (Pajor et al., 2013; van der Niet et al., 2010). The capability to

discern and quantify internal structures in a non-invasive and
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non-destructive manner, coupled with the potential for process

automation, renders μCT an enticing and efficacious approach for

the systematic study of plant traits. High-resolution μCT has, in fact,

successfully found utility in the comprehensive analysis of various

aspects, including soil properties, root architecture, developing

seeds, shoot structures, emerging panicles, and leaf morphology

(Staedler et al., 2013; Jhala et al., 2015). Duan et al. (2011)

proposed a method of counting total grains and filled grains

simultaneously, based on automatic discrimination of filled and

unfilled grains by combining visible-light imaging and soft X-ray

Imaging. Yu et al. (2021) adapted this method to study the structure

of rice panicles. Researchers (Strange et al., 2014) used computed

tomography to carry out three-dimensional imaging of wheat

panicles and used image processing technology to extract grains

from the three-dimensional model of the panicle for analysis.

Although X-ray imaging is effective at distinguishing filled and

unfilled grains, the radiation may affect the nutrients and genes of

seeds, creating problems in seed breeding (Yali and Mitiku, 2022).

Deep learning techniques have also been used to identify shapes and

calculate the number of seeds (Uzal et al., 2018; Zhao et al., 2022).

This study proposed a phenotype acquisition method for

measuring the physical traits of rice grains using visible spectrum

photography and backlight image processing. The specific objectives

were to: (1) propose an image processing algorithm for measuring

rice grain size and detecting filled/unfilled grains; (2) investigate the

effects of light intensity and dark ratio threshold on grain recognition

performance; and (3) validate the accuracy of the algorithm by

comparing the predicted results with experimental results.
2 Materials and methods

2.1 Image acquisition system

The rice grains were placed on a glass turntable and illuminated

by a white strip light underneath. A line scanning camera took

continuous pictures of the grains and recorded backlight images. An

image processing algorithm was developed to identify the length,

width, and filled/unfilled status of each grain based on grayscale
FIGURE 1

The image acquisition system.
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values in the backlight images. To obtain clear and high-quality

images of rice grains, an image acquisition system was built as

shown in Figure 1. The system consists of a line-scan camera MV-

CL021-40GM (Hikvision Digital Technology Corporation,

Hangzhou, China) with a 20 mm lens (F4.5, LS003F20-D30, CST,

China), a glass turntable (Corence sensor Corporation, Ningbo,

China), a white line-array LED illumination source possessing a

spectral range spanning from 450 to 700 nm (Hegho Electric

Corporation, Shenzhen, China), a computer and control units.

The white line-array LED was placed underneath the glass

turntable. The glass turntable was continuously rotated by a

stepper motor with an encoder at a rate of 40 rpm. The line-scan

camera (encompassing a detectable spectral range from 380 to 780

nm) captured images of the grains on the turntable at a resolution of

0.086 mm/pixel, synchronized with the encoder’s pulse. A Gigabit

Ethernet cable was used to transport the backlight images from the

camera to the computer for real-time processing.
2.2 Rice samples

Rice samples of the variety of Huahang No.57 (Oryza sativa

subsp. indica) were obtained for testing in this study. The samples

were collected on July 12, 2021, from a 10-meter-long by 4-meter-

wide paddy field located at the Institute of Agricultural Sciences in

Zhaoqing, Guangdong, China (23°10’9.303” N, 112°34’13.810” E).

A total of 50 rice panicles at the mature stage were randomly

sampled in the field. These harvested rice panicles undergo a

threshing process, facilitated by a mechanized threshing

apparatus, supplemented by manual intervention to facilitate the

removal of extraneous grain impurities such as broken leaves,

fractured stems, and residual branchlets. It is imperative to note

that no further treatments, including washing or additional

cleansing procedures, are administered to the rice grains.

Subsequent to the completion of the threshing procedure, it is

imperative that the separated grains undergo a drying process,

which is executed at a controlled temperature of 40°C for a duration

spanning 3 days. The actual grain sizes, the total number of grains

and the number of filled grains for each panicle were measured and

counted three times and the average values were used as

experimental reference (in Appendix).
2.3 Experimental design

Three experiments were conducted in this study to examine the

effects of parameter settings on algorithm detection results and to

validate the accuracy of the results. These experiments included a

backlight intensity test, a dark ratio threshold test, and a validation

experiment. The first two tests focused on investigating the impact

of algorithm parameters on the results while the third test aimed to

validate the performance of the proposed method by comparing the

results with actual values obtained from manual counting

and measurements.

For the backlight intensity test, 50 grains were randomly

selected from 5 panicles, with 25 being filled and the other 25
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being unfilled (see Appendix A). The backlight intensity varied

from 20 klux to 200 klux with an increment of 20 klux. The

grayscale value of each grain was calculated as the summed

average of the grayscale of all pixels on that grain.

For the dark ratio threshold test, 15 panicles of rice were used

and the actual values of the filled and unfilled grains were measured

(see Appendix B). Typically, each rice spike is observed to

encompass a range of 130 to 290 rice grains. Consequently, when

assessing the optimal dark ratio threshold, an exhaustive total of

approximately 3,000 rice grains were meticulously segregated and

were subsequently incorporated into the testing process. From

preliminary studies, four typical dark ratio threshold values,

namely 0.4, 0.6, 0.7, and 0.8, were selected to examine the effect

of threshold on grain counting accuracy.

In the validation experiment, actual values of the filled and

unfilled grains were measured from 30 panicles, and the sizes of 50

filled grains were randomly taken from those panicles (see

Appendix C). The measured data were used as the reference data

for comparison with the results obtained from the proposed

method. The performance of the proposed method was evaluated

using regression analyses.
2.4 Image processing

An algorithm for identifying the size of each rice grain and the

percentage of filled/unfilled grains was developed, and its flow chart

is presented in Figure 2. The algorithm consists of several processes,

including image remapping, image preprocessing, watershed

algorithm, recognition of filled and unfilled grains, and size

measurement, which are described in detail in the following

sections. All programs were written using OpenCV-Python 4.5.2

(Bradski et al., 2000).

2.4.1 Image remapping
As shown in Figure 1, a line-scan camera was used to take the

image of grains on the turntable. Although the turntable rotated at a

constant angular velocity, the linear velocities of grains with

different distances to the center of the turntable were different.

The linear velocities of the grains near the outer ring were greater

than the grains near the inner ring of the turntable due to the

greater rotating radius of the former group. As a result, the original

image taken by the camera was distorted as shown in Figure 3A.

Thus, an image remapping algorithm was proposed to solve the

distortion problem. The idea of this algorithm was to convert the

pixels of the original image from the Cartesian coordinate system to

the polar coordinate system (Zhong and Quan, 2017) according to

equations (1) to (4). The restored image is shown in Figure 3B.

r = e
u logw

w (1)

q =
2pv
w

(2)

x = w + r cos q (3)
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y = w + r sin q (4)

where (u, v) represents the coordinates of the point on the

original image, w represents the total width (u-axis) of the original

image in pixel, (r, q) represents the coordinates of the point on the

polar coordinate system, and (x, y) is coordinates of the point on the

remapped image.

2.4.2 Pre-processing
Three operations including median filtering, binarization, and

morphological operation were included in the pre-processing

procedure. In the image, noise points may appear due to clastic

grains on the glass turntable. To remove these noise points, a 5×5

median filter kernel was applied. It should be noted that the noise

points that are much smaller than the grain area but cannot be

filtered out would not be included in subsequent analysis. After
Frontiers in Plant Science 04
filtering, binarization was performed. Since the backlight image had

a uniform color distribution, a fixed threshold was sufficient to

segment the foreground and background. Typically, the shape of

each rice grain consists of an oval shell and an empty glume with a

gap in between. The gap was noticeable under backlight irradiation

and appeared as a small hole in the image. The proposed algorithm

dilated the binary image first and then eroded it to close the small

holes in the foreground object thereby removing the small black

spots in the binary image.
2.4.3 Watershed segmentation
It was observed that the grains on the glass turntable tended to

be close to each other, making it necessary to use a watershed

algorithm to simulate a waterflooding process and identify and

divide lines between different regions. The watershed algorithm is a
FIGURE 2

Image analysis algorithm flowchart.
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prominent computer vision technique employed for the purpose of

image region segmentation. During the segmentation procedure, a

pivotal criterion revolves around evaluating the similarity between

pixels situated in close proximity within the image. This evaluation

serves as a key determinant for the establishment of connections

between pixels characterized by both spatial proximity and

analogous grayscale values. The outcome of this process
Frontiers in Plant Science 05
culminates in the formation of closed contours or outlines, which

constitutes a hallmark feature of the watershed algorithm. In

essence, this algorithm is esteemed for its capacity to accurately

delineate the boundaries of objects. This article serves as an

instructional resource, elucidating the application of the

Watershed Algorithm in OpenCV for the task of image

segmentation. The procedure of the watershed segmentation
BA

FIGURE 3

Image remapping from an original image in the Cartesian system to the restored image in the polar coordinate system; (A) Original image;
(B) Remapped image.
B C

D E F

A

FIGURE 4

Segmentation procedures; (A) Original binary image; (B) Sure-background image; (C) Distance transformation image; (D) Sure-foreground image;
(E) Difference; (F) Individual grain image.
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algorithm is illustrated in Figure 4. Initially, the algorithm

performed dilation on the original binary image (Figure 4A) to

generate the sure-background image (Figure 4B). Then, the distance

transformation of the original binary image (Figure 4C) was

computed, followed by thresholding to obtain the sure-

foreground image (Figure 4D). Subsequently, the algorithm

determined the unknown region (Figure 4E) by taking the

difference between the sure-background and sure-foreground

images. This unknown region was the area that requires

segmentation using the watershed algorithm. Finally, the

watershed algorithm segmented the unknown region to produce

the individual grain images (Figure 4F).

2.4.4 Filled/unfilled grains identification
and counting

The grayscale values of the backlight image were utilized to

distinguish between filled and unfilled grains using the k-means

clustering algorithm. By setting the number of clusters to 2, the pixel

points of each grain can be separated into two groups based on their

grayscale values: light pixels and dark pixels. The results of the k-

means clustering algorithm for two representatives filled and

unfilled grains are presented in Figure 5.

In order to determine whether a grain is filled or unfilled, a

measurement index called “dark ratio” (or “ DR“) was introduced.
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This index takes into account both the number of light and dark

pixels in grain by calculating the ratio of the dark pixel count to the

total pixel count.

DR =  
Nd

Nt
(5)

where Nd is the number of dark pixels and Nt is the total

number of pixels.

To differentiate between filled and unfilled grains, the dark ratio

of each grain was computed and compared against a set threshold. If

the dark ratio exceeds the threshold, the grain was classified as filled;

otherwise, it was categorized as unfilled. For instance, a total of 15

grains were chosen as test subjects to illustrate the impact of the

dark ratio in distinguishing filled and unfilled grains, of which 8

grains were classified as unfilled (as shown in Figure 6).

In Figure 6A, a discernible pattern emerges, wherein the dark

ratios of filled grains exhibit a distribution skewed toward higher

values, whereas those of unfilled grains manifest a distribution

skewed toward lower values. Specifically, the average dark ratio for

filled grains is quantified at 0.87, in stark contrast to the average

dark ratio for unfilled grains, which stands at 0.25. This disparity

between the two averages is statistically significant. Consequently, a

preliminary dark ratio threshold of 0.6 has been established as a

discerning criterion for distinguishing between filled and unfilled
B

C D

A

FIGURE 5

The k-means clustering results of the filled and unfilled grains; (A) Filled grain; (B) Number of light and dark pixels of the filled grains; (C) Unfilled
grain; (D) Number of light and dark pixels of the unfilled grains.
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grains. It is paramount to acknowledge that threshold is susceptible

to influence by an array of factors, encompassing, though not

restricted to, variations in rice varieties and the presence of grain

fissures, both of which can potentially engender discrepancies in the

optimal dark ratio threshold. We emphasize the prospective

avenues for enhancing precision by implementing adaptively

optimized dark ratio thresholds, thereby paving the path towards

future refinements in the accuracy of our approach.
2.4.5 Size measurements
To determine the size of a grain, its length and width were

measured using an optimal enclosing rectangle, as illustrated in

Figure 7. The pixel values along the length and width of the

rectangle were then converted to millimeters using the pre-set

image resolution values.
2.5 Statistical analysis

The accuracy of the proposed method was assessed by utilizing

the regression analysis technique and comparing the results with

the reference data, as presented in Appendices B, C. The coefficient
B C

A

FIGURE 6

The effects of dark ratio in distinguishing filled from unfilled grains. (A) Dark ratio of each grain. (B) Original grain image. (C) Labeled image (Red
filled, blue unfilled).
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FIGURE 7

Labeled image of filled grains with sizes.
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of determination (R2), root mean square error (RMSE), and mean

absolute percentage error (MAPE) were calculated as accuracy

indicators of the proposed method. These metrics were computed

by using the following equations:

R2 = 1 − o
n
j=1(mj − ej)

2

on
j=1(mj − �m)2

(6)

RMSE =  

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
on

j=1(mj − ej)
2

n

s
(7)

MAPE =  
1
no

n

j=1

ej −mj

�� ��
mj

(8)

where n is the number of samples, ej is the actual value, and mj

is the predicted value by the proposed method.
3 Results and discussion

3.1 Influence of backlight intensity

Rather than isolating and detecting color information at a specific

wavelength, our approach involved the amalgamation of brightness

values derived from light within the range of 380 to 780 nm, which

was subsequently represented as a grayscale spectrum spanning from

0 to 255. Consequently, even in scenarios where the intensity of the

backlight varied, the discrimination of filled and unfilled grains

remained feasible through the computation of the cumulative

brightness of transmitted light. Thus, the outcomes of our

investigation remain impervious to fluctuations in the color

properties associated with specific wavelengths. The impact of

varying illumination intensities on the gray values of filled and

unfilled grains in the image was explored in the backlight intensity

test, as illustrated in Figure 8. The findings demonstrated that the

backlight intensity had a significant effect on the quality of grain
Frontiers in Plant Science 08
images. As the intensity of light increased, the overall brightness of

the image also increased. Moreover, the visual distinctions between

filled and unfilled grains became more prominent, which was

beneficial for distinguishing between the two. However, when the

light intensity surpassed 160 klux, the exposure increased to the point

that the contour information of some unfilled grains disappeared.

Conversely, when the light intensity fell below 40 klux, the visual

differences between unfilled and filled grains diminished.

To investigate the optimal backlight intensity for distinguishing

between unfilled and filled grains, the average gray value of each grain

was computed under various backlight intensity conditions. The

average gray value is computed by summing the gray values of all

pixels within each rice grain and subsequently dividing by the total

number of pixels contained within that grain. The results showed a

correlation between the grayscale and the intensity of backlight

illumination, as presented in Figure 9. The average gray values of

both unfilled and filled grains increased consistently when the light

intensity increased from 20 to 200 klux. Nevertheless, the distinctions

in gray values between filled and unfilled grains were more pronounced

at 200 klux. However, Excessive illumination exceeding 140 klux may

cause overexposure, potentially resulting in the miscounting of unfilled

grains with thin thickness. While there was a degree of inherent

variability in the absolute values of the average gray values across the

various rice grains tested in this study, an overarching trend

consistently emerged. This overarching trend was characterized by a

discernible increase in mean gray values with rising levels of brightness.

Furthermore, the presence of cracks in covering layers of the

grains exerts a notable influence on light transmission and the

resulting average gray value. As a consequence, these factors

contribute to an expanded range of fluctuations in the gray values

associated with filled grains, engendering a visual resemblance to

unfilled grains. This phenomenon becomes particularly

conspicuous as the intensity of the backlighting is heightened. To

illustrate this effect, it is noteworthy that under luminance

conditions exceeding 180 klux, the filled grains exhibit

characteristics that may be misinterpreted as unfilled grains, in

contrast to those observed under illumination levels of 120 klux. In
FIGURE 8

The results of different backlight intensities from 20 klux to 200 klux.
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light of these considerations, we have pragmatically constrained the

backlight luminance to a maximum of 120 klux. This restriction is

implemented with the explicit aim of mitigating errors attributable

to the presence of cracks within the seed covering layers, thereby

enhancing the accuracy of our detection process.
3.2 Influence of dark ratio threshold

The evaluation of the dark ratio threshold involved the

examination of the counting outcomes of filled grains under four

distinct dark ratio thresholds, i.e., 0.4, 0.6, 0.7, and 0.8. Figure 10

depicts the 1:1 graph of the predicted and actual values of filled

grains for each threshold. The R2 values between the predicted and

actual values were 0.98, 0.99, 0.96 and 0.75 for the dark ratio
Frontiers in Plant Science 09
thresholds of 0.4, 0.6, 0.7, and 0.8, respectively. The corresponding

RMSEs were 4.01, 2.78, 7.07, and 20.11, respectively. The system’s

predicted values were higher than the actual values when the dark

ratio thresholds were 0.4 or 0.6, indicating that some unfilled grains

were mistakenly classified as filled grains, leading to overestimation.

Conversely, the predicted values were lower than the actual values

when the dark ratio thresholds were 0.7 or 0.8, indicating that some

filled grains were mistakenly classified as unfilled grains, leading to

underestimation. As the number of filled grains is typically higher

than that of unfilled grains, using a dark ratio threshold greater than

0.6 could result in relatively large errors due to the misclassification

offilled grains as unfilled grains. Therefore, a dark ratio threshold of

0.6 was chosen, as it yielded a high R2 of 0.99 and a low RMSE of

2.78, indicating high accuracy and consistency with the actual value.
3.3 Performance of the proposed method

The performance of the proposed method was evaluated using

the reference data from the validation experiment. Figure 11 shows

the results of the total grain count and the number of filled grains

counted by the proposed method and the actual values. The R2 and

RMSE for the total grain count were 0.99 and 0.73, respectively

(Figure 11A). The MAPE with actual values was 0.5%. These results

demonstrate a high consistency between the proposed automagical

counting method and actual values in terms of total grain counts.

Additionally, the proposed method performed well in counting

filled grains, with an R2 of 0.99 and an RMSE of 2.91. The MAPE

with actual values was also low, at 2.43%. These findings collectively

underscore the capability of our method to accurately quantify both

the total number of grains and the number of actual grains, even in

scenarios marked by variations in the total grain count.

It is imperative to acknowledge that the growth of rice can be

susceptible to the influence of pests and diseases, which can impart

alterations to both grain structure and surface color. These changes

have the potential to introduce inaccuracies into our results. For

instance, instances of overprediction may be ascribed to the

presence of substantial black spots on the surface of certain

unfilled grains, an effect induced by rice blast infestations during

the growth phase. Such unfilled grains may exhibit limited light

penetration, potentially leading to misidentification as filled grains.

Given the significance of these variables, we underscore the

promising avenue of augmenting accuracy through the

integration of dynamically optimized dark ratio thresholds.

However, it is essential to emphasize that our exploration of

adaptive thresholding methodologies remains a work in progress.

In our forthcoming research endeavors, we are committed to

further enhancing the adaptability and efficacy of our algorithm,

with the overarching goal of refining our analytical approach.

The predicted and actual values of grain sizes are presented in

Figure 12, with lengths ranging from 8.0 to 11.0 mm and widths

ranging from 2.0 to 3.0 mm. The R2 and RMSE were 0.95 and 0.13

mm for the length and 0.63 and 0.11 mm for the width, respectively.

The proposed method showed better accuracy in measuring length

than width, which may be caused by the ellipsoid-shaped grain

tilting slightly on the glass plane, resulting in the vertical projection
FIGURE 10

The influence of dark ratio threshold on the predicted results.
FIGURE 9

The relationship between backlight intensity and grain gray value.
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width not being the maximum width of the grain. However, this

effect did not affect the measurement of the length. Overall, the

proposed method exhibited good performance in measuring grain

characteristic parameters.
4 Conclusion

This study introduces an innovative method for acquiring

phenotypic information about rice grains through backlight

imaging. The method involves illuminating the grains from

behind and capturing shadow patterns, which are then processed

using computer vision algorithms to extract various physical traits.

Notably, this approach offers advantages over traditional methods

as it is non-destructive and radiation-free, ensuring that grains

remain viable for subsequent analysis. Additionally, it enables the

simultaneous measurement of multiple traits, such as total grain

count, filled grain count, and grain size characteristics.

The proposed method demonstrates remarkable accuracy,

achieving high consistency with actual values in terms of total

grain count (R2 of 0.99 and RMSE of 0.73) and filled grain count

(R2 of 0.99 and RMSE of 2.91). It also excels in length (R2 of 0.95

and RMSE of 0.13 mm) and width (R2 of 0.63 and RMSE of 0.11
Frontiers in Plant Science 10
mm) measurements. Overall, this innovative approach promises to

significantly enhance the efficiency and accuracy of evaluating rice

physical traits while remaining cost-effective. Consequently, it has

the potential to revolutionize rice breeding, leading to

improvements in rice production and quality control.
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