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Introduction: Iron (Fe) toxicity is a widespread nutritional disorder in lowland rice

causing growth retardation and leaf symptoms referred to as leaf bronzing. It is

partly caused by an imbalance of nutrients other than Fe and supply of these is

known to mitigate the toxicity. But the physiological and molecular mechanisms

involved are unknown.

Methods:We investigated the effect ofmagnesium (Mg) on Fe toxicity tolerance in a

field study in the Central Highlands of Madagascar and in hydroponic experiments

with excess Fe (300mg Fe L-1). An RNA-seq analysis was conducted in a hydroponic

experiment to elucidate possible mechanisms underlying Mg effects.

Results and discussion: Addition of Mg consistently decreased leaf bronzing

under both field and hydroponic conditions, whereas potassium (K) addition

caused minor effects. Plants treated with Mg tended to have smaller shoot Fe

concentrations in the field, suggesting enhanced exclusion at the whole-plant

level. However, analysis of multiple genotypes showed that Fe toxicity symptoms

were also mitigated without a concomitant decrease of Fe concentration,

suggesting that increased Mg supply confers tolerance at the tissue level. The

hydroponic experiments also suggested that Mg mitigated leaf bronzing without

significantly decreasing Fe concentration or oxidative stress as assessed by the

content of malondialdehyde, a biomarker for oxidative stress. An RNA-seq

analysis revealed that Mg induced more changes in leaves than roots.

Subsequent cis-element analysis suggested that NAC transcription factor

binding sites were enriched in genes induced by Fe toxicity in leaves. Addition

of Mg caused non-significant enrichment of the same binding sites, suggesting

that NAC family proteins may mediate the effect of Mg. This study provides clues

for mitigating Fe toxicity-induced leaf bronzing in rice.
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1 Introduction

Rice is a staple crop for more than half the world’s population and

its consumption is steadily increasing with population growth

(Arouna et al., 2021). Demand is increasing particularly rapidly in

Sub-Saharan Africa (SSA) where economic growth, urbanization and

changes in lifestyle have increased people’s preference for rice

(Wopereis et al., 2013). Despite increases in production in SSA since

the 1960s (Arouna et al., 2021), yields and production are relatively

low and more than 40% is imported accounting for a third of the

global rice trade (FAO, 2017). Past production increase have been due

to expansion of the cultivated area (Tsujimoto et al., 2019) though

yields per unit area have also increased recently (Wopereis et al.,

2013). Current mean yields (2.1 t ha-1) are far below potential yields

under prevailing agro-climatic conditions (7.5–10.8 t ha-1) due to

various abiotic and biotic constraints as well as a lack of appropriate

technologies (Tsujimoto et al., 2019). Increasing productivity under

adverse conditions and closing the gap between actual and potential

yields are key to increasing rice productivity in SSA.

Major abiotic constraints to rice in SSA are the prevalence of

highly weathered, nutrient depleted soils and the nutritional

disorder iron (Fe) toxicity (Becker and Asch, 2005; van Oort,

2018). Iron toxicity occurs exclusively under submerged soil

conditions where exclusion of oxygen favors generation of soluble

ferrous iron (Fe(II)) from insoluble ferric iron (Fe(III)). The toxicity

is exacerbated by low pH and low nutrient status, and hence it is

widespread in the highly weathered soils that typify inland valleys in

SSA which otherwise have great potential for rice (Becker and Asch,

2005; Kirk et al., 2022). Iron toxicity typically results in >15% rice

yield loss and sometimes complete loss (Sahrawat, 2004; Audebert

and Fofana, 2009). Although field management such as mid-season

drainage and liming may reduce Fe(II) availability and mitigate Fe

toxicity (Becker and Asch, 2005; Fageria et al., 2008), such measures

are labor intensive and incur high costs. Hence, they are unlikely to

be implemented in the resource-poor countries in SSA where Fe

toxicity is particularly problematic. Development of tolerant

germplasm is a more promising approach.

The presence of excess soluble Fe(II) in soil causes overloading

of Fe in plants. Excess Fe disrupts the redox status, causes oxidative

stress and foliar damage referred to as leaf bronzing, and retards

growth (Aung and Masuda, 2020). Tolerance mechanisms include

exclusion of excess Fe from shoots by restricting uptake into roots

or by retention in roots, thus reducing root-to-shoot translocation.

Genotypes lacking such Fe exclusion mechanisms may have

different mechanisms to limit tissue damage despite excessive Fe

concentrations (Engel et al., 2012; Matthus et al., 2015; Aung and

Masuda, 2020). Such ‘includer’ mechanisms are further classified

into ‘avoidance’, which involves compartmentalization of Fe in

older tissues, and ‘tissue tolerance’, which involves storage of Fe

in less bioactive states such as by sequestration in vacuoles and

detoxification of reactive oxygen species (ROS) formed under excess

Fe (Wu et al., 2017; Aung and Masuda, 2020). This suggests further

genetic improvement of tolerance may be achieved by pyramiding

genes for distinct tolerance mechanisms. Quantitative trait loci

(QTLs) and candidate genes for Fe toxicity tolerance in rice have

been identified (Dufey et al., 2009; Dufey et al., 2015a, Dufey et al.,
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2015b; Wu et al., 2014; Matthus et al., 2015; Diop et al., 2020;

Melandri et al., 2021; Wairich et al., 2021). However, studies so far

suggest that many small effect loci underlie each of the above

mechanisms, as well as overall Fe toxicity tolerance.

A major problem in understanding tolerance mechanism under

field conditions is interactions between Fe toxicity and the nutrient

deficiencies that are prevalent in much of SSA, particularly

deficiencies of phosphorus (P), potassium (K), calcium (Ca) and

magnesium (Mg) (Howeler, 1973; Li et al., 2001; Gao et al., 2014;

Suriyagoda et al., 2017). Of these, interaction with K uptake have been

most studied. A mutant-based study (Wu et al., 2019) showed that K

uptake through the K channel AKT1 restricts excess Fe uptake and

mitigates excess Fe-induced leaf bronzing, and a genome-wide

association study (Matthus et al., 2015) has also linked AKT1 to

genotypic differences in shoot Fe concentration. Evidently K uptake

reinforces Fe exclusion mechanisms. However, the interactions of Fe

toxicity with other nutrients, such as Mg and Ca, have been less

intensively investigated, and genes that potentially mediate the effect

of these elements remain to be elucidated.

A recent meta-analysis showed that sub-optimal tissue Mg

concentrations are particularly common in rice at Fe toxic sites

(Kirk et al., 2022). Highly weathered soils in humid tropical regions

are generally depleted in Mg due to high rates of leaching (Sun et al.,

2013) and little Mg is added in fertilizers. Root-induced changes in

the rhizosphere under Fe toxicity, particularly Fe oxidation and

resulting acidification, will tend to decrease Mg solubility and hence

its availability for plant uptake (Kirk et al., 2022). Deficiency of Mg

tends to increase the levels of toxic reactive oxygen species (ROS)

(Hauer-Jákli & Tränkner, 2019) typically generated under Fe

toxicity (Wu et al., 2017). Links between Mg status and Fe

toxicity response have also been inferred by transcriptome

analysis (Kobayashi et al., 2018). This showed Mg deficiency

upregulated excess Fe-inducible OsFER2, which encodes a Fe

storage protein, and downregulated Fe sufficiency-suppressive

OsMIR and OsIRO2, which encode a mitochondrial protein

regulating Fe homeostasis and a key transcriptional activator

regulating Fe deficiency responses, respectively (Ogo et al., 2007;

Ishimaru et al., 2009; Stein et al., 2009; Aung et al., 2018). These

pieces of evidence suggest that some key components of the Fe

toxicity tolerance response may be inactivated at sub-optimal leaf

Mg content. However, our knowledge regarding the effect of Mg

supply on the Fe toxicity response and the molecular mechanisms

involved remains very incomplete.

Our objectives were first, to characterize the effects of supplying

Mg and K on Fe toxicity responses in a diverse set of genotypes at a

strongly Fe-toxic field site in the Central Highlands of Madagascar;

and second, to dissect possible mechanisms underlying the effects of

Mg supply in hydroponic experiments with transcriptomic analyses.
2 Materials and methods

2.1 Field study

A field experiment was conducted with seven rice genotypes

differing in their tolerance mechanism to Fe toxicity (Table 1;
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Rajonandraina et al., 2023). Plants were grown under irrigated

conditions at Sambaina, Manjakandriana district in the Central

Highlands of Madagascar (18°53’ S, 47°47’ E) during the wet season

(December to May) in 2020-2021. The site’s soil is a Gleysol with

clay loam texture, pH (H2O) 4.5, pH (KCl) 4.1, organic carbon 62 g

kg-1, cation exchange capacity 2.4 cmolc kg-1 and total Fe 57 g kg-1

of which 10 g kg-1 is easily-soluble on soil reduction (Rakotoson

et al., 2019).

A split-plot design was implemented with eight fertilizer

treatments containing all genotypes and four replications. The

following treatments were applied: control (i.e. no fertilizer), Mg,

NK, NKMg, NP, NPK, NPMg and NPKMg at transplanting at the

following dose as in a previous study carried out in the same field

(Rajonandraina et al., 2023); 50 kg N ha-1 as urea, 20 kg P ha-1 as

triple superphosphate, 20 kg K ha-1 as potassium sulphate, and

26 kg Mg ha-1 as kieserite. The size of a subplot, which contained

one genotype, was 1.6 m2 (0.8 m × 2 m). Subplots were randomized

in each plot, which was further randomized in blocks of replicates.

Four subplots were prepared for each genotype and treatment.

Seedlings were transplanted at 21-d old with single plant per hill

and a spacing of 20 cm × 20 cm between hills.
2.2 Sampling and measurements-field
study

Sampling and measurement were done at different stages of

plant growth, namely, tillering, booting, flowering and maturity.

Leaf symptoms induced by Fe toxicity were visually scored as leaf

bronzing score (LBS) across the whole plant canopy of each subplot

as a percentage of leaf area affected on a scale from 0 (no symptoms)

to 10 (100% of the leaf area affected) according to Wu et al. (2014).

LBS was scored for each time point except at the maturity because of

difficulties in differentiation with plant senescence. Plants were

collected from two randomly selected hills per subplot, and each

plant was dissected into youngest leaf (YL), middle leaves (ML), old

leaves (OL) and stem/leaf sheath (ST). Flag leaves (FL) and panicles

were additionally sampled at the flowering and maturing stage,

respectively. The tissues were oven-dried at 60°C for 48 h until the

samples were completely dry and weighed. The samples from two

plants from a subplot were pooled prior to element analyses and

considered as one replicate. For tissue Fe analysis, oven-dried
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samples were ground to a powder using a mixer mill (Retsch ZM

200, 0.2-mm sieve).
2.3 Hydroponic study

2.3.1 Experiment 1
Seeds of Nipponbare were sterilized with 5% NaClO for 5 min

and rinsed with tap water. Sterilized seeds were placed on a

moistened tissue paper on a petri dish and germinated at 28°C in

darkness. After 3 d, germinated seeds were placed on top of a

stainless mesh tray and grown with deionized water in darkness for

2 d. Subsequently, the seedlings were exposed to natural light and

kept with 0.1 mM CaCl2 and 12 µM FeNa-EDTA solution. After

further 12 d, seedlings were transplanted to 13-L hydroponic tanks

containing 0.5x concentration of Yoshida nutrient solution

(Yoshida et al., 1976). After 7 d, the solution was exchanged to 1x

concentration of Yoshida solution. After further 7 d, plants were

transferred to hydroponic tanks containing control solution (1x

Yoshida solution; Fe is provided as 36 µM FeNa-EDTA [=2 mg Fe

L-1]) or Fe excess solution (control solution + 300 mg Fe L-1 as

FeSO4.7H2O). A low concentration (0.1%) of melted agar (016-

15817, Wako Fujifilm) was added to each container (Wang et al.,

2008). The full strength (1x) Yoshida solution contained 1.42 mM

NH4NO3, 0.1 mM NaH2PO4, 0.5 mM K2SO4, 1 mM CaCl2, 1 mM

MgSO4, 36 µM FeNa-EDTA, 9 µM MnCl2, 18.5 µM H3BO3, 0.16

µM CuSO4, 1.5 µM ZnSO4 and 0.07 µM (NH4)6Mo7O24. For

combinatorial treatment with different concentrations of Mg and

Ca, MgSO4 and CaSO4 was added at different ratio to achieve Ca2

+/Mg2+ (mM) = 1/0.2, 1/1, 1/5, and 5/1, together with normal or

excess amount of Fe. After 10 d of treatment, aboveground tissues

were separated into young leaves (2 most recently fully expanded

leaves and emerging leaf) and the rest of tissues (old leaves + stem/

leaf sheath) and used for biochemical and element analysis. LBS was

measured from the 3 most recently fully expanded leaves from 5

plants in each treatment. Supplemental LED light was installed in

the greenhouse due to low solar irradiation during the experiment.

2.3.2 Experiment 2
Plants were grown and treated in the same manner as in

Experiment 1. Plants were treated with control, excess Fe (control

+ 300 mg L-1 Fe) and excess Fe and Mg (control + 4 mM
TABLE 1 List of rice genotypes used in the field study.

Full Name Short name Origin Response to iron toxicity

B14339E-KA-28 KA-28 Indonesia Tolerant, inclusion

Bahia Bahia Spain Tolerant, exclusion

Ciherang Ciherang Indonesia Sensitive, inclusion

IR64 IR64 IRRI Sensitive, inclusion

NERICA L-43 L-43 AfricaRice Tolerant, exclusion

Tsipala 421 Tsipala Madagascar Tolerant, exclusion

X265 X265 Madagascar Tolerant, inclusion
Origin and their putative response pattern to Fe toxicity are indicated for each genotype based on a previous study (Rajonandraina et al., 2023).
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MgSO4 + 300 mg L-1 Fe) conditions. Samples for RNA extraction

(n=3) were harvested after 10 d from the onset of the treatment

either from the middle part of the top fully expanded leaf or whole

roots. The samples were flash-frozen with liquid nitrogen and kept

at -80°C until the analysis.
2.4 Mineral analysis

Fe concentration in dry tissue was determined as described

previously (Hartmann and Asch, 2018). Briefly, Fe was extracted

from pulverized dry tissues using 500 mM sodium dithionite

solution, followed by colorimetric assay using 2,2’-dipyridyl. The

concentration of Fe in the extract was determined by using a

standard curve made with serially diluted Fe standard solution.

For the measurement of other mineral elements (Ca, K, Mg), dry

samples were acid-digested as reported previously (Ueda and

Wissuwa, 2022; Rajonandraina et al., 2023) and measured by an

inductively coupled plasma mass spectrometry (NexION 350,

PerkinElmer) and inductively coupled plasma atomic emission

spectrometer (ICPE-9000, Shimadzu) for field and hydroponic

samples, respectively, using a standard curve made with serially

diluted standard solution.
2.5 MDA analysis

The content of malondialdehyde (MDA) was quantified

according to a previous report (Hodges et al., 1999). Briefly, 0.1%

trichloroacetic acid was added to pulverized frozen samples and

mixed vigorously. After centrifuging the mixture at 14,000 x g for

10 min at 4°C, 90 µL of the resultant supernatant was mixed either

with solution I (0.01% 2,6-di-tert-butyl-4-methylphenol in 20%

trichloroacetic acid) or solution II (solution I added with 0.65%

2-thiobarbituric acid) and heated at 95°C for 30 min. The resultant

mixture was briefly centrifuged and the absorbance of the

supernatant was recorded at 440, 532 and 600 nm using a

microplate reader (Multiscan GO, Thermo Scientific).
2.6 RNA extraction and RT-PCR

Total RNA was extracted from frozen pulverized samples using

RNeasy Plant Mini Kit (Qiagen) according to manufacturer’s

instructions. cDNA was synthesized using the PrimeScript RT

Master Mix (Perfect Real Time) kit (Takara). Quantitative RT-

PCR was conducted using the CFX96 Real-Time PCR Detection

System (Bio-Rad) and TB Green Premix Ex Taq II (Tli RNaseH

Plus) (Takara). The expression of target genes was normalized

against an internal reference gene OsC3H38 (Höller et al., 2015).
2.7 RNA sequencing

Sequence library was prepared with HiSeq Standard mRNA

Library Prep kit using total RNA. The resultant library was
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sequenced with the HiSeqX ten instrument (Illumina) and

150 bp paired-end reads were generated. Quality of the

raw reads were analyzed by the FastQC software (http://

www.bioinformatics.babraham.ac.uk/projects/fastqc/). Reads were

trimmed by trimmomatic software (Bolger et al., 2014)

using the following options; LEADING:3 TRAILING:3

SLIDINGWINDOW:4:20 MINLEN:25. Gene expression was

quantified as reported previously (Pertea et al., 2016). Briefly,

obtained reads were mapped to Nipponbare reference transcript

(IRGSP-1.0) (Sakai et al., 2013) using HISAT2 software (Kim et al.,

2015) with –min-intronlen 20 –max-intronlen 10000 options.

Expression of genes was quantified using the Stringtie software

(Pertea et al., 2015), yielding transcript per million (TPM) values as

well as raw count data.

Differentially expressed genes were analyzed by the DESeq2

software (Love et al., 2014) using count data. PCA plot was created

by plotPCA function in DESeq2 after transforming the data by the

vst function.
2.8 Cis-element enrichment analysis

Cis-element enrichment analysis was performed as reported

previously (Ashrafuzzaman et al., 2020). The promoter element

(defined as upstream 1,000-bp from the start codon) for genes

significantly affected by excess Fe or combination of excess Fe and

Mg was obtained at Ensembl Plants Biomart website (Kinsella et al.,

2011). The enrichment analysis was performed by the AME

software (McLeay and Bailey, 2010), using the database of

Arabidopsis cis-elements (O’Malley et al., 2016) as the reference.

The promoter sequences of all the 18,960 genes expressed in leaves

(i.e. average TPM >2) were used as control.
2.9 Data analysis

Statistical analyses were performed with the R program

(Version 4.2.0; https://www.R-project.org/) with significance

level set at P = 0.05. In the field experiment, treatment

effects were analyzed with a mixed model ANOVA using the

lmer function in the lme4 package (Bates et al., 2015). When

evaluating the effect of treatment on all genotypes, treatment

was considered as a fixed effect, while genotype, block

(replicate), and the interaction between block and treatment

factor were considered as random effects, whereas growth stage

replaced genotype as random effect when evaluating the treatment

effect on each genotype across growth stages. To analyze the effect

of Mg, samples from NPK and NP treatments were pooled and

considered as -Mg sample group, and samples from NPKMg and

NPMg treatments were pooled and considered as +Mg sample

group. Similarly, samples from NP and NPMg were pooled and

considered as -K sample group, and samples from NPK and

NPKMg were pooled and considered as +K sample group. Each

of NP, NPMg, NPK, and NPKMg treatment contained 4 replicates

of 7 genotypes, thus the sample size was 56 for each of -Mg, +Mg,

-K and +K treatment.
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In the hydroponic experiment, one-way ANOVA was used to

analyze differences among different treatments. Subsequently,

Tukey-Kramer post-hoc test was implemented to compare values

of each treatment.
3 Results

3.1 Field study

3.1.1 Effects of K and Mg on rice traits
We evaluated the effects of combinatorial application of N, P, K,

and Mg on shoot dry weight (SDW), Fe concentration, LBS and

yield. Data for all seven genotypes and four growth stages showed

that P treatment had a dominant positive effect on SDW and yield,

suggesting that the growth of plants was greatly limited by P

availability (Table 2; Figure S1). Thus, we only considered data

from the plots supplied with P in subsequent analyses.

The effects of K and Mg treatments on leaf symptoms were

analyzed at different growth stages. The leaf symptoms as assessed

by LBS significantly decreased with the application of Mg fertilizer

by an average of 18% (Figure 1A). Although the decrease in LBS

caused by Mg treatment lessened as the plants grew, the treatment

had a consistent suppressive effect on LBS throughout the growth

(34 and 6% in tillering and flowering, respectively). However,

supply of Mg had no significant effect on SDW in the

reproductive stages (i.e. flowering and maturity), resulting in non-

significant effect on grain yield (Figures 1B, C; Table 2). The supply

of K had a less striking effect on LBS at each growth stage, and the

effect throughout the season was not significant (Figure 1D;

Table 2). However, K addition significantly increased SDW

during the reproductive stage by an average of 17% (Figure 1E)

and this effect carried through to grain yield which was also

significantly increased (+15%) (Figure 1F; Table 2). These results

indicate that increased Mg supply has a beneficial effect on LBS but

not on SDW or grain yield, while increased K supply had the

opposite effect.

3.1.2 Mg effect on shoot Fe uptake and Fe
concentrations in different tissues

To get insights into the mechanism of Mg-mediated

alleviation of leaf bronzing, we analyzed shoot Fe concentration

and content at different growth stages. The supply of Mg

significantly increased shoot Fe concentration during the
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vegetative stages, but the opposite effect was observed during

reproductive stages (Figure 2A). Consistent with the effect of Mg

supply on SDW and Fe concentration, aboveground Fe content (i.e.

the product of SDW and Fe concentration) increased in the +Mg

treatment during the vegetative and booting stages (on average by

22%), but at the reproductive growth stage the Fe content was 13%

lower in the +Mg treatment (Figure 2B). We further assessed Fe

concentrations in different plant parts. Leaf Fe concentrations

increased strongly between vegetative and reproductive stages, but

the +Mg treatment consistently reduced foliar Fe accumulation,

except for old leaves during the vegetative stages (Figure 2C).

We investigated if the response to Mg differed between rice

genotypes depending on whether they were classified as Fe

includers or excluders (Rajonandraina et al., 2023). The analysis

revealed that the effect of Mg supply on LBS was genotype-specific

and that the +Mg treatment alleviated leaf bronzing in four of the

seven genotypes studied, but three includer-type genotypes did not

benefit from Mg addition (Figure 3A). Curiously, these 3 includer-

type genotypes had substantially reduced Fe concentrations in

young leaves (26% decrease on average), whereas the reduction in

Fe concentrations of young leaves was less pronounced in excluder

genotypes (average decrease below 18%) (Figure 3B). Local rice

variety X265, classified as an Fe includer, appears to be an

exception, as Mg addition did not lower Fe concentrations in

young leaves while significantly decreasing LBS. We analyzed if

these changes were due to an increase in tissue Mg concentrations.

Mg concentrations in young leaves at the booting stage were not

significantly affected by Mg addition in any of the examined

genotypes (Figure S2), raising the possibility that the effect of Mg

was likely through altered rhizosphere processes or interaction with

other nutrients (Figure S2), at least at this growth stage.
3.2 Hydroponic study

3.2.1 Mg, but not Ca, alleviates Fe toxicity in
hydroponic conditions

We conducted hydroponic studies to reveal potential effects of

Mg and reveal associated molecular mechanisms. Plants received

normal or excess Fe (2 and 300 mg Fe L-1, respectively), together

with different concentrations of Mg. Root morphology and iron

plaque formation were not substantially affected by the different Mg

concentrations (Figure S3). We also note that additional Mg did not

substantially affect the pH or the redox potential of the solution
TABLE 2 ANOVA results on the effect of genotype, P, Mg and K on Fe toxicity-related traits.

Factor SDW Fe concentration a LBS b Yield

Genotype *** *** *** ***

P treatment *** ns ns ***

Mg treatment ** ns *** ns

K treatment ns * ns **
aFe concentration data derive from all examined tissues (i.e. young leaves, middle leaves, old leaves and stem/leaf sheaths).
bLBS data were only obtained from the tillering, booting and flowering stages.
The result of ANOVA is indicated as follows; ns, not significant; ns, P > 0.05; *, P < 0.05; **, P < 0.01: ***, P < 0.001.
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(Figure S4), suggesting that Mg treatment did not affect Fe

availability in the hydroponic solution. Supplying additional Mg

reduced LBS in the three newest fully expanded leaves, while Mg

deficiency had an opposite effect (Figures 4A, B). On the other hand,

increasing the concentration of Ca, which like Mg is predominantly

present as a divalent cation in the hydroponic solution, did not

alleviate leaf bronzing (Figure 4B). The content of malondialdehyde

(MDA), which is a biomarker for oxidative stress, was measured in

new leaves, which we defined as the emerging and two newest fully

expanded leaves. The MDA content increased drastically under Fe

toxicity but ANOVA indicated differences between Mg or Ca

treatments were not significant (Figure 4C).

Element concentrations in shoot tissues were substantially

affected by different treatments. Fe concentrations in new leaves
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were not significantly affected by Ca or Mg treatments (Figure 5A)

but in old leaves and stem/leaf sheath the addition of Mg caused

a reduction in tissue Fe concentrations whereas the Ca treatment

did not have a substantial effect (Figure 5B). Excess Fe drastically

reduced tissue Mg concentrations but different levels of Mg

significantly affected Mg concentrations both in new leaves and

the rest of shoot (i.e. old leaves and stem/leaf sheaths), irrespective

of Fe conditions (Figures 5C, D). Ca concentrations were also

reduced by excess Fe but drastically increased by additional Ca

supply. Increment in Mg supply negatively affected Ca

concentrations under normal Fe condition but not under excess

Fe (Figures 5E, F). Concentrations of K was rather stable and

affected only to a small extent by different levels of Fe, Mg and Ca

treatments (Figures 5G, H).
B

C

D

E

F

A

FIGURE 1

Effects of Mg and K on leaf bronzing, shoot dry weight and grain yield. (A, D) leaf bronzing score; (B, E) shoot DW; (C, F) grain yield for Mg treatment
(A-C) and K treatment (D-F). Data are means ± standard errors (n = 56). The result of ANOVA is indicated as follows; ns, P > 0.05; *, P < 0.05; **, P <
0.01; ***, P < 0.001.
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3.2.2 Genes and cis-elements involved in Mg-
mediated stress alleviation

We performed an RNA-seq analysis using root and leaf tissue of

plants grown under the Cont, ++Fe and ++Fe++Mg conditions

(Table S1). The PCA analysis clearly separated clusters for Cont, +

+Fe and ++Fe++Mg for leaf samples (Figure 6A) but the separation

between ++Fe and ++Fe++Mg sample groups was less clear for

roots (Figure 6B). Considering that Mg alleviates Fe toxicity, we

reasoned that the key genes involved in Mg-mediated effects would

exhibit one of the following expression patterns; Cont < ++Fe++Mg

< ++Fe or Cont > ++Fe++Mg > ++Fe. Thus, genes that fulfill these

criteria in leaf or root samples were identified. Among 18,960 genes
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expressed in leaves (i.e. average TPM > 2), 219 and 171 genes were

down- and up-regulated in ++Fe++Mg compared with ++Fe,

respectively (Figure 6C). Among them, 70 and 39 genes exhibited

the expression pattern of Cont < ++Fe++Mg < ++Fe and Cont > +

+Fe++Mg > ++Fe, respectively (Figure 6C; Table S2). In roots,

among 20,375 expressed genes, only a very small number of genes

exhibited the pattern of Cont < ++Fe++Mg < ++Fe and Cont > +

+Fe++Mg > ++Fe (9 and 0 genes, respectively) (Figure 6D; Table

S2). We conclude that the function of Mg to mitigate Fe toxicity is

via mechanisms specific to shoot rather than a root tissue.

To examine if Mg treatment mitigates Fe-induced oxidative

stress, we further compared our RNA-seq results with two
B

C

A

FIGURE 2

Effects of Mg on shoot Fe concentration and Fe content. (A) Whole shoot Fe concentration, (B) whole shoot Fe content, and (C) Fe concentrations
in above-ground tissues; from tillering to maturity. Data are means ± standard errors (n = 56). The result of ANOVA is indicated as follows; ns, P >
0.05; *, P < 0.05; **, P < 0.01; ***, P < 0.001.
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previously reported transcriptome studies conducted under ozone

stress, which causes oxidative stress directly in leaves (Frei et al.,

2010; Ashrafuzzaman et al., 2018). 15,870 genes were detected in

both previous studies and the current study, and among these, 647

genes were defined as ‘ROS-responsive’ because they were similarly

affected by ozone stress in both previous studies (Frei et al., 2010;

Ashrafuzzaman et al., 2018). These ROS-responsive genes

overlapped with 207 ++Fe-induced and 10 ++Fe-suppressed

genes, and the degree of overlap between ROS-responsive and +

+Fe-inducible genes was highly significant (P = 1.5 × 10-59 by

Fisher’s exact test), confirming that excess Fe causes oxidative stress

in leaves (Figure 6E). On the other hand, only 6 ROS-responsive

genes (0.9%) overlapped with genes whose expression follows Cont
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< ++Fe++Mg < ++Fe in leaves, and the significance level of the

overlap was much lower (P = 0.028) (Figure 6F).

We next searched for potential regulatory factors that mediate

the effect of Mg in leaves. We identified promoter elements that are

enriched among differentially expressed genes in leaves under ++Fe

or ++Fe++Mg conditions. 52 cis-elements were commonly enriched

by both treatments (i.e. among 1,942 and 1,498 genes upregulated

by ++Fe and ++Fe++Mg treatment, respectively), such as those for

WRKY and homeobox transcription factors (Figure 7A; Table S3).

Two homeobox binding motifs and two NAC binding sites were

enriched exclusively in ++Fe++Mg and ++Fe treatments,

respectively. Among 1,108 and 374 genes downregulated by ++Fe

and ++Fe++Mg treatments, only one homeobox binding site was
frontiersin
B

A

FIGURE 3

Effects of Mg on LBS and young leaves Fe concentrations in different genotypes at different growth stages. (A) leaf bronzing score (LBS) from tillering
to flowering stage. (B) Fe concentration in young leaves from tillering to maturity stage. Data are means ± standard errors (n = 8). P values indicate
the result of ANOVA analyzing the treatment effect throughout the growth stages.
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enriched in both treatments, and 5 cis-elements, including the

binding site for NAC, bHLH and C2H2 transcription factors,

were enriched only by ++Fe treatment, while no element was

specifically detected by ++Fe++Mg treatment (Figure 7B; Table S3).
4 Discussion

4.1 Fe exclusion mechanisms conferred by
Mg supply

Plant responses to an imbalance in the availability of a nutrient

are dependent on the status of other mineral elements. For instance,

the strength of P deficiency responses is affected by the availability

of N and Fe (Balzergue et al., 2017; Hu et al., 2019; Ueda et al.,

2020). Fe toxicity is observed at tissue Fe concentrations ranging

from 300 to 2000 ppm (Dobermann and Fairhurst, 2000) and this

wide range of critical tissue concentrations is likely due to

interactions between excess Fe and deficiencies of other nutrients

such as P, K, Ca, Zn and Mg. Such deficiencies may be exacerbated

by excess Fe-induced changes in the rhizosphere coupled with

unfavorable soil properties such as low cation exchange capacity

and pH buffer power (Becker and Asch, 2005; Kirk et al., 2022).

Increased availability of these elements consistently mitigates

symptoms caused by Fe toxicity (Benckiser et al., 1984; Sahrawat,

2004). For instance, an application of dolomite, which is a mixture

of Mg and Ca, effectively mitigated Fe toxicity-triggered reductions

in growth and yield of rice in an acid Fe toxic soil in Sri Lanka

(Suriyagoda et al., 2017). Similarly, the ratio of available Fe to other

divalent cations (i.e. Ca, Mg, Mn) were more closely associated with

the degree of yield reduction than Fe concentration alone in Fe toxic

acid sulphate soils in Thailand (Moore et al., 1990). These studies

would suggest the benefit of increased supply of divalent cations lies

in lowering excess Fe uptake, possibly by direct competition, or

increasing their supply offsets any negative effects of their deficiency
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on Fe toxicity responses. Our data suggest that in some genotypes

Mg supply helps Fe exclusion mechanisms (Figure 3), which could

be explained by multiple factors. Tadano (1975) reported that

reduced Mg supply lowered the Fe exclusion capacity of roots

and increased the ratio of Fe translocated to shoots in culture

solution, suggesting that Mg decreases Fe uptake or excess root-to-

shoot translocation or both. Additionally, increased Fe

concentration in stems by Mg treatment (Figure 2C) may form

another layer of Fe-exclusion mechanism, as suggested previously

(Engel et al., 2012). These effects of Mg on Fe uptake, root-to-shoot

translocation and retention in stems could be regarded as a general

function of Mg under Fe toxicity, as seen by a negative correlation

between leaf Fe and Mg concentrations in a pot study using Fe toxic

soils (Genon et al., 1994).
4.2 Mg-induced tissue-tolerance
mechanisms

Even though Fe exclusion mechanisms are strengthened, some

pieces of evidence suggested tissue-tolerance mechanisms conferred

by Mg supply. It was suggested that the concentration ratio of Fe to

Mg + Ca in flag leaves, rather than the concentration of Fe per se, is

a good indicator for leaf bronzing under Fe toxicity (Sylla, 1994).

This implies that Ca and Mg may confer at least some tissue

tolerance. Our observations in field and hydroponic conditions

both indicated attenuated leaf bronzing formation by Mg supply

without a concomitant reduction in Fe concentration (X265 in

Figures 3–5). A previous study also showed that Mg deficiency did

not have a substantial effect on leaf Fe concentration but did induce

genetic responses similar to those observed under Fe toxicity

(Kobayashi et al., 2018). This suggests that Mg supply may also

support tissue-based tolerance mechanisms. The hypothesis that

increased Mg supply confers tissue tolerance is also supported by

genotypic differences in the benefit provided by Mg treatment. Our
B CA

FIGURE 4

Effects of Mg and Ca in hydroponics. (A) Representative image of top fully expanded leaf after 10 d of excess Fe treatment in the presence of
different concentrations of Mg. The scale bar indicates 2 cm. The below panels indicate magnified image. (B, C) LBS (B) and MDA content (C) are
shown for control (2 mg L-1 Fe) and excess Fe (300 mg L-1 Fe) treatments. In B and C, one-way ANOVA was conducted for each treatment and the
resultant P value is shown on the top of each graph. Different alphabets indicate that the values are significantly different. Data are means ± standard
deviations (n=4-5).
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data show that the includer genotypes benefitted to a lesser extent

from Mg fertilization than the excluder genotypes (Figure 3A). This

implies that Mg supply may provide tissue tolerance to plants that

already possess exclusion mechanisms, i.e., an additive effect.

However, the associated mechanisms underlying increased tissue

tolerance conferred by Mg supply might be different in field and

hydroponic studies, since we did not observe significant increase in

Mg concentrations in young leaves at the booting stage in the field

study. It implies that altered rhizospheric chemical processes or

secondary effects on the uptake of other nutrients (Figure S2), rather
Frontiers in Plant Science 10
than an increase in foliar Mg concentrations, could explain this

phenomenon, at least at this growth stage.
4.3 Possible physiological and genetic
factors underlying Mg-induced tissue-
tolerance mechanisms

Contrary to the field study, additional Mg supply increased

tissue Mg concentrations in hydroponic study (Figure 5), which
B

C D
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G H

A

FIGURE 5

Effects of Fe, Mg and Ca on shoot element concentrations. Concentrations of Fe (A, B), Mg (C, D), Ca (E, F) and K (G, H) treated with different levels
of Fe, Mg and Ca. Data for new leaves (A, C, E, G) and old leaves and stem/leaf sheath (B, D, F, H) are shown. One-way ANOVA was conducted for
each treatment and the resultant P value is shown on the top of each graph. Different alphabets indicate that the values are significantly different.
Data are means ± standard deviations (n=4-5).
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clearly suggests that tissue tolerance is conferred by increased tissue

Mg concentrations. Deficiency of Mg disrupts Fe storage in leaf cell

vacuoles (Kobayashi et al., 2018) and additional Mg supply might

increase storage of Fe in vacuoles that is otherwise kept in cytosol or

other compartments in a toxic state. Interestingly, in our

hydroponic experiment, the reduction in leaf bronzing was not

accompanied by a decrease of MDA, a biomarker for oxidative

stress. These data indicate that the leaves of plants supplied with

excess Mg perceive a similar extent of oxidative stress but form less

leaf bronzing, suggesting that Mg specifically suppresses the process

of cell death caused by oxidative stress. Thus, the underlying

mechanism of Mg effects observed in our study is not via reduced

oxidative stress as previously suggested (Tränkner et al., 2016;

Hauer-Jákli and Tränkner, 2019). This is further supported by the
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gene expression data showing that most of the genes affected by Mg

were not related to oxidative stress (Figures 6E, F).

The promoters of Fe-inducible genes were enriched with cis-

elements such as WRKY, NAC and Homeobox-binding motifs as

previously suggested (Kakei et al., 2021) (Figure 7A; Table S3). The

binding sites for WRKY transcription factors were also enriched

among the genes that were induced by the ++Fe++Mg treatment,

suggesting that WRKY family proteins may not play pivotal roles in

Mg-dependent alleviation of symptoms (Figure 7A; Table S3). In

Arabidopsis, half of Mg deficiency-responsive genes are also

responsive to ABA (Tanoi and Kobayashi, 2015), suggesting a

close link between ABA and Mg status. Interestingly, some

members of NAC transcription factor family that likely mediate

the effect of Mg are induced by ABA and play central roles in the
B
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A

FIGURE 6

Effects of Mg on gene expression. (A, B) The result of PCA analysis using gene expression data in leaf (A) and root (B). (C, D) Venn diagrams showing
the number of differentially expressed genes in each pair of comparison in leaf (C) and root (D). (E, F) Venn diagrams showing the number of
differentially expressed genes and previously suggested ROS-responsive genes. Fisher’s exact test was performed, and P value is indicated for
significantly overlapped regions.
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ABA signal transduction pathway (Todaka et al., 2012). Our results

also show that manyMg-responsive genes (i.e. genes that exhibit the

expression patterns of Cont <++Fe++Mg < ++Fe or Cont > ++Fe+

+Mg > ++Fe) are ABA, salinity or drought-related genes; Among 70

genes whose expression pattern follows Cont < ++Fe++Mg < ++Fe

in leaf, OsEBP89, bHLH035, ONAC60, MYBR1, PIP1;3, and RAV2

are known to be involved in drought or salinity stress response and

tolerance (Fang et al., 2014; Duan et al., 2016; Yin et al., 2017; Chen

et al., 2018; Liu et al., 2020; Zhang et al., 2020). These genes also

contained some NAC transcription factors (i.e. NAC15, ONAC60,

NAC58, NAC121 and NAC103). Further investigations are

necessary to identify the key gene(s) mediating the effect of Mg

and elucidate the relationship between Mg, ABA and the causal

gene under Fe toxicity conditions.
4.4 Beneficial effects of Mg
on mineral stresses

Optimal Mg supply is known to counteract several soil-related

stresses. For instance, Mg confers tolerance to aluminum (Al) stress

in various plant species (Rengel et al., 2015). In rice, Mg alleviates Al

stress partly by reducing Al uptake and oxidative stress (Pandey

et al., 2013), although the physiological pathways affected by Mg

may vary in different plant species (Silva et al., 2001a). Mg also

confers tolerance of salinity stress in rice (Chen et al., 2017). In both

cases, Mg uptake, rather than the contact of roots with high Mg

concentration, is the key factor, as shown by the attenuated

tolerance in mutant lines lacking functional MGT1 which is a

plasmamembrane-localized major Mg transporter (Chen et al.,

2012; Chen et al., 2017).

Contrary to the effect of Mg, additional Ca application in our

hydroponic study did not significantly affect leaf bronzing or Fe

accumulation. This could be partly due to the similarity of the ionic

radii of Fe2+ (77 pm) and Mg2+ (72 pm) compared with Ca2+ (100

pm). Similarity in radii may mean that Mg2+ competes with Fe2+
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better than Ca2+ for binding with other molecules and mitigate the

deleterious effects of Fe to confer tissue tolerance. Similar Mg-

specific effects were also observed under Al stress. A previous

investigation in soybean suggested that Al toxicity was specifically

mitigated by Mg2+ but not by similar concentration of Ca2+ (Silva

et al., 2001a; Silva et al., 2001b), consistent with our observation that

the positive effect of Mg2+ is not simply due to the ionic strengths of

competing divalent cations. Interestingly, the expression of MGT1

is induced both in roots and leaves under Fe toxicity (Table S1).

Thus, it is possible that upregulation of MGT1 and accompanying

increase of Mg uptake might be an intrinsic mechanism that plants

possess to cope with Fe toxicity, as well as other edaphic stresses

such as salinity and Al toxicity. MGT1 is found within a QTL

explaining Al stress tolerance (Yamaji et al., 2009). Intriguingly, a

QTL for Fe toxicity-induced leaf bronzing (qFETOX1-2) was

previously found close to the position of MGT1 (37.7 Mb on

chromosome 1) (Wu et al., 2014), which is also close to a QTL

for foliar Mg concentration (Norton et al., 2010). Whether allelic

variation exists at MGT1 locus, and if that is the cause of genotypic

variation of leaf bronzing, needs further investigation.
4.5 Conclusions and future perspectives

We have shown in field and hydroponic experiments that

increasing the supply of Mg to rice roots improves Fe toxicity

tolerance via exclusion- and tissue tolerance-based mechanisms.

Evidence from transcriptome analysis indicated the involvement of

several genes expressed in shoot tissue that potentially mediate the

Mg effect, and of particular relevance seem to be the altered

expression levels of genes containing the binding sites for NAC

transcription factors. Previous studies showed more than three-fold

variation in leaf Mg concentration among diverse rice accessions

grown under control conditions (Chen and Ma, 2013; Yang et al.,

2018), suggesting scope for improvement of the Mg status in rice

plants through a breeding approach. Whether utilizing potential
BA

FIGURE 7

Cis-element enrichment analysis. The number of enriched cis-elements from the genes upregulated (A) and downregulated (B) genes by ++Fe and
++Fe++Mg treatments.
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allelic variation of MGT1, as well as increased foliar Mg

concentration effectively reduces Fe toxicity in the field need to be

investigated further.
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