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Chromosome-level genome
assembly and population genetic
analysis of a near-threatened
rosewood species (Dalbergia
cultrata Pierre Graham ex Benth)
provide insights into its
evolutionary and cold
stress responses
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Yichen Zong1,2, Bin Li1,2 and Yongqi Zheng1,2*

1State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China,
2Laboratory of Forest Silviculture and Tree Cultivation, National Forestry and Grassland
Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China, 3Wenzhou
Key Laboratory of Resource Plant Innovation and Utilization, Zhejiang Institute of Subtropical Crops,
Zhejiang Academy of Agricultural Sciences, Wenzhou, Zhejiang, China
Dalbergia cultrata Pierre Graham ex Benth (D. cultrata) is a precious rosewood

tree species that grows in the tropical and subtropical regions of Asia. In this

study, we used PacBio long-reading sequencing technology and Hi-C assistance

to sequence and assemble the reference genome of D. cultrata. We generated

171.47 Gb PacBio long reads and 72.43 Gb Hi-C data and yielded an assembly of

10 pseudochromosomes with a total size of 690.99 Mb and Scaffold N50 of

65.76 Mb. The analysis of specific genes revealed that the triterpenoids

represented by lupeol may play an important role in D. cultrata’s potential

medicinal value. Using the new reference genome, we analyzed the

resequencing of 19 Dalbergia accessions and found that D. cultrata and D.

cochinchinensis have the latest genetic relationship. Transcriptome

sequencing of D. cultrata leaves grown under cold stress revealed that MYB

transcription factor and E3 ubiquitin ligase may be playing an important role in

the cold response of D. cultrata. Genome resources and identified genetic

variation, especially those genes related to the biosynthesis of phytochemicals

and cold stress response, will be helpful for the introduction, domestication,

utilization, and further breeding of Dalbergia species.
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1 Introduction

The genus Dalbergia belongs to the subfamily Papilionaceae

and includes approximately 250 species of trees, shrubs, and woody

climbers distributed in tropical and subtropical regions worldwide

(Vatanparast et al., 2013). Many highly valuable timber-yielding

species in the genus Dalbergia are known for their unique dense,

durable characteristics, and abundant color variation, and are

highly valued in the manufacture of fine musical instruments, arts

and crafts, and furniture, including Dalbergia cultrata Pierre

Graham ex Benth (NCBI: txid862910) (Figure 1) and D. odorifera

T. C. Chen (Song et al., 2019). D. cultrata is a deciduous tree species

with high ecological and economic value because of the disease,

insects, and fire resistance of its valuable rosewood wood (Liu et al.,

2019b). Owing to the increasing demand for rosewood around the

world, the natural range of D. cultrata is now extremely contracted

and its status is Near Threatened (NT). It is listed on the Red List of

the International Union for Conservation of Nature (IUCN) and on

China’s list of wild plants under Class II State protection.

Recent studies on the genus Dalbergia have focused on

compounds (Sun et al., 2020b; Zhao et al., 2020; Mori-Yasumoto
Frontiers in Plant Science 02
et al., 2021), seed germination (Seng and Cheong, 2020), and

potential distribution prediction (Liu et al., 2019b). However, only

a few genomic and transcriptomic studies have been conducted on

the genus Dalbergia, especially D. cultrata, and only a few

chloroplast genomes (Liu et al., 2019a; Hong et al., 2022; Qin

et al., 2022), mitochondrial genomes (Hong et al., 2021), reference

transcriptomes (Hung et al., 2020), and the chromosome-level draft

genome of D. odorifera (Hong et al., 2020) have been reported. The

molecular phylogenetic framework of Dalbergia genus has been

preliminarily established; however, there remains some outstanding

issues because of its wide distribution, complex origin, and lack of

genetic knowledge. More genomic information will help to solve

practical problems in taxonomy and tree breeding.

In this paper, we report a high-quality genome sequence of D.

cultrata obtained using PacBio sequencing and high-throughput

chromosome conformation capture (Hi-C) technology. Detailed

information on the D. cultrata genome, including repeat sequences,

gene annotation, and evolution may help elucidate the

biogeography and evolution of genus Dalbergia plants and

contribute to the understanding of the molecular basis of its

resistance to abiotic stress.
FIGURE 1

D. cultrata plants growing in the wild.
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2 Results

2.1 Genome sequencing, assembly,
and annotation

To generate a chromosome-leve l genome assembly of D.

cultrata, Illumina paired-end short read sequencing (~113x),

PacBio SMRT sequencing (~248x), and Hi-C sequencing

technology (~104x) were used (Table 1). The D. cultrata genome

size was evaluated using K-mer method based on Illumina short

reads, and the result was ~639.48 Mb, with 47.70% repetitive

sequence, 0.78% heterozygosity, and 34.63% GC content (Figure

S1A). The genome sizes of D. cultrata estimated by flow cytometry

were 592.3Mb and 643.9Mb using the Glycine max and Oryza sativa

genomes as references (Figure S1B), which is similar to the result

predicted by the k-mer method.

A total of 1,083 contigs were assembled and generated a D.

cultrata genome of 690.90 Mb with a contig N50 of 1.81 Mb and

34.34% GC content using ~171.47Gb Pacbio reads. Furthermore,

the 1,083 contigs were clustered into 10 genetic groups based on the

Hi-C data, and ~687.26 Mb Hi-C sequence (~99.47%) was

anchored onto the 10 pseudochromosomes, of which 95.84%

could be oriented (Figure 2; Table 2). The Contig N50 and

Scaffold N50 for the final assembly genome (690.99Mb) after Hi-

C error correction were 1.81 Mb and 65.76 Mb, respectively. The

heat map of the Hi-C assembly result suggested that the interaction

intensity of the diagonal region was stronger than that of the non-

diagonal region, indicating that these contigs were well located on

the pseudochromosomes (Figure S2). Compared to the publishedD.

odorifera genome, the newly assembled D. cultrata genome has a

similar genome size, GC content, and ratio of repeat sequences,

while having more coding genes and a longer scaffold

N50 (Table 2).

Three methods, including Illumina reads alignment, BUSCO

evaluation, and whole-genome high long terminal repeat (LTR)
Frontiers in Plant Science 03
assembly index (LAI) score evaluation, were used to assess the

assembly integrity of the D. cultrata genome. First, more than

99.65% of the Illumina reads were correctly mapped to the final

assembled genome (QV value = 33.81). Second, approximately

98.60% and 95.50% of the 1614 highly conserved embryophyte

genes in the BUSCO v10 database were identified as complete

BUSCOs for the D. cultrata genome and annotated protein

sequences, respectively (Table S1). Moreover, the LAI score of the

D. cultrata assembly genome was 10.83 (>10), which indicated that

the assembly quality of D. cultrata was at the reference genome

level. Based on these results, the genome assembly quality of D.

cultrata reached the chromosomal-level reference genome.

Repetitive elements mainly include tandem repeats (TR) and

interspersed repeats, among which the second type is transposable

elements (TE). In the D. cultrata assembled genome, ~52.70% and

~9.03% assembled sequences were annotated as TE and TR,

respectively (Table S2).

Furthermore, 31,342 protein-coding genes were identified using

homology, ab initio, and transcriptome predictions. Among them,

more than 99% could be annotated using at least one of the

following protein-related databases: GO (84.91%), KEGG

(78.76%), KOG (58.30%), TrEMBL (99.15%), and NR (99.17%)

(Table S3), which indicated that the accuracy of gene function

prediction was high. Additionally, 267 rRNAs, 605 tRNAs, 120

snRNAs, 122 snoRNAs, and 104 miRNAs were identified.
2.2 Evolution of the Dalbergia
cultrata genome

The phylogenetic tree constructed based on the time of fossil

evidence showed that the differentiation time between D. cultrata

and D. odorifera was 5.8–29.81 MYA, between D. cultrata and A.

duranensis was 37.97–52.29 MYA, and between D. cultrata and V.

vinifera was 108.29–135.42 MYA (Figure S3).
TABLE 1 Sequencing data used for Dalbergia cultrata genome assembly and annotation.

Sequencing type Sequencing platform Data Bases (Gb) Data Reads Coverage (×)

Short reads for genome survey Illumina NovaSeq 6000 78.11 520,743,140 113

Long reads for contig assembly PacBio Sequel II 171.47 8,140,676 248

Hi-C reads for chromosome construction Illumina NovaSeq 6000 72.43 483,835,664 104

Transcriptome long reads of root for genome annotation
Oxford Nanopore
Technologies

2.87 2,168,896 –

Transcriptome long reads of branch xylem for genome annotation
Oxford Nanopore
Technologies

3 2,404,535 –

Transcriptome long reads of branch phloem for genome
annotation

Oxford Nanopore
Technologies

2.94 2,305,516 –

Transcriptome long reads of young leaf for genome annotation
Oxford Nanopore
Technologies

3.15 2,690,937 –

Transcriptome long reads of leaf for genome annotation
Oxford Nanopore
Technologies

3.17 2,529,562 –

Transcriptome long reads of young branch for genome annotation
Oxford Nanopore
Technologies

2.82 2,397,084 –
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There were 4,639 gene families shared by 16 species (Table S4), and

217 gene families specific to D. cultrata (Figure 3A). The copy number

of genes within the gene family of D. cultrata was mostly one or two

(Figure 3B). The results of the expansion and contraction of gene

families showed thatD. cultrata had 370 expanded gene families and 15

contracted gene families. However, there were 299 contracted gene
Frontiers in Plant Science 04
families and 71 expanded gene families in D. odorifera, which are most

closely related to the evolution of D. cultrata (Figure 3C). GO

enrichment analysis of the expanded gene family of D. cultrata

mainly enriched for mitochondrial lyase mRNA modification,

ligand-gated O-methyltransferase ion channel, acting donor

incorporation molecule, manganese nutrient reservoir binding, and

response folding protein chaperone (Figure 3D). A total of 27 positively

selected genes were identified, and KEGG enriched four genes and four

pathways. Dcu09G009880 and Dcu05G025760 were enriched in solute

carrier family 8 (sodium/calcium exchanger), Dcu01G022380 in the

chalcone synthase and alpha-mannosidase pathways, and

Dcu03G033380 in the nucleolin pathway (Table S5).

Compared with the other 15 genomes, 1,517 specific genes were

identified inD. cultrata. GO enrichment analysis of these specific genes

for aromatic compound bond acting, RNA-directed DNA polymerase

activity, GPI anchor biosynthetic process, DNA integration, and

cytokinein dehydrogenase activity (Figure S4A). KEGG enrichment

analysis suggests that these specific genes were mainly enriched for

DNA synthase dehydrogenase homogentisate, peroxin−3,

phospholipase D1/2, YTH domain-containing family protein, and

the AP−3 complex subunit delta pathway (Figure S4B; Table S5).
2.3 Whole-genome duplication analysis

The DNA sequence alignment of the D. cultrata genome showed

that it experienced two WGD (Whole genome duplication) events,
B

C

D

E

A

FIGURE 2

High-quality assembly of 10 chromosomes. (A) The high-quality assembly of 10 chromosomes. (B) Repeat sequence density (window size 200 kb).
(C) Gene density (window size of 200 kb). (D) GC content density (window size of 200 kb). (E) Relationship between syntenic blocks.
TABLE 2 Comparison with Dalbergia odorifera genome assemblies and
annotated genes.

Assembly feature D. odorifera D. cultrata

Genome size 653.45 Mb 690.99Mb

No. of scaffolds 384 361

Contig N50 5.92 Mb 1.81Mb

Scaffold N50 56.16 Mb 65.76Mb

Longest scaffold 79.61 Mb 89.88Mb

Total number of N 613,549 79,300

Anchored and oriented 94.38 95.84

Repeat region % of genome 52.91 52.7

Predicted gene models 30,310 31,342

Mean coding sequence length 1121.36 bp 4854.156bp

Mean exons per gene 4.93 5.6178

GC content 34.11% 34.34%
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with the young recent one 49.28 MYA (Ks peak1 0.591) and the other

146.1 MYA (Ks peak2 1.753) (Figures 4A, B). The results of the

genome collinearity analysis showed that D. cultrata and D. odorifera

had good collinearity and indicated that they did not experience new

WGD events after separation, whereas D. cultrata and A. thaliana

experienced a new WGD event after separation (Figure 4C). The

collinearity analysis of D. cultrata, A. duranensis, and A. ipaensis

indicated that D. cultrata and Arachis experienced young recent

WGD events in common (Figure 4D).

Ks and 4DTv analysis showed that the differentiation time of D.

cultrata and D. odorifera was 6.265 MYA (Ks peak 0.075, 4DTv
Frontiers in Plant Science 05
peak 0.005), that of D. cultrata and A. duranensis was 41.40 MYA

(Ks peak 0.497, 4DTv peak 0.151), and that of D. cultrata and

V.vinifera was 110.3 MYA (Ks peak 1.323, 4DTv peak 0.319)

(Figures S5A, B). The burst time of D. cultrata LTR transposon

was 0.191 MYA, which was close to 0.185 MYA of D. odorifera. The

LTR burst time of A. thaliana was 0.207 MYA. The LTR burst time

was consistent with that of the evolutionary sequence (Figure S5C).

The duplication types of genes in the D. cultrata genome were

divided into five categories, namely WGD (whole-genome

duplication), TD (tandem duplication), DSD (dispersed

duplication), TRD (transposed duplication), and PD (proximal
B

C

D

A

FIGURE 3

Evolution of the Dalbergia cultrata genome. (A) A Venn diagram of specific and shared orthologs among 16 species (Vitis vinifera, Cajanus cajan, Cicer
arietinum, Populus trichocarpa, Ammopiptanthus nanus, Medicago truncatula, Glycine soja, Arachis hypogaea, Dalbergia odorifera, Dalbergia cultrata,
Arachis duranensis, Lupinus angustifolius, Arabidopsis thaliana, Spatholobus suberectus, Arachis ipaensis and Glycine max), identified based on gene
family cluster analysis. Each number in the diagram represents the number of gene families within a group. (B) The numbers of gene copy in the gene
families of the above 16 species. (C) Expansion and contraction of gene families. (D) GO enrichment analysis of expansion genes (top 20 terms).
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duplication). Of these, 7,670 gene pairs were of the WGD

replication type and 11,108 genes accounting for 40.48% of the

five total genes (Table S6). The TD and PD types had the highest

ratio of Ka/Ks>1, indicating that the main driving forces for recent

evolution were tandem and proximal duplications (Figure S6A).

The smaller and higher peaks in Ks and 4DTv of tandem and

proximal duplications also confirmed that these two duplication

modes were more active recently. The two main peaks of Ks and

4DTv in WGD also indicated that the D. cultrata genome

experienced two WGD events (Figures S6B, C).
2.4 Genome structural variation

The results of the genomic structural variation analysis

demonstrated that D. cultrata and D. odorifera had good

collinearity, with inversion and translocation types of structural
Frontiers in Plant Science 06
variation (Figures S7A, B). Inversions occurred on all the

chromosomes of D. cultrata and were the main type of structural

variation in the D. cultrata genome (Figure S7B). A larger inversion

occurred in Chr10:43099-9692798 in D. cultrata. D. cultrate, and A.

duranensis also showed inversion in this position (Figure S7C), D.

odorifera and A. duranensis did not have inversion in this position

(Figure S7D), indicating that this inversion is an event experienced

by D. cultrata alone (Figure S7).
2.5 Genetic variation and
population structure

To assess the genetic variation that occurred during evolution

and to discover the evolutionary relationships of species of the

genus Dalbergia, we resequenced the whole genomes of nine

accessions and collected 10 accessions from the NCBI, generating
B

C

D

A

FIGURE 4

Genome collinearity analysis. (A) DNA sequence alignment of the 10 chromosomes of D. cultrata. (B) D. cultrata vs. D. cultrata Ks distribution.
Combined with a, peak 0 in b was tandem repeat sequence distributed on the diagonal, not a real WGD peak. (C) D. odorifera, D. cultrata and A.
thaliana gene level collinearity analysis. (D) A. duranensis, D. cultrata and A.ipaensis gene level collinearity analysis.
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a total of 574.4 Gb of reads (Supplementary Table 1). We then

aligned these reads to the reference genome of D. cultrata and

identified 89,426,197 high-quality SNPs.

Whole-genome SNP data were used to investigate phylogenetic

relationships among the 19 accessions. The neighbor-joining (NJ)

tree resulted in seven divergent clades: (G1) D. cana; (G2) D.

hupeana, D. lanceolaria, and D. nigrescens; (G3) D. dongnaiensis,

D. oliveri-1, D. oliveri-2, and D. oliveri-3; (G4) D. sissoo; (G5) D.

odorifera; (G6) D. cochinchinensis-1 and D. cochinchinensis-2; and

(G7) D. cultrata-1, D. cultrata-2, D. cultrata-3, D. cultrata-4, D.

cultrata-5, D. cultrata-6, and D. cultrata-7 (Figure 5A). Principal

component analysis (PCA) agreed well with the NJ tree and showed

clear clustering of G1–G7 members (Figure 5B) We further

analyzed the population structure, and the ADMIXTURE analysis

revealed that the data were compatible with seven groups, K = 7
Frontiers in Plant Science 07
(Figure 5C). This result was in full agreement with the phylogenetic

relationships and PCA results. Notably, as the K value was 3, the G7

group contained seven D. cultrata samples but was divided into two

subgroups. We assumed that this was because the samples in the

two subgroups were not from the same batch. At the same time, the

genetic distance between Dalbergia cultrata and Dalbergia

cochinchinensis was smaller than that between Dalbergia cultrata

and Dalbergia odorifera or Dalbergia sissoo (Figure 5).
2.6 Pathways and genes involved in cold
stress response

To analyze the cold resistance mechanism of D. cultrata under

low-temperature stress, we set up four temperature gradients of 4°C,
B

C

A

FIGURE 5

Resequencing and analysis of population structure and evolutionary relationships. (A) Phylogenetic tree of 22 resequencing samples. (B) Population structure
(K = 2 to 7). D. cultrate-5 was the sample used for genome assembly. (C) Principal component analysis (PCA) of G1 (group1) to G7 (group7).
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10°C, 15°C, and 25°C, of which 25°C was the normal growth

temperature, as the control group. The cold stress treatment was

conducted for a total of 48 h, and samples were taken at seven time

points of 0 h, 2 h, 4 h, 6 h, 12 h, 24 h and 48 h for transcriptome

sequencing (Figure S9). Differentially expressed genes (DEGs) at

various time points were identified using DESeq2 and visualized

using a Venn diagram. The number of DEGs shared by the three

time points continued to increase from 0 h to 24 h, but gradually

decreased from 24 h to 48 h, indicating that D. cultrata reached its

maximum intensity in response to low temperature within 24 h

after being subjected to cold stress, and then gradually adapted to

cold stress. At the same time, D. cultrata showed an earlier response

to cold stress as the intensity of cold stress increased from 15°C to

4°C (Figure 6A). We observed that D. cultrata completely wilted

and failed to return to normal after 48 h of growth at 4°C, whereas it

could return to normal growth after 48 h of growth at 10°C and

15°C, and then back to 25°C. KEGG enrichment analysis was
Frontiers in Plant Science 08
performed on the DEGs shared by the three temperatures at each

time point. These results revealed that MYB transcription factors

were differentially expressed under different cold stress conditions.

Many transcription factors or metabolic pathways are related to

cold stress, such as zinc finger protein, EREBP-like factor, P-type

Ca2+ transporter type 2C, and E3 ubiquitin-protein ligase

HERC4 (Figure 6B).

The expression trends of the DEGs were analyzed using

maSigPro and clustered into nine clusters, with GO and KEGG

enrichment analyses performed for each cluster. Cluster1 contained

345 DEGs that were mainly enriched in the photosynthesis pathway

and iron-sulfur cluster binding. Cluster2 contained 852 DEGs that

were mainly enriched in protein modification, processing, and

DNA repair pathways. Cluster3 contained 241 DEGs that were

mainly enriched in oxidoreductase activity and monooxygenase

activity pathways. Cluster4 contained 777 DEGs; however, no

enrichment results were found. Cluster5 contained 35 DEGs,
B

A

FIGURE 6

Difference analysis of leaf transcriptome under different temperature and cold stress. (A) Differentially expressed genes under low temperature stress
from 0 to 48 h. (B) KEGG enrichment analysis of differentially expressed genes under low temperature stress from 0 to 48 h.
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mainly enriched in MYB-related transcription factors, zinc finger

protein CONSTANS, E3 ubiquitin-protein ligase, and other

pathways. Cluster6 contained 458 DEGs that were mainly

enriched in the proteasomal protein catabolic process pathway.

Cluster7 contained 132 DEGs, mainly enriched in the structural

constituents of ribosomes, translation, and threonine-type

endopeptidase activity pathways. Cluster8 contained 390 DEGs

that were mainly enriched in RNA processing and RNA

modification-related pathways. Cluster9 contained 102 DEGs that

were mainly enriched in thiamine biosynthetic processes and

oxidoreductase activity pathways (Figures 7, S8; Table S7).
Frontiers in Plant Science 09
2.7 Experimental verification of the
expression of key genes

Sixteen genes homologous to nine candidate reference genes

found in Arabidopsis were identified in the D. cultrata genome.

Filter out genes showing low expression levels under cold stress and

screen the three genes with the lowest coefficient of variation as

candidate reference genes for this experiment, namely

Dcu09G016550 (ACT) , Dcu10G018280 (60SrRNA) , and

Dcu09G001470 (GAPDH) . RT-qPCR verified that the

Dcu09G001470 gene was relatively stable during cold stress.
FIGURE 7

GO or KEGG enrichment analysis of genes in 8 clusters.
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Finally, this experiment used Dcu09G001470 (GAPDH) as the

reference gene. RT-qPCR experiments were used to verify the

expression levels of eight key genes (Table S9) in the low

temperature stress pathway, and the correlation between the DCt
value of RT-qPCR and the FPKM value of transcriptome

sequencing was calculated. The correlation was between -0.70 and

-0.91, indicating that the results of the low temperature stress

transcriptome experiments were accurate (Figure S10).
3 Discussion

3.1 Differences in Dalbergia genome size

To date, only D. odorifera has been published as a

chromosomal-level assembly reference genome in Dalbergia, and

the genome of D. cultrata has not been assessed in previous genome

size studies of Dalbergia (Hiremath and Nagasampige, 2004). The

genome size (690.99Mb) of the D. cultrata assembled in this study is

close to the result (706.92 Mb) of the D. cultrata genome assembled

by Illumina short reads (Liu et al., 2022), whereas it is larger than

the reported genome size (653.45 Mb) of D. odorifera (Hong et al.,

2020). There are more expanded genes than contracted genes in the

D. cultrata genome, which is opposite to the D. odorifera genome.

This may partly explain why the genome size of D. cultrata is larger

than that of D. odorifera.
3.2 Structural variation uncovers a
recent inversion

Through genomic structural variation analysis, we found that

D. cultrata has recently undergone large-scale inversion, which

occurred after the separation of D. cultrata and D. odorifera. The

inversion event affects the expression of nearby genes regulating the

phenotype and simultaneously reduces the mutation frequency of

the genes in the inversion region, resulting in a very high LD of the

genes near the inversion. D. cultrata genome undergoes an

inversion event in the Chr10:43099-9692798 interval, which

contains multiple expanded genes. Of these, 8 genes encode

cytochrome P450, 7 encode caffeic acid O-methyltransferase, and

4 encode sugar transporters. Cytochrome P450 plays multiple roles

in plants, including xenobiotic metabolism, hormones, fatty acids,

sterols, cell wall components, biopolymers, and several defense

compounds (terpenoids, alkaloids, flavonoids, furan biosynthesis

of coumarins, glucosinolates, and allelochemicals) (Pandian et al.,

2020). Overexpression of caffeic acid O-methyltransferase 1

enhances melatonin levels and salt stress tolerance in tomato

(Sun et al., 2020a).
3.3 Metabolic pathway genes are under
selection in evolution

Gene Dcu01G022380 was found to be enriched in the chalcone

synthase pathway based on the results of the KEGG enrichment
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analysis of positively selected genes. Chalcones are rich in plants

and are the biogenetic precursors of flavonoids and isoflavones, as

well as active lead molecules used to discover new drugs in

medicinal chemistry (Rammohan et al., 2020). Fifteen genes

involved in the lupeol synthase pathway were annotated in the D.

cultrata genome. Of these, 14 genes were located in the interval

Chr2:76115680-77832057, and seven genes were specific to D.

cultrata. These may be the key genes for the aroma and medicinal

value of D. cultrata. Lupeol synthase is a key enzyme involved in

lupeol synthesis. Lupeol may be a valuable potential lead compound

for the development of anti-inflammatory, antidiabetic,

hepatoprotective, and anticancer drugs (Tsai et al., 2016). Many

studies have shown that lupeol has great potential for the

prevention and treatment of cancers, including liver cancer (Min

et al., 2019), lung cancer (He et al., 2011), colorectal cancer

(Tarapore et al., 2013), bladder cancer (Prabhu et al., 2016), and

osteosarcoma (Zhong et al., 2020; Liu et al., 2021a).
3.4 The cold stress regulatory network of
D. cultrata

The cold stress signal first affected the photosynthetic

components. Under cold stress at 4°C and 10°C, photosynthetic

elements were always down-regulated from 0 h to 48 h. At a low

temperature stress of 15°C, the expression of photosynthetic

elements was down-regulated from 0 h to 24 h, and the

expression level was not different from that of the control group

at 48 h, indicating that it had adapted to the low temperature stress

of 15°C at this time. (Figure S8 Cluster1).

P-IIB autoinhibitory Ca2+-ATPase (ACA) is involved in

homeostasis by controlling Ca2+ efflux from the cytosol to

organelles and/or apoplasts (Garcıá Bossi et al., 2019). After 4 h

of cold stress, the expression of ACA12 (Dcu08G000830,

Dcu08G001000) was upregulated, which promoted Ca2+ influx

into the cells. Low temperatures trigger plasma membrane

stiffening and Ca2+ channel activation, leading to an increased

Ca2+ concentration in the cytosol, which in turn activates Ca2+-

associated protein kinases. The B-like calmodulin-binding protein

(Arabidopsis CBL9 ortholog Dcu06G028310) and CBL-interacting

protein kinase (Arabidopsis CIPK8 ortholog Dcu09G011040) were

upregulated. CBL proteins are a unique group of calcium sensors in

plants that regulate cellular calcium levels by interacting with CIPK

(Guo et al., 2018). CBL1may cooperate with CIPK7 to regulate cold

signaling in Arabidopsis and induce the expression of cold-

responsive genes (Huang et al., 2011). CBF1-3 (CBF1/DREB1B,

CBF2/DREB1C , and CBF3/DREB1A) in Arabidopsis are

APETALA2/ETHYLENE-RESPONSIVE (AP2/ERF1)-type

transcription factors that directly bind to the conserved CRT/

DRE motif in the COR promoter (called the CBF regulon) and

activate their expression under cold conditions (Ding et al., 2019).

Under normal growth conditions, LHY represses DREB1

expression. Under cold stress conditions, RVE4/RVE6/RVE8

accumulated in the nucleus, and LHY was degraded. Meanwhile,

it can be found that the expression level of LHY gene decreases from

15°C to 4°C as the intensity of cold stress increases (Figure 8). High
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expression levels of RVE4, RVE6, and RVE8 induce DREB1 gene

expression through cis-acting evening elements (EEs) (Kidokoro

et al., 2022). The RING E3 ligase protein-encoding genes

Arabidopsis Tóxicos en Levadura (ATL) 78 and ATL80 are

negative regulators of the cold stress response in Arabidopsis

(Cho et al., 2017). The expression level of the CpBBX19 gene was

significantly upregulated after 6 and 12 h of cold treatment in

wintersweet (Wu et al., 2021a). After cold stress treatment, BBX19/

COL2/COL13/MIP1B encoding zinc finger proteins were

upregulated in D. cultrata, and these genes may positively

regulate the expression of COR/RD genes (Figure 8).
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4 Materials and methods

4.1 Materials planting

The samples used for genome survey, assembly, and

transcriptome sequencing for genome annotation were collected

from the same Dalbergia cultrata materials individuals, which were

germinated using seeds collected from trees grown in Puer district,

Yunnan province, China (22.605 N, 100.639 E). It was planted in

the greenhouse of the Forestry Research Institute of the Chinese

Academy of Forestry (Beijing, China) for 2 years, and as soon as it
B

A

FIGURE 8

Regulatory network of cold stress. (A) Cold stress signaling regulatory network. The cold stress signal opens the Ca2+ ion channel through ACA12
located on the plasma membrane to promote the influx of Ca2+ into the cell, resulting in the up-regulated expression of CBL9 and CIPK8, which in
turn leads to the up-regulated expression of DREB1A/DREB1B. At the same time, the cold stress signal directly stimulates the up-regulation
expression of RVE2 and RVE6, and then regulates the DREB gene. DREB gene positively regulates COR/RD gene. RVE2/RVE6 also directly and
positively regulate COR/RD genes. At the same time, cold signals negatively regulate LHY transcription factors, which in turn negatively regulate
COR/RD genes, and LHY also negatively regulates DREB genes. Cold stress signals can also directly stimulate the up-regulation of ATL24/ATL78/
ATL80 genes, and these ATL genes negatively regulate cold stress tolerance. (B) Heatmap of the expression of core genes involved in the regulation
of cold stress at different temperatures and cold stress at different times.
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was approximately 50 cm in height, sampling was performed. The

plant utilized for genome sequencing was identified and confirmed

as Dalbergia cultrata by Professor Yongqi Zheng, and the voucher

herbarium was stored in Research Institute of Forestry, Chinese

Academy of Forestry. Related material samples can be obtained by

contacting Dr. Ping Huang.
4.2 Illumina short-read sequencing

For genome sequencing, fresh young leaves were harvested and

immediately frozen in liquid nitrogen for genomic DNA extraction.

Genomic DNA was extracted and purified using the Tiangen

Extraction Kit (Tiangen Biotech (Beijing) Co., Ltd.). Then, it was

fragmented using a Covaris M220 focused ultrasonicator. Illumina

PCR-free libraries with insert sizes of 300–500 bp were constructed

using the NEBNext Ultra DNA Library Pre Kit for Illumina

sequencing. Susequently, 150 bp paired-end sequencing was

performed using the Illumina NovaSeq 6000 platform.
4.3 Estimation of genome features

Flow cytometry and genome surveys were performed to estimate

the genome size of D. cultrata. For flow cytometry, cell nuclei

suspensions were analyzed using FACSCalibur and the

corresponding Cellquest Pro 6.0. The genome size of D. cultrata was

assessed according to the following formula: GSunknown=GSstandard×PI-

fluorunknown/PI-fluorstandard (GS indicates genome size, PI-fluor

indicates the number of red PI fluorescence channels). Oryza sativa

(389Mb) (Mahesh et al., 2016) and Glycine max (1107.4Mb)

(Greilhuber and Obermayer, 1997) were used as reference genomes.

Illumina short-read sequences were used for genome surveys.

Fastp v0.23.0 was used to filter short reads with default parameters

(Chen et al., 2018). K-mer Counter (KMC) v3.0.0 was used to

obtain K-mer files from clean data with parameter -k 19 (Kokot

et al., 2017). GenomeScope 2.0 was used to estimate the genomic

heterozygosity, repeat sequences, and size with parameter -k 19

(Ranallo-Benavidez et al., 2020).
4.4 PacBio and Hi-C library construction
and sequencing

PacBio library was constructed according to the method of

Zhao et al. (Zhao et al., 2022). Briefly, SMRT bell libraries were

constructed according to the manufacturer’s protocol, high-quality

genomic DNA was purified using the Mobio PowerClean Pro DNA

Clean-Up Kit, and DNA quality was assessed by agarose gel

electrophoresis. Furthermore, 15–50 kb genomic DNA was

sheared and enzymatically repaired. The hairpin adapters were

ligated after exonuclease digestion. The resulting SMRT bell

templates were size-selected using blue pipin electrophoresis (Sage

Sciences). Then, single molecule sequencing was performed on the

PacBio RS II platform for the selected size SMRT DNA fragments.

The Hi-C library with an insertion size of 300-700bp was
Frontiers in Plant Science 12
constructed according to the method of Rao et al. (Rao et al.,

2014). The construction of the Hi-C library mainly includes cell

cross-linking, Endonuclease digestion, end repair, cyclization, DNA

purification and capture, and computer sequencing.

For Hi-C library construction, young leaves were fixed with

formaldehyde and lysed, and then the cross-linked DNA was

digested with HindIII restriction enzyme and the 5′ overhangs

were biotinylated. After labeling with biotin-14-dCTP, the resulting

free blunt ends were ligated. Purified DNA was then treated to

remove biotin from the non-ligated DNA ends. For fragmentation,

DNA was sheared with a Covaris M220 focused ultrasonicator. The

sheared DNA was then repaired, and biotin-containing fragments

were isolated using streptavidin beads. A-tailing and adapters were

ligated and sequencing libraries were generated. Following library

construction, the library's concentration and insert fragment size

were determined using Qubit3.0 and GX platforms, respectively.

Hi-C library sequenced on an Illumina NovaSeq 6000 platform.
4.5 Genome assembly

The primary assembly was performed with PacBio subreads

(15-50kb) using CANU (v2.2) (Koren et al., 2017). Based on the

assembled genome size, number of contigs, average contig size, N50,

assemblies from SMARTdenovo (Liu et al., 2021b), and WTDBG2

(v2.5) (Ruan and Li, 2020), after CANU correction, were selected

for merging using quickmerge (v0.3) (Solares et al., 2018) to

improve contiguity. Finally, the draft assembly was polished using

PacBio long reads with Arrow software and corrected using

Illumina paired-end reads with the Pilon (v1.24) software

(Walker et al., 2014).

Sequences were mounted on chromosomes according to the

method described by Liu et al. (Liu et al., 2020). Hi-C read pairs

were aligned to the draft assembly using Juicer V1.06 software

(Durand et al., 2016). The resulting contact matrix and draft

components were used to construct Hi-C scaffolds using 3D-

DNA pipelines (Dudchenko et al., 2017). Finally, LR-Gapcloser

(Xu et al., 2019) with PacBio long reads was performed to close the

gap, and a pilon was used to polish the assembly with Illumina

paired-end short reads. Redundancy was used to eliminate

redundancy in unplaced contigs (Pryszcz and Gabaldón, 2016).
4.6 Genome annotation

The library of repeat families in our assembled genome was

generated using RepeatModeler. RepeatMasker was used to identify

repetitive elements based on the repeat library. The prediction and

functional annotation of D. cultrata protein-coding genes were

conducted using the Sorbus pohuashanensis genome annotation

pipeline (Zhao et al., 2022), integrating homology prediction, de

novo prediction, and transcriptome prediction. Gene functional

annotation was performed using BLAST by searching the Swiss-

Prot, TrEMBL, NR, Pfam, and egg-NOG databases. Samples from

the roots, branch xylem, branch phloem, young leaves, mature

leaves, and petioles were collected for transcriptome sequencing
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using the standard protocol provided by Oxford Nanopore

Technologies (ONT). Illumina NovaSeq 6000 was used for next-

generation transcriptome sequencing of the mixed samples. tRNA

and rRNA genes were identified using tRNAscan-SE and

RNAMMER, respectively. The Rfam database was used to identify

non-coding RNAs (ncRNAs) genes.
4.7 Analysis of LTR insertion time

The genomes of A. thaliana, A. nanus, A. hypogaea, A. ipaensis,

A. duranensis, C. cajan, C. arietinum, D. odorifera, G. soja, G. max,

P. trichoca, and D. cultrata (Table S4) were used to calculate LTR

transposon insertion time.

LTR_FINDER_parallel (Ou and Jiang, 2019) software with

default parameters and LTRharvest V1.6.1 software (Ellinghaus

et al., 2008) (parameters: -similar 85 -vic 10 -seed 20 -seqids yes

-minlenltr 100 -maxlenltr 7000 -mintsd 4 -maxtsd 6 -motif TGCA

-motifmis 1) were used to identify full-length LTR repeat

retrotransposons (LTR-RTs) in the genome. LTR_retriever V2.9.0

software (Ou and Jiang, 2018) (parameters:-u 7e-9) was used to

combine the LTR-RTs identified by LTR_finder_parallel and

LTRhavest, and calculate the LTR insertion time. The molecular

clock r value was selected 7 * 10-9 by set the LTR_retriever parameter

-u 7e-9 to calculate the LTR insertion time (Ossowski et al., 2010).
4.8 Quality assessment of
genome assemblies

Three methods were used to assess the quality of assembled

genomes: Illumina read alignment, BUSCO evaluation, and whole-

genome high long terminal repeat (LTR) assembly index (LAI)

score evaluation. The LTR_retriever was also used to calculate the

LAI value of the genome and LTR insertion time. Genome integrity

was assessed using the Embryophyta plant database of BUSCO

v5.2.1 (Manni et al., 2021) containing 1,614 conserved core genes.

Consensus quality value (QV) of Illumina short reads were

calculated using Merqury v1.3 (Rhie et al., 2020). The integrity of

the genome assembly was assessed using CEGMA v2.5 (Parra et al.,

2007), which contains 458 conserved core eukaryotic genes.
4.9 Genome gene duplication analysis

The stricter version of DupGen_finder (Qiao et al., 2019)

unique with default parameters, was used to identify D. cultrata

genome genes derived from different modes of gene duplication:

WGD, TD, PD, TRD, and DSD. KaKs_Calculator v2.0 software

(Wang et al., 2010) was used to calculate Ka, Ks, and Ka/Ks values of

gene pairs. The proportion of each homologous gene to the 4DTv

site was calculated using Perl script (https://github.com/

JinfengChen/Scripts/blob/master/FFgenome/03.evolution/

distance_kaks_4dtv/bin/calculate_4DTV_correction.pl).
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4.10 Gene family classification

Gene family cluster analysis was performed on the protein

sequences of 16 species (A. thaliana, A. nanus, A. hypogaea, A.

ipaensis, A. duranensis, C. cajan, C. arietinum, D. odorifera, G. soja,

G. max, V. vinifera, Lupinus angustifolius, Medicago truncatula, P.

trichoca, Spatholobus suberectus, and D. cultrata) using

Orthofinder v2.4 software (Emms and Kelly, 2019) (diamond, E-

value 0.001). In total, 702 genes were identified as single-copy genes,

covering at least 75% of the 16 species. PANTHER V15 database

(Mi et al., 2018) was used to annotate the obtained gene families.
4.11 Phylogenetic analysis

A phylogenetic tree was constructed and the divergence time

was estimated according to Zhao et al. (Zhao et al., 2022). The 702

single-copy genes described above were used to construct a

phylogenetic tree, and V. vinifera was used as an outgroup for

the root tree. Using TimeTree (http://www.timetree.org/), the

divergence times were estimated as follows: V. vinifera vs. G. max

at 107–135 MYA, C. cajan vs. G. max at 11.7–27.5 MYA, V. vinifera

vs. D. odorifera at 107–135 MYA, D. odorifera vs. A. ipaensis at 26–

51 MYA, A. ipaensis vs. A. nanus at 53–85 MYA, P. trichocarpa vs.

A. ipaensis at 101–131 MYA.

The CAFE v4.2 software (Han et al., 2013) used the results of

phylogenetic tree with divergence time and gene family clustering to

predict the expansion and shrinkage of the species’ gene families

relative to their ancestors.
4.12 Positive selection analysis

Previously identified single-copy gene families of A. hypogaea,

A. ipaensis, D. odorifera, and A. nanus were used. Each gene family

was analyzed using MAFFT (parameters: –localpair –maxiterate

1000) to align protein sequences and PAL2NAL to reverse codons

to align sequences. Positively selected genes were identified using

the CodeML module of PAML (F3 × 4 model using

codon frequencies).
4.13 Collinearity and WGD analysis

The genomes of A. thaliana, D. odorifera, D. cultrata, P.

trichocarpa, V. vinifera, A. ipaensis, and A. duranensis genomes,

which are evolutionarily closely related to D. cultrata, were used for

collinearity analysis. The protein and CDS sequences of the species

were compared using Diamond (v0.9.29.130) (Buchfink et al., 2015)

(parameter: e<1e−5) to identify similar gene pairs. The C-score

value was used to filter the blast results using JCVI v0.9.13 (Tang

et al., 2015) (parameter: C-score>0.5). R packages ggalluvial

(V0.12.3) (Brunson, 2020) was used to draw a collinearity picture

of the linear patterns of each species. WGDI (V0.58) (Sun et al.,
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2022) was used to analyze Ks values for collinear gene pairs and a

Perl script was used to analyze 4DTV values.
4.14 Genome structure variation analysis

AnchorWave (V1.0.1) (Song et al., 2022) was used to identify

the collinear regions of D. odorifera vs. D. cultrata, Arachis

duranensis vs. D. odorifera, Arachis duranensis vs. D. cultrata. R

was used to visualize the collinearity of genome output by

Anchorwave. SYRI v1.6.1 (Goel et al., 2019) was used to identify

the structural variation and collinearity in the D. cultrata and D.

odorifera genomes. Plotsr v0.5.4 (Goel and Schneeberger, 2022) was

used to visualize the structural variation information output by

the SYRI.
4.15 Collection of sequence
data, sequence alignment, and
SNP identification

In this study, Dalbergia hupeana, D. cochinchinensis, D. sissoo,

D. odorifera, and D. cultrata were selected for DNA isolation from

the leaf tissues of each accession using a Plant DNA Mini Kit

(Aidlab Biotech) and high-throughput sequencing (Table S8). DNA

libraries with 350-bp inserts were constructed for each accession

using the Illumina NovaSeq 6000 platform following the

manufacturer’s specifications, and 125-bp paired-end reads were

generated. Additional sequences of ten accessions were downloaded

from the NCBI database with the corresponding biological project

number PRJEB49228. The accession numbers are listed in Table S8.
4.16 Read alignment and variation calling

Fastp v0.23.0 (Chen et al., 2018) was used to filter raw data and

obtain clean data. Clean reads were aligned to the reference genome

of D. cultrata using BWA software (v0.7.17). BAM alignment files

were generated using the SAMtools software (v1.9) (Li et al., 2009).

SNPs were identified using the software GATK (v4.1.3.0) (DePristo

et al., 2011), and the following parameters were used for filtering

SNPs and Indels: ‘QD < 2.0 || MQ < 40.0 || FS > 60.0 || SOR > 3.0 ||

MQRanksum < -12.5 || ReadPosRanksum < -8.0’ and ‘QD < 2.0 || FS

> 200.0 || SOR > 10.0 || InbreedingCoeff < -0.8 || ReadPosRanksum

< -20.0’.
4.17 Phylogenetic tree and
population structure

SNPs were used to calculate genetic distances between

individuals. An individual-based neighbor-joining (NJ) tree was

constructed using the p-distances model in Phylip (v3.697) and

visualized using software MEGA5. The population genetic structure

was determined using ADMIXTURE software (v1.3.0). The

assumed number of clusters (K) was set from 2 to 10, with 10,000
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iterations per run. Principal component analysis of the SNPs was

performed using GCTA software (v1.91.5) (Yang et al., 2013).
4.18 Seedlings of D. cultrata treated with
low temperature stress

To study the effect of low temperature on the growth and

development of D. cultrata, we used seedlings at the developmental

stage (three years old) to conduct low-temperature stress

experiments. In September 2022, the plants were cultivated in a

constant temperature light incubator, and the light/dark time cycle

as 14h/10h, 07:00am every day as the starting time of light, and the

growth temperature was set at 25°C. At 09:30 on September 7, 2022,

the temperature of three of the incubators was lowered to 4°C, 10°C,

and 15°C for cold stress treatment, and the other incubator was kept

at 25°C as the control group and lowered to the corresponding

temperature, taking the first sample at, and recording this time as 0

h. Starting from 0 h, samples were taken at 2 h, 4 h, 6 h, 12 h, 24 h,

and 48 h thereafter. There were nine plants at each temperature, and

the leaves of the same leaf position for each of the three plants were

mixed as a biological replicate, and each sample had three biological

replicates (Figure S9). Immediately after sampling, leaves were

quickly frozen in liquid nitrogen for subsequent RNA extraction.
4.19 RNA library construction
and sequencing

Total RNA was extracted from leaf samples preserved in liquid

nitrogen using an RNAprep Pure Plant Kit (Tiangen DP441), and

genomic DNA contamination was removed using DNase I

(Tiangen). RNA degradation and contamination was monitored

on 1% agarose gels. RNA purity was checked using the

NanoPhotometer® spectrophotometer (IMPLEN, CA, USA).

RNA concentration was measured using Qubit® RNA Assay Kit

in Qubit®3.0 Flurometer (Life Technologies, CA, USA). RNA

integrity was assessed using the RNA Nano 6000 Assay Kit of the

Agilent Bioanalyzer 2100 system (Agilent Technologies, CA, USA).

The isolated 1 µg RNA was used for cDNA library construction

using the NEBNext Ultra RNA Library Preparation Kit for Illumina

(New England Biolabs, Ipswich, MA, USA), with fragment lengths

of approximately 150 bp. The cDNA library was paired-end

sequenced using an Illumina NovaSeq 6000 platform.
4.20 Transcriptome analysis

Fastp v0.23.0 (Chen et al., 2018) was used to filter raw data and

obtain clean reads. The filtered reads were mapped to the reference

genome of D. cultrata using Hisat2 v2.1.0. The read count and the

level of gene expression were quantified using the featureCounts

v2.0.1 program (Liao et al., 2014). The 25°C sample at each time

point was used as the control group, and the 4°C, 10°C, and 15°C

samples were compared with the 25°C sample. The differentially

expressed genes were then measured using the DESeq2 program
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(Love et al., 2014), with the following criteria: FDR < 0.01 and

absolute fold change >1. At the same time, edgeR 3.36.0 version

(Robinson et al., 2010) was used to normalize the obtained

expression matrix, and the R package maSigPro 1.66.0 version

(Nueda et al., 2014) was used to analyze the trend of differentially

expressed genes. The hclust method was used to cluster the

differentially expressed genes into nine clusters, and then each

GO and KEGG enrichment analysis was performed on the genes

of each cluster.
4.21 Gene enrichment analysis

All GO and KEGG enrichment analyses were performed using

clusterProfiler v4.2.2 (Wu et al., 2021b). The enrichment analysis

used the default parameters, and the top20 terms are shown in

the figure.
4.22 Selection of reference genes for
D. cultrata

Nine genes (ACT, TUA, TUB, GAPDH, EF-1g, UBQ, UBC, 60S
rRNA, and eIF6A) were used as candidate reference genes following

the method of Wang et al. (Wang et al., 2019). The coding

sequences (CDS) corresponding to these genes in the Araport11

version were downloaded from the TAIR database (https://

www.arabidopsis.org/). These sequences were then compared with

the CDS sequences of all genes in D. cultrata in a local database

using Blastn to identify homologous genes. To determine the most

stable expression and minimize variability, the coefficient of

variation was calculated for the expression levels of these internal

reference genes at all temperature periods using the FPKM values

from the transcriptome data under cold stress. The internal

reference genes with the lowest coefficient of variation were

chosen for further analysis.
4.23 Real-time quantitative reverse
transcription PCR experiment and analysis

The cDNA obtained from reverse transcription of the cold

stress transcriptome experiment was used as the substrate template

for RT-qPCR amplification. The key genes in the cold stress

pathway (Figure 8B) and the screened internal reference genes

were selected, and quantitative primers were designed using the

Primer3 online tool (https://primer3.ut.ee/), and the primer

sequences were finally used in Table S9. Then, the RT-qPCR

fluorescence quantitative kit from SYBR® Green Realtime PCR

Master Mix (TOYOBO, Japan) was used to experiment according to

the official instructions. The original Ct values were converted into

relative expression levels DCt (DCt = key gene Ct value - reference

gene Ct value) using the 2-DDCt method (Livak and Schmittgen,

2001). The Pearson correlation coefficient between the DCt value of
each key gene and the corresponding FPKM value of the
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transcriptome was computed and visualized using the ggpubr

package in the R language.
Data availability statement

Raw data for genome assembly, annotation, resequencing, and

transcriptome analysis were uploaded to the NCBI SRA database

under the Bioproject ID: PRJNA854315. Illumina data
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