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Predicting transcriptional
responses to heat and drought
stress from genomic features
using a machine learning
approach in rice
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1Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium, 2Center
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Plants have evolved various mechanisms to adapt to adverse environmental

stresses, such as the modulation of gene expression. Expression of stress-

responsive genes is controlled by specific regulators, including transcription

factors (TFs), that bind to sequence-specific binding sites, representing key

components of cis-regulatory elements and regulatory networks. Our

understanding of the underlying regulatory code remains, however,

incomplete. Recent studies have shown that, by training machine learning (ML)

algorithms on genomic sequence features, it is possible to predict which genes

will transcriptionally respond to a specific stress. By identifying the most

important features for gene expression prediction, these trained ML models

allow, in theory, to further elucidate the regulatory code underlying the

transcriptional response to abiotic stress. Here, we trained random forest ML

models to predict gene expression in rice (Oryza sativa) in response to heat or

drought stress. Apart from thoroughly assessing model performance and

robustness across various input training data, the importance of promoter and

gene body sequence features to train ML models was evaluated. The use of

enriched promoter oligomers, complementing known TF binding sites, allowed

us to gain novel insights in DNAmotifs contributing to the stress regulatory code.

By comparing genomic feature importance scores for drought and heat stress

over time, general and stress-specific genomic features contributing to the

performance of the learned models and their temporal variation were

identified. This study provides a solid foundation to build and interpret ML

models accurately predicting transcriptional responses and enables novel

insights in biological sequence features that are important for abiotic

stress responses.
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1 Introduction

Rice is one of the world’s major staple crops. Over 3.5 billion

people depend on it for their daily nutritional intake. As the global

population is expected to reach ~10 billion people by 2050, we will need

to produce more rice on less surface with less input (Wing et al., 2018).

However, rice production could be seriously threatened by the

aggravating environmental conditions, such as heat, drought and

flooding, driven by climate change. To ensure rice production, we

are therefore not only in need of plants with a higher yield, but also

plants that are more resilient to abiotic stress. A more in-depth

understanding of transcriptional signaling cascades in response to

environmental stress is therefore needed, as it allows us to engineer

rice plants that can better cope with adverse environmental conditions.

As plants have to withstand changing environmental

conditions, they have evolved interconnected regulatory

mechanisms to sense and respond adequately to adverse

conditions (Zhang et al., 2022). Their phenotypic plasticity allows

them to survive unpredictable environmental stress. In nature, heat

and drought stress often occur together, and untangling the two

stresses is not always straightforward (Aslam et al., 2022). At the

physiological level, the response to drought and heat stress is

regulated by a complex cross-talk between various plant

hormones. These reduce respiratory and photosynthetic activity

and increase antioxidant response, among others (Wang L. et al.,

2020; Li et al., 2021; Iqbal et al., 2022). At the biochemical level, both

heat and drought stress cause an increase in the concentration of

reactive oxygen species (ROS) (Li et al., 2021; Iqbal et al., 2022).

Plants change their antioxidant capacity to maintain cellular redox

homeostasis upon sensing stress (Huang et al., 2019; Nadarajah,

2020). At low levels, ROS can function as secondary signals and

therefore play a regulatory role in plant stress response (Li et al.,

2021; Zhang et al., 2022). In addition to ROS, also cytosolic

concentrations of calcium and proline increase in response to

heat and drought stress. Similar to ROS, both function as a

secondary messenger in signal transduction pathways in response

to abiotic stress (Guo et al., 2016; Wilkins K. A. et al., 2016; Iqbal

et al., 2019; Takahashi et al., 2020; Zhang et al., 2022).

Environmental stress induced signal transduction triggers

genome-wide transcriptional reprogramming, which activates

protective mechanisms. Although the physiological effects of stress

are extensively studied, there is an incomplete understanding of the

regulatory mechanisms involved in the gene expression underlying

these effects. An important role is reserved for transcription factors

(TFs), which comprise a substantial portion of the protein-coding

genes (around 5% for rice, 6% for Arabidopsis and 7% for maize)(Jin

et al., 2017). They orchestrate gene regulation by sequence-specific

binding to TF binding sites (TFBSs) in noncoding regions of the

DNA, also known as cis-regulatory elements (CREs), located

upstream, in introns, or downstream of the gene body. Together

with transcription cofactors and RNA-polymerase II, TFs are key

components of gene regulatory networks, which describe the

interactions between TFs and the target genes they regulate

(Zrimec et al., 2020; Zrimec et al., 2022). Identifying CREs in the

noncoding DNA can help to identify functional TFBSs and further
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unravel the regulatory grammar of abiotic stress response. TFs can

also bind DNA cooperatively, hereby enlarging TF functionality

through combinatorial control (Lai et al., 2019; Ibarra et al., 2020).

The activation of different TFs is triggered by signaling cascades to

control the expression of genes that are essential for plant tolerance to

drought and heat stress (Guo et al., 2016; Aslam et al., 2022; Hu et al.,

2022). Among these TFs, the plant heat stress transcription factors

(HSFs) are particularly important for the response to heat stress

(Zhang et al., 2022). Other TF families, includingNAC,WRKY, bZIP

and MYB, are also involved in the regulation of the expression of

heat-responsive genes (Zhao et al., 2020). In response to drought

stress, TF families such as MYB, WRKY, AP2/ERF and NAC play an

important role in the downstream transcriptional reprogramming

(Tang et al., 2019; Aslam et al., 2022). Gene expression regulation is,

however, not restricted to noncoding regions. Recently, it has been

shown that coding regions should be part of the gene regulatory

structure (Zrimec et al., 2020; Zrimec et al., 2022). The complete gene

sequence is in fact highly predictive of the level of expression

(Washburn et al., 2019; Zrimec et al., 2020; Meng et al., 2021).

Elucidating gene expression properties will affect our

understanding of plant physiology and help improve crop

productivity (Zrimec et al., 2020; Jores et al., 2021). Predicting

gene expression patterns is one of many biological applications

enabled by advances in supervised machine learning (ML)

(Washburn et al., 2019; Zrimec et al., 2020; Meng et al., 2021;

Moore et al., 2022; Zrimec et al., 2022). Broadly, it can be divided

into classical ML and representation learning. Although

representation learning has recently gained a lot of attention with

the applications of deep learning, classical ML still has some

advantages including ease of configuration, lower computational

demands, applicability on smaller datasets and, importantly, more

straightforward model interpretation. Classical ML has been

successfully applied in recent years to study transcriptional

regulation of abiotic stress in plants. Azodi and collaborators used

an ML approach to classify gene expression in response to

simultaneous heat and drought stress by training models on a

combination of putative CREs (pCREs), TFBSs, chromatin

accessibility, histone modifications, sequence conservation and

other features (Azodi et al., 2020). Zhou and collaborators

predicted heat and cold stress responsive genes in maize based on

promoter features and epigenetic marks to assess variable or

consistent expression response across maize genotypes (Zhou

et al., 2022). Other studies have shown that models trained on

regulatory elements or mono- and dinucleotide frequencies of both

coding and noncoding DNA can predict whether a gene is

differentially expressed or nonresponsive in response to cold

stress and wounding (Meng et al., 2021; Moore et al., 2022). In

rice, Kakei and collaborators showed that pCREs and known TFBSs

can be used to train a model that could help unravel the regulatory

grammar of iron response (Kakei et al., 2021).

Here, we apply classical ML to gain insight in the regulation of the

heat and drought stress response in rice. With this study, we tackle

some methodical and data-specific questions concerning ML-based

prediction of gene expression, uncovered by previous studies. These

include: 1) How does the selection of differentially expressed genes
frontiersin.org
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influence the prediction performance? 2) Does a long promoter

contain more valuable information for predicting gene expression

compared to a shorter one? 3)What k-mer finding strategy reveals the

most useful pCREs for predicting the transcriptional response to heat

or drought? Taking into account the newly acquired knowledge from

addressing these research questions, both coding and noncoding

features were used to train ML models that can successfully discern

upregulated from nonresponsive genes. To gain novel insights in the

regulation of gene expression in response to abiotic stress,

interpretability of ML models is of major importance. The most

important features for gene expression prediction were identified to

help decipher the temporal regulation of the transcriptional response

to these increasingly relevant abiotic stresses.
2 Materials and methods

2.1 Transcriptome data collection and
differential expression analysis

Our study is based on the heat and drought RNA-sequencing

(RNA-seq) data published by Luo and collaborators (Luo et al.,

2019). Each stress was applied to two-week-old seedlings for various

periods of time (0h, 3h, 6h, 12h, 24h, 36h and 48h). For heat stress,

plants were incubated at 45°C, whereas drought stress was simulated

by placing the seedlings into a polyethylene glycol 6000 (PEG-6000)

solution. Bulk RNA was extracted from both stem and leaf tissues.

Paired-end reads were downloaded from the SRA archive

(SRP190858). General feature format (gff) and fasta files were

downloaded from Ensembl Plants (Cunningham et al., 2022). We

used Oryza sativa, ssp. japonica annotation version 1.0.51

(Oryza_sativa.IRGSP-1.0.51.gff3.gz) and removed overlapping

genes. Oryza_sativa.IRGSP-1.0.dna_sm.toplevel.fa.gz was used as

the reference genome file. RNA-seq reads were clipped with

Trimmomatic (Bolger et al., 2014) (settings: ILLUMINACLIP:

TruSeq2-PE.fa:2:30:10:2:True SLIDINGWINDOW:4:15). These

reads were used for read mapping with Salmon v1.3.0 (Patro et al.,

2017) using a decoy database. The resulting countmatrices were used

for differential expression analysis with EdgeR where time point 0h

was used as a control. Upregulated genes were defined based on a

log2 fold change (log2FC) >= 1 at any time point, while the False

Discovery Rate (FDR)was controlled at 0.05 using glmTREAT (Chen

et al., 2016). Genes were considered nonresponsive if the FDR-

adjusted p-value was > 0.05 and log2FC was between 1 and -1.
2.2 Gene family clustering

Genes were clustered into orthogroups, which we use as a proxy

for gene families, using Orthofinder (version 2.3.3) (Emms and Kelly,

2019). Orthogroups of protein-coding genes were inferred across

multiple species (Brachypodium distachyon, Sorghum bicolor, Zea

mays, Oryza sativa, Setaria italica and Triticum aestivum). One fasta

file per species, containing amino acid sequences for the proteins, was

downloaded and used to run Orthofinder with the default settings.

All fasta files were downloaded from Ensembl plants, release 51,
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5.0 (Van Bel et al., 2022) (proteome.selected_transcript.zma.fasta.gz

from https://ftp.psb.ugent.be/pub/plaza/plaza_public_monocots_05/

Fasta/). In cases where a gene could not be assigned to any existing

gene family, it was considered to be part of a singleton gene family.
2.3 Binning and undersampling of
upregulated and nonresponsive genes for
class balancing

Genes were sorted in ascending order based on their average

Transcripts per Million (TPM) (as measure for baseline expression)

and divided into 5 equally-sized bins. The preferred number of bins

was based on the minimal loss of upregulated genes. Within each bin,

the genes of the most abundant class were undersampled to equal the

number of genes of the less abundant class. To do so, genes were sorted

based on log2FC within each bin. In case of upregulated genes, those

with the highest log2FC were kept in the bin, whereas for

nonresponsive genes those with a log2FC closest to zero were retained.
2.4 Building the genomic feature space

2.4.1 Promoter definition
Because apart from the region upstream of the transcription

start site (TSS) also the 5’UTR is involved in gene expression

regulation (Sharon et al., 2012; Redden and Alper, 2015;

Srivastava et al., 2018) and because our goal is to further unravel

the regulatory grammar, we wanted our promoter definition to

include part of the 5’UTR. UTR annotation is incomplete for the

rice genome, and UTR length varies across genes. The 5’UTR length

ranges from 1 to 7147 for all genes in the rice gff3, with a median of

104 bp. To ensure equal promoter lengths and comparability across

genes, we defined the distal promoter as 900 bp upstream of the TSS

and, based on the median 5’UTR length in the rice gff3, the first 100

bp downstream of the TSS, and the proximal promoter as 200 bp

upstream of the TSS and the first 100 bp downstream of the TSS.

2.4.2 Nucleotide and dinucleotide content
The nucleotide and dinucleotide content of rice genes was

quantified using the code published by Meng and collaborators

(Meng et al., 2021). The (di)nucleotide content was obtained for 5

genomic regions: upstream of the 5’UTR (900 bp or 200 bp upstream

of the TSS, depending on the used promoter definition), the

estimated 5’UTR (100 bp based on calculated median 5’UTR

length), the CDS, intron and the estimated 3’UTR (250 bp based

on calculated median 3’UTR length). The nucleotide and

dinucleotide content of the aforementioned genomic regions were

used as features for model training.

2.4.3 Known transcription factor binding sites
TF motifs, modeled as position weight matrices (PWMs), were

collected from JASPAR 2020 (Fornes et al., 2020) and CIS-BP version

2.00 (Weirauch et al., 2014). Pairwise comparison of PWMs was used
frontiersin.org
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to remove duplicates using the Regulatory Sequence Analysis Tools

(RSAT) (Castro-Mondragon et al., 2017) program “compare-

matrices” with the normalized correlation (Ncorr) as similarity

metric. PWMs with an Ncorr of 1 were considered duplicates.

Cluster-buster (CB), compiled on Sep 22, 2017 (Frith et al., 2003)

and Find Individual Motif Occurrences (FIMO version 4.11.4) (Grant

et al., 2011) were used to map the motifs on the noncoding genome.

Before the motif mapping with CB, the PWMs were scaled to 100. The

command line options used for each tool were “fimo -o $output

$PWMfile $seqFile” and “cbust-linux $PWMfile $seqFile -c 0 -f 1”.

Following Kulkarni and collaborators (Kulkarni et al., 2019), the top

motif matches of eachmotif were used, with amaximumof 5000motif

matches for CB and a maximum of 9000 motif matches for FIMO.

2.4.4 Putative cis-regulatory elements
To identify overrepresented pCREs in the (distal or proximal)

promoter of rice genes, three different k-mer finding approaches were

compared: 1) RSAT oligo-analysis and 2) RSAT oligo-diff (ROD) of

the RSAT motif discovery suite (Defrance et al., 2008; Santana-Garcia

et al., 2022, and 3) the progressive k-mer growing (PG) strategy

developed and adopted by (Moore et al., 2022). To prevent leakage

from the test set to the train set (Whalen et al., 2022), test set geneswere

excluded from any k-mer enrichment analysis. To obtain biologically

relevant pCREs, particularly when working with gene subsets (see

later), significantly enriched k-mers in the upregulated train set genes

compared to all nonresponsive genes were identified. Using ROA, a

custom background model was created for 6, 7 and 8-mers based on

the promoter sequences of all nonresponsive genes. Using ROD, the

upregulated genes of the train set were directly compared to the

sequences of all nonresponsive genes. Promoter sequences were

purged in ROA and ROD prior to k-mer enrichment analysis. Both

tools were used to detect enriched 6, 7 and 8-mers separately (no

growing procedure). The lower occurrence threshold was set to 3. K-

mers with an occurrence signal > 0 and p-value < 0.01 were considered

significantly enriched. Using PG (Moore et al., 2022), all possible k-

mers of length 6 and longer were identified and tested for significant

enrichment in the promoter sequences of train set upregulated genes

compared to all nonresponsive genes. A p-value cutoff of p < 0.01 for

the Fisher’s exact test and FDR correction was used to determine

significantly enriched k-mers. Starting from 6-mers, oligomers were

progressively grown until the p-value could no longer be lowered by

further extending a given k-mer. Finally, the enriched k-mers resulting

from the three different approaches were mapped to the promoter

sequences of train and test set genes using the RSATDNA-pattern tool

(Santana-Garcia et al., 2022). The presence or absence of the enriched

pCREs in the promoter of a gene were used as features for

model training.
2.5 Enrichment analysis of TFBSs and
Gene Ontology

TFBS and Gene Ontology (GO) enrichment were computed

using the hypergeometric distribution, with a gene-class file and a

gene-TFBS or gene-GO term file as input (Kulkarni et al., 2018).

The gene-class file was based on the differential expression analysis,
Frontiers in Plant Science 04
the chosen subset and chosen definition of nonresponsive genes.

The gene-TFBS feature file was built using bedtools intersect

(Quinlan and Hall, 2010) on the motif mapping output and the

coordinates of the chosen promoter (proximal or distal), discarding

unexpressed genes. The gene-GO term file was built as follows:

functional gene annotations were downloaded from PLAZA

monocots 5.0 (Van Bel et al., 2022). First, the annotations were

extended with their parental terms, where necessary. Then, all terms

were filtered for “biological process” GO terms. For each enriched

TFBS or GO term, the q-value of enrichment was determined using

Benjamini–Hochberg correction for multiple hypotheses testing.

TFBSs and GO terms were clustered based on the q-value of the fold

enrichment, defined as –log10(q–value)3, in upregulated compared

to nonresponsive genes. The clustering algorithm selected in the

seaborn clustermap library (Waskom, 2021) is “average”

hierarchical clustering using the metric “Euclidean distance”

between the plotted enrichment vector of each motif.
2.6 Gene-family-guided train-test split for
the complete gene set and subsets

Following balancing (binning and undersampling) of the

number of upregulated and nonresponsive genes, the data was

divided into train and test sets for supervised ML training and

testing. A gene-family-guided approach to train-test partitioning

was employed (Washburn et al., 2019). No gene family was allowed

to occur in both the train and the test set. The train and test set

represent 80% and 20% of the total genes (sum of upregulated and

nonresponsive genes), respectively. To ensure a representative test

set at each split, the distributions of bins, classes, log2FC and

average TPM were compared between the train and test set. A

split was not withheld when a significant difference was detected

(p < 0.05). Furthermore, for each train-test split, five duplicate RF

models (Breiman, 2001) were trained to classify train and test set

genes based on the features used for predicting gene expression in

response to abiotic stress (see below). The area under the Receiver

Operating Characteristic (ROC) curve (AU-ROC), which plots the

true positive rate (TPR) as a function of the false positive rate (FPR),

was used to assess whether an RF classifier is able to discern the

train from the test set. If the median AU-ROC was around 0.5 a split

was withheld.
2.7 Random forest classifier training,
validation, testing and evaluation

Genes belonging to a holdout test set, obtained after each gene-

family-guided train-test split (20% of the data), were never used for

model training. RF models were trained using the training data

(80% of the data) only. A nested cross-validation procedure was

implemented to evaluate and compare tuned ML models. The

training data was subjected to fivefold cross-validation to train RF

models. Within each of the five splits of the cross-validation

procedure, fivefold grid search cross-validation was performed

over the value ranges of the selected RF hyperparameters
frontiersin.org
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(min_samples_leaf = 2, 3, 4; n_estimators = 500, 1000;

max_features = sqrt, log2). Relevant hyperparameter value ranges

were narrowed down using an exhaustive grid search. The optimal

hyperparameters were used to fit a model on all but one fold (four in

this case) and the fit model was evaluated on the remaining fold

(validation fold). Averaging the outcome over the five splits of the

cross-validation procedure provides more reliable results as

estimation variance is reduced (Seibold et al., 2018). The best

performing model out of the five cross-validation splits (based on

F1) was used to predict the class of the holdout test set genes.

Various metrics were employed to compare model performances:

precision, recall, F1 score, AU-ROC, and area under the precision-

recall (PR) curve (AU-PR). The precision is the number of true

positives divided by the total number of predicted positives. The

recall (also known as ‘true positive rate’’) is the number of true

positives divided by the total number of positives. The F1 score (also

known as the ‘F-measure’) is the harmonic mean of precision and

recall. The PR curve plots precision as a function of recall (Whalen

et al., 2022). Also, the confusion matrix and classification report

were calculated for the holdout test set. The latter provides

important insights in differences in model performance for

upregulated and nonresponsive genes. For Figures 1-4, a model is

trained on each of the five representative train test splits using time

point specific nonresponsive genes (see above) and the performance

metrics (precision, recall, F1 and AU-ROC) are reported for each

train-test split.
2.8 Feature importance estimation

To determine for each time point the most important features

for distinguishing between upregulated and nonresponsive genes, a

final model was trained on all available training data. For final

model training, the hyperparameter values of the top-performing

model, obtained from the previous nested cross-validation

procedure, were used. Shapley additive explanation (SHAP)

values were used as a measure of feature importance (Arrow

et al., 1953; Lundberg and Lee, 2017). Five duplicate models were

trained for each time point. Within each duplicate, local SHAP

values were calculated for each feature across genes using

TreeExplainer (Lundberg et al., 2020). To obtain global SHAP

values, the median SHAP value for each feature across genes

was first calculated. Subsequently, the median SHAP value

across duplicates was computed. Global SHAP values were

normalized by scaling them between -1 and 1 using the formula
SHAPvalue

max(jSHAPvaluej). To identify the main features for gene expression

prediction, features were sorted in ascending order based on their

absolute SHAP value. KneeLocator of the Kneed python module

(Satopaa et al., 2011) was used to determine the knee of the absolute

SHAP value distribution across features. All features right to the

knee were defined as the main features for gene expression

prediction, the others were not considered. To compare time

points based on most important motifs (pCREs and TFBSs), a

hierarchically-clustered heatmap was used. For the top 25 motifs

with positive SHAP value, the motif importance (SHAP value rank),
Frontiers in Plant Science 05
enrichment, and similarity was computed. To calculate the motif

enrichment, we used the formula:

log2(
number of upregulated genes whose promoter contains the motif = total number of upregulated genes

number of nonresponsive genes whose promoter contains the motif = total number of nonresponsive genes
Þ:

A positive enrichment is indicative of a motif being present in more

upregulated compared to nonresponsive genes. To compute the

similarity of pCREs with known TFBSs, PWMs of known rice

TFBSs were obtained from CIS-BP (Weirauch et al., 2014) and

pCREs were converted to PWM format. Next, the pCREs and

known TFBSs were compared with the compare-matrices tool from

RSAT (Santana-Garcia et al., 2022) and the Ncorr was computed for

each pairwise comparison. All pCREs related to known TFBSs

reported below have an Ncorr value of at least 0.4.
3 Results

3.1 Heat and drought responsive genes
and variation in responsiveness across
time points

To determine the upregulated and nonresponsive genes for heat

and drought and to understand how the transcriptional response

for both abiotic stresses varies across time, we used the heat and

drought stress response data from a previously published

expression dataset (Luo et al., 2019). Two-week-old rice seedlings

were subjected to either heat or drought stress over different time

intervals (see Materials and Methods). Upregulated and

nonresponsive genes were identified at different time points

relative to the onset of stress imposition (0h, control). For heat

(Figure 1A), the majority of time points are clearly separated from

the control (0h). The later time points (24, 36 and 48h) are grouped

closely together and are distinctly separated from the earlier time

points. For drought (Figure 1B), the control is clearly distinct from

other time points, while for some time points, replicates do not

group together as well as others. Time points that are 24 hours apart

group together (12 and 36h, 24 and 48h). Of the differentially

expressed genes, only upregulated genes were considered here

because our goal is to gain further insight into the mechanism of

gene expression activation in response to abiotic stress. When

studying the regulation of transcriptional responses to abiotic

stress, upregulated genes hold more biological significance.

Upregulated genes more often signify an active response to

stimuli, such as abiotic stress, than downregulated genes. Both

abiotic stresses are major drivers of gene expression changes over

time, as more than 4700 and 1300 unique genes are upregulated in

response to heat or drought, respectively, at some point (Figures 1C,

D). Hence, heat stress caused more genes to be upregulated across

time points compared to drought stress. There is a greater

prevalence of nonresponsive genes and a higher number of

common nonresponsive genes across time points for drought

compared to heat stress. The latter suggests that upon exposure

to heat, more genes respond at any of the profiled time points and

there is more variation in upregulated genes over time, compared

to drought.
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3.2 Assessing the significance of the
quantity of upregulated genes, promoter
length and k-mer finding strategy in
predicting the transcriptional response to
abiotic stress

Various TF families involved in regulating the transcriptional

response to heat or drought have been established (Tang et al., 2019;

Zhao et al., 2020; Aslam et al., 2022; Hu et al., 2022; Zhang et al.,

2022). To further unravel the regulatory grammar of gene

expression regulation by TFs in response to heat or drought, we

used both known (TFBS) and putative (pCRE) regulatory motifs

identified for a specific set of stress-responsive genes. Identifying

pCREs important for gene expression prediction in response to

abiotic stress can confirm the significance of known TFBSs as well

as uncover novel regulatory motifs. Before modeling the temporal

response to heat or drought, we first contemplated and addressed

diverse technical and data-specific challenges associated with ML

gene expression prediction.

Dealing with imbalanced classes is a common challenge in

supervised ML on differential expression data. There are

considerably more nonresponsive compared to upregulated genes,

particularly in response to drought stress (Figures 1C, D). To

prevent overfitting of ML models on the overabundant

nonresponsive genes, a balancing strategy was used. Genes were

divided in bins based on average expression to reduce the bias of

baseline gene expression (Meng et al., 2021). Within each bin, genes

were undersampled to balance the number of upregulated and

nonresponsive genes. In addition to the approach used by Meng
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and collaborators (Meng et al., 2021), we used non-random

undersampling to increase the contrast between the upregulated

and nonresponsive genes used for training. Only the most

responsive and least responsive genes were kept (based on

log2FC). Paralogous genes resulting from gene duplication often

share highly similar promoters and have similar expression levels.

Relatedness of genes between training and test set could lead to

unaccounted overfitting on shared gene families when they are

randomly assigned to train and test set. To overcome this hurdle, a

gene-family-guided train-test split strategy was used, ensuring that

a gene family was never represented in both the train and test set

(Washburn et al., 2019).

Different ML algorithms can be employed to predict gene

expression (random forest classifier, gradient boosting classifier,

support vector machines, etc.). Similar to previous studies (Azodi

et al., 2020; Meng et al., 2021; Moore et al., 2022), we used RF

algorithms (Breiman, 2001) with nested cross-validation to build

models for predicting gene expression in response to abiotic stress

(see Materials and Methods). RF models cope well with small

sample sizes and highly dimensional feature spaces. They are easy

to tune compared to other ML algorithms and perform already well

with default hyperparameter values (Fernández-Delgado et al.,

2014; Probst et al., 2019). Hyperparameter tuning was,

nevertheless, used to optimize hyperparameters for RF model

training. To gain novel insights in gene expression regulation in

response to abiotic stress, interpretability of ML models is as

important as their prediction accuracy. We used Shapley, a game

theoretic approach, to increase the interpretability of an ML model

(Lundberg et al., 2020). The SHAP value, a measure of the
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FIGURE 1

Transcriptional responses induced by heat and drought stress. (A, B) Multidimensional Scaling (MDS) plot for heat and drought stress expression data,
respectively. (C, D) Number of significantly upregulated (orange) and nonresponsive (green) for each time point, and common nonresponsive genes
(blue) across time points under heat and drought stress, respectively.
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contribution of each feature to a correct prediction of the class of each

sample (local interpretability), was calculated for each feature in the

feature space. One can estimate the global importance of each feature

by averaging the local importance for each sample over all training

samples (global interpretability). More important features for a

correct prediction have a higher global SHAP value (Arrow et al.,

1953; Štrumbelj and Kononenko, 2014). As opposed to impurity-

based importances (Breiman, 2001; Altmann et al., 2010) used by

Moore and collaborators (Moore et al., 2022), SHAP values can be

negative. In game-theory, positive SHAP-values are indicative of

winning, while negative SHAP-values are indicative of losing.

Translated to gene-expression prediction, positive values are

indicative of upregulated genes, whereas negative values are

indicative of nonresponsive genes. Furthermore, SHAP values are

not biased by continuous feature values, when compared to binary

feature values. An additional advantage of SHAP values over

permutation based importances used by previous studies (Azodi

et al., 2020; Meng et al., 2021), is that it can provide insights in

whether a high or a low feature value contributes to the prediction of

a class.

When the goal is to train a model to discern upregulated from

nonresponsive genes, there is a potential trade-off between using

more genes and the most informative genes. Working with too

many upregulated genes that are not strongly responsive to an

abiotic stress could hinder the identification of stress-specific motifs

for gene expression prediction. Reversely, using too few genes could

decrease overall model performance. To tackle this, the ability to

predict gene expression in response to 1h of heat or drought was

compared when using all or only the most responsive upregulated

genes and an equal number of time point-specific nonresponsive

genes. Five representative train-test splits were performed and the

train and test sets for the 250, 500 and 1000 upregulated genes with

the highest log2FC and the same number of nonresponsive genes

with the lowest log2FC, were extracted from these. These gene

subsets will be referred to as the top 250, 500 and 1000 upregulated

genes. For heat, the 250, 500 and 1000 most upregulated genes were

used. For drought, there are less than 1000 upregulated genes at

time point 1h (Figure 1D). Consequently, only the 250 and 500

most strongly upregulated genes were used. For both heat and

drought, RF models were trained on the complete gene set and the

different subsets of most responsive upregulated genes. The

comparison of model performances is only valid when using a

similarly sized test set. Trained models were therefore assessed

using both the test set of the 250 most responsive upregulated genes

subset, and the test set of the complete gene set (Figures 2A–D). The

precision was roughly similar for models trained on different

subsets of the most responsive upregulated genes and models

trained on all available upregulated genes. The median precision

varied maximally 0.05 for drought and 0.06 for heat across train sets

within test sets (Figure 2A). The recall, however, increased when a

model was trained on more upregulated genes. The median recall

varied maximally 0.14 for drought and 0.17 for heat across train sets

within test sets (Figure 2B). The increase in recall suggests that there

are less false negatives (FN) when models are trained on more

upregulated and nonresponsive genes. The percentage of total FNs,

for example, was 23.64% for the median performing model trained
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on all upregulated genes, whereas it was 32.97% when the 250 most

responsive upregulated genes were used. Given that F1 is the

harmonic mean of precision and recall, F1 increased as well when

a model was trained on more upregulated genes. The median F1

varied maximally 0.03 for drought and 0.04 for heat across train sets

within test sets (Figure 2C). As for the precision, the AU-ROC was

roughly similar for models trained on different subsets of

upregulated genes. The median AU-ROC varied maximally 0.03

for drought and 0.04 for heat across train sets within test sets

(Figure 2D). Altogether, these results indicate that it is not necessary

to train a model on all available genes. However, training a model

on too few upregulated and nonresponsive genes could compromise

the recall and cause more FN predictions. Based on these findings,

we decided to work with the top 500 and top 1000 upregulated

genes, for drought and heat respectively, in future experiments.

After addressing how upregulated gene selection impacts model

training and performance, we determined whether the predictive

power of a model increases by using information further upstream

of the TSS. Promoters span a region both upstream and a short

distance downstream of the TSS (Sharon et al., 2012; Redden and

Alper, 2015; Srivastava et al., 2018). The core promoter, which

typically comprises −40 to +40 relative to the TSS, is a structurally

and functionally diverse transcriptional regulatory element from

which transcription is initiated by the RNA polymerase II

machinery (Juven-Gershon and Kadonaga, 2010; Srivastava et al.,

2014). To predict gene expression in response to abiotic stress, we

therefore considered 100 bp downstream of the TSS as part of the

promoter (see Materials and Methods). Plant promoter architecture

is important for understanding the regulation of gene expression in

plants. We compared the performance between models trained on

proximal (300bp prom, including 100bp 5’UTR) and distal (1000bp

prom, including 100bp 5’UTR) TFBSs and pCREs (Figures 3A–D).

The same five train-test splits as for Figure 2 where used. No major

differences were observed in any of the model performance metrics

between models using a distal or a proximal promoter for both heat

and drought, respectively. There is a maximum variation of 0.04

across model performance metrics between the proximal and distal

promoter. To conclude, our results suggest that when using pCREs

and TFBSs, the proximal promoter suffices for gene expression

prediction in response to heat or drought. For further experiments,

we therefore decided to use the proximal promoter.

Because we use pCREs, together with known TFBSs, to train RF

models to discern upregulated from nonresponsive genes, we studied

the impact of the applied k-mer finding approach, used to identify

pCREs, onmodel performance and the most important motifs for gene

expression prediction. In contrast with previous studies that use

homemade scripts for motif discovery (Azodi et al., 2020; Meng

et al., 2021; Moore et al., 2022), we compared three different

approaches to identify overrepresented oligomers in gene promoters:

ROA, ROD and PG (see Materials and Methods). The same five train-

test splits as for Figure 2 where used. In total 643, 364 and 540

significantly overrepresented k-mers were identified by PG, ROD and

ROA, respectively (Figure S3A). ROD is clearly the more stringent

approach, particularly considering that enriched k-mers in

nonresponsive compared to upregulated genes are also included

therein. ROA identified less 6-mers but substantially more 8-mers
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FIGURE 2

Impact of the quantity of upregulated genes on model performance. Comparison between RF models trained on all available upregulated genes and
the 250, 500 and 1000 most strongly upregulated genes (AU, T250U, T500U and T1000U, respectively) based on log2FC. pCREs, identified using
RSAT oligo-diff, and TFBSs mapped to the proximal promoter were used for model training. Two test sets are used for testing the performance of
trained models: the test set for all upregulated and the 250 most responsive upregulated genes. Results are shown for five independent train-test
splits and the median performance is reported. Different model performance metrics are compared: precision (A), recall (B), F1 (C) and AU-ROC (D).
A different marker is used for heat and drought, while the number of upregulated genes (up) used is shown in a different color. The size of the test
set is represented by the size of the marker.
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compared to ROD. PG identifiedmore 6 and 7-mers than ROD, as well

as 9-mers and longer oligomers not detected by ROD and ROA. To

assess the impact of k-mer finding strategy on the prediction of gene

expression in response to heat or drought, we compared the

performance of models trained on pCREs identified using PG, ROA

and ROD. Albeit considerable difference in the number and length of

detected overrepresented k-mers (Figure S3A), there was no major

difference, for heat and drought, in the performance of models trained

on pCREs identified by each of the three k-mer finding approaches.

Model performance metrics varied maximally 0.04 between applied k-

mer finding approaches for heat and drought (Figures 4A–D). The

comparable performance, despite the considerably lower number of

overrepresented pCREs detected by ROD, suggests that more

redundant and/or less important pCREs are identified using ROA

and PG. Subsequently, the highest ranking motifs for the prediction of

gene expression in response to heat were compared between RFmodels

trained on TFBSs, and pCREs identified by ROD, ROA and PG (Figure

S3B). For ROD, 63 of the 364 (17%) enriched pCREs were considered

highly important. Of the 540 overrepresented pCREs detected by ROA,

75 (14%) were highly important. For PG, 85 of the 643 (13%)

overrepresented pCREs were considered highly important (Figure
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S3A). The longer the k-mers, the smaller their share in the top-

ranking pCREs, indicating that longer pCREs contribute less to a

correct prediction compared to shorter ones. This finding explains in

part why less of the overrepresented pCREs detected by ROA and PG

are top-ranking motifs. Among the most contributing pCREs, 29 are in

common between ROD and ROA. Both ROD and ROA share 19 and

25 most important pCREs, respectively, with PG (Figure S3B). We also

compared the main pCREs and their rank between the three k-mer

finding approaches (Figure 4E). Globally, there are both common and

specific pCREs and their rank depends on the used k-mer finding

approach. Unique for ROD are the pCREs with a negative SHAP value

rank, which represent the pCREs that are enriched in the

nonresponsive compared to the upregulated genes (Figure 4E, ROD,

bottom pCREs). To conclude, the number of overrepresented pCREs

and their length varies strongly depending on k-mer finding approach.

The majority of most important pCREs for gene expression prediction

in response to heat are 6-mers. This explains, in part, the relatively

minor impact of the applied k-mer finding approach on model

performance, as these differ considerably in the number of k-mers

longer than six nucleotides that are detected. Because of the similar

performance with other k-mer finding approaches, the relative highest
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number of most important pCREs for gene expression prediction and

the ability to simultaneously compute overrepresented pCREs in

upregulated compared to nonresponsive and the other way around,

ROD was chosen as the preferred k-mer finding approach for

further experiments.
3.3 Modeling the temporal transcriptional
response to abiotic stress to identify the
most important regulatory motifs

The temporal differences in transcriptional reprogramming

reported in Figure 1 indicates that the regulation of gene

expression in response to heat or drought changes over time. To

determine the most important regulatory motifs for predicting the

temporal heat or drought response, four time points were selected.

The clustering of time points (Figures 1A, B) as well as the

enrichment of TFBSs and GO Biological Process terms in

upregulated genes in response to heat or drought (Figures S1, S2)

were used to make an informed selection. Time points 1, 6, 12 and

24h were chosen for heat stress. For these time points, replicates per

time point group together well and are secluded from the control

(0h) (Figure 1A). HSF motifs are strongly enriched at time point 1h,

whereas NAC and MYB motifs are not. Consistently, (cellular)

response to heat is strongly enriched. At time point 6h, MYB related

motifs are overrepresented. MYB-related as well as HSF motifs are
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enriched at time point 12h. Similar to time point 1h, response to

heat is overrepresented in the upregulated genes. Time point 24h is

characterized by an enrichment of NAC motifs (Figure S1). For

drought stress, time points 1, 6, 24 and 36h were selected. Replicates

per time point cluster together well and are isolated from the

control (0h) (Figure 1B). At time points 6 and 24h there is a

modest and strong enrichment of MYB related motifs, respectively,

whereas time points 1h and 36h are characterized by an enrichment

of WRKY motifs. There is some HSF enrichment at time point 1h.

Consistently, response to heat is enriched for the latter. Time point

24h is interesting because of the enrichment of circadian rhythm.

For none of the four considered time points, however, response to

water deprivation or response to dehydration is enriched

(Figure S2).

To study the temporal variation in the transcriptional

reprogramming in response to abiotic stress, five new train-test

splits were performed for each of the concerned time points. In

contrast to Figures 2–4, now the common nonresponsive genes

across the concerned time points were used. A model was trained on

each of the five train sets per time point and only the results for the

median performing model, based on F1, are shown (Figures 5, S4).

We first compared the model performance to predict gene

expression for different time points (Figures 5A, B for heat,

Figures S4A, B for drought). For heat, there is more variation in

model performance across time points compared to drought. The

AU-ROC and AU-PR range from 0.71-0.84 and from 0.71-0.85,
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FIGURE 3

Impact of promoter length on model performance. Comparison between RF models trained on pCREs, identified using RSAT oligo-diff, and TFBSs
mapped to the proximal (300 bp) and distal (1000 bp) promoter. For drought and heat, the 500 and 1000 most strongly upregulated genes,
respectively, were used for model training. Results are shown for five independent train-test splits. A different marker is used for heat and drought.
Promoter lengths are depicted in a different color. The size of the gene subset-specific test set is represented by the size of the marker. Different
model performance metrics are compared: precision (A), recall (B), F1 (C) and AU-ROC (D). The median performance is indicated.
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respectively (Figures 5A, B). For drought, the AU-ROC and AU-PR

range from 0.8-0.86 and from 0.82-0.87, respectively (Figures S4A,

B). Consistent with the larger variation in model performance, time

points differ more clearly in the main motifs for gene expression

prediction in response to heat (Figure 5C). Time points 12 and 24h

group together, whereas 1 and 6h are more different. For drought,

consistent with the smaller variation in model performance, time

points are more similar with regard to the most important motifs

for gene expression prediction (Figure S4C). Time points 6 and 36h

group together, and 1 and 24h group together. Next, we compared

the motif enrichment of the top 25 motifs with positive SHAP value

rank (indicative of relevance for upregulated genes), for predicting

gene expression in response to abiotic stress (Figure 5D for heat,

Figure S4D for drought). For heat and drought, the majority of most

important motifs are pCREs. However, for heat, there are

considerably more TFBSs among the highest ranking motifs

compared to drought. Consistent with the hierarchical clustering

(Figure 5C), there is a clear difference in the top 25 motifs between

the different time points for heat (Figure 5D). The TFBSs are

dominated by HSF binding sites, all of which can be traced back

to time point 1h. Also a TATA-binding protein (TBP) binding site

is part of the highest ranking TFBSs. The most important pCREs for

time point 1h are related to TBP, HSF and Basic Helix Loop Helix
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(bHLH) binding sites (Figure 5F). For time point 6h, one TBP, two

MYB and one E2F/DP TFBSs are among the 25 highest ranking

TFBSs (Figure 5D). Consistently, one, two, four and eight of the

most important pCREs are related to TBP, AP2, MYB and E2F

binding sites, respectively. The other pCREs are similar to bHLH,

bZIP (basic leucine zipper) and NAC binding sites, among others

(Figure 5F). The main TFBSs for time point 12h are one TBP and

one HSF (Figure 5D). Ten TBP, one HSF, two bHLH, one E2F, four

AP2, two GATA and two MYB binding site related pCREs are

among the highest ranking motifs. Only one TBP TFBS is part of

the most important motifs for gene expression prediction at time

point 24h, the others are pCREs. Of the latter, nine are related to

TBP, four to NAC, two to HSF, two to bZIP, two to MYB and two to

AP2 binding sites, among others. All time points share one TBP

TFBS and one TBP associated pCRE. Three time points – 1, 12 and

24h – share three TBP binding site related pCREs and one HSF

related pCRE. Two TBP, one MYB and one AP2 bindings site

related pCREs are shared between time point 12 and 24h. Overall

these results indicate both time point-specific (E2F/DP, bHLH,

NAC, bZIP, GATA) and more common regulatory elements (TBP,

HSF, MYB).

As opposed to heat, there is more similarity between the 25

highest ranking motifs across time points for drought (Figure S4D),
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FIGURE 4

Impact of overrepresented pCREs from different k-mer finding approaches on model performance. Comparison between RF models trained on
pCREs identified using a progressive k-mer growing strategy (PG), RSAT oligo-diff (ROD) and RSAT oligo-analysis (ROA), in the proximal promoter of
upregulated compared to nonresponsive genes in response to 1h of heat or drought. The 500 and 1000 most strongly upregulated genes for
drought and heat, respectively, were used for model training. Different model performance metrics are compared: precision (A), recall (B), F1 (C) and
AU-ROC (D). Results are shown for five independent train-test splits. A different marker is used for heat and drought. K-mer finding approaches are
depicted in a different color. The size of the gene subset-specific test set is represented by the size of the marker. The median performance is
indicated. (E) The most important pCREs based on SHAP value rank for predicting gene expression in response to heat stress are compared between
the three k-mer finding approaches. Common pCREs between different k-mer finding approaches are connected using a line.
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which is consistent with the hierarchical clustering of the most

important motifs (Figure S4C). Across the four time points, the

highest ranking motifs are dominated by pCREs. For time point 1h,

seven, five, one and three pCREs are related to TBP, MYB, AT-

HOOK and GATA bindings sites, respectively (Figure S4D). Also

NAC, bZIP, E2F and bHLH motifs add to the list of main pCREs.

Ten TBP, four MYB, two GATA and three AT-HOOK binding site

related pCREs are among the highest ranking motifs for time point

6h. The other pCREs are related to HSF, NAC, and bHLH binding

sites. Consistent with the hierarchical clustering of the main motifs

(Figure S4C), time point 24h is clearly different from the other time

points concerning the 25 highest ranking motifs. Only six of the

most important pCREs, five related to a TBP and one related to a

MYB binding site, are in common with other time points. There are

five TFBSs among the highest ranking motifs, all are MYB-related.

Interestingly, the MYB binding site and the five MYB-related

pCREs, are all potential REVEILLE (REV) binding sites. REV TFs

are involved in regulating the plant circadian rhythm (Rawat et al.,

2009), suggesting that this biological process affects gene expression

at time point 24h. Time point 36h again has a lot of common pCREs

with time points 1 and 6h (Figure S4D). Nine, four and three pCREs

are related to TBP, MYB and GATA binding sites, respectively. The

other pCREs are related to bZIP, HSF, bHLH, AT-HOOK and NAC
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binding sites, among others. Also a TBP TFBS is part of the highest

ranking motifs. Overall, these findings indicate more common

regulatory elements for drought compared to heat. TBP, MYB,

bZIP, AT-HOOK, GATA binding sites emerge as general regulators

of the transcriptional response to drought, whereas E2F/DP, bHLH,

HSF and NAC are more time point-specific regulatory elements.

Furthermore, our results suggest that known TFBSs are less useful

for predicting response to drought compared to heat.

To better understand the underlying factors that contribute to

the importance (SHAP value rank) of a motif, we investigated the

presence of the highest ranking motifs in upregulated compared to

nonresponsive genes (Figure 5E for heat, Figure S4E for drought).

From Figures 5E and S4E, it immediately becomes clear that known

TFBSs are present in considerably more upregulated relative to

nonresponsive genes compared to pCREs. Their higher prevalence

is due to the nucleotide degeneracy inherent to known TFBS

PWMs, whereas pCREs do not allow such a degeneracy.

However, despite their lower occurrence in upregulated relative to

nonresponsive genes, some pCREs have a higher importance for

gene expression prediction compared to high ranking TFBSs. For

example, TATAAA, related to a TBP binding site, is the highest

ranking motif for predicting gene expression in response to 1h of

heat (Figure 5E). It has a motif fold enrichment of 0.7 and is present
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FIGURE 5

Temporal variation in model performance and most important (putative) regulatory motifs for the response to heat. (A, B) Comparison of AU-ROC
and AU-PR, respectively, across time points for RF models trained on pCREs and TFBSs contained in the proximal promoter of the top 500
upregulated genes subset. The area under the curve (AUC) is reported for each trained model. (C) Hierarchically-clustered heatmap of the most
important motifs across time points. Motifs with a positive SHAP importance are indicated in green, those with a negative SHAP importance in pink.
(D) Heatmap of the motif importance and (E) motif enrichment for the 25 most important motifs with positive SHAP value rank across time points.
(F) Heatmap of the motif similarity (Ncorr) for the pCREs among the 25 most important motifs with positive SHAP value rank across time points.
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in 34.6% of the upregulated genes, but also in 21.5% of the

nonresponsive genes used for model training. The known HSF

binding site which has the second-highest rank occurs in 16.9% of

the upregulated genes but only 0.7% of the nonresponsive genes

used for model training. Therefore, its motif fold enrichment of 4.6

is higher than that of the higher ranking TATAAA motif. Hence,

the importance of a motif for predicting gene expression in response

to abiotic stress cannot be solely ascribed to a strong enrichment in

upregulated compared to nonresponsive genes. The same finding is

true for the response to drought (Figure S4E). SHAP values take

into account the interaction between each feature and the other

features in the model and thus reflect not only independent effects

of a feature on the prediction but also its combined effect with other

features (Lundberg et al., 2020). Consequently, co-occuring high-

ranking motifs with relatively low motif fold enrichment in the

proximal promoter of upregulated genes are important for the

prediction of gene expression in response to abiotic stress.
3.4 Quantifying the relative importance of
coding and noncoding features for
predicting the transcriptional response to
abiotic stress

We have shown that gene expression in response to abiotic

stress can be predicted based on known and putative regulatory

motifs in the promoter of a gene. Previous research indicated that

gene expression regulation spans both coding and noncoding

regions of a gene (Washburn et al., 2019; Zrimec et al., 2020;

Zrimec et al., 2022). Meng and collaborators have demonstrated

that the transcriptional response to cold stress can be accurately

predicted using the nucleotide and dinucleotide content of various

genomic regions, covering both coding and noncoding DNA (Meng

et al., 2021). To study the importance of pCREs, TFBSs and (di)

nucleotide content for gene expression in response to abiotic stress

and to assess whether coding features can further improve model

performance when combined with noncoding features, we trained

RF models on pCREs, TFBSs and the (di)nucleotide content of

coding and noncoding regions, and all possible combinations

(Figures 6 and S5).

For drought and heat, we used to one time point to study the

effect of using different types of features on model performance.

Rice was shown to exhibit a fast response to heat and a slow

response to drought (Wilkins O. et al., 2016). At 1h of heat, HSF

motifs and response to heat are strongly enriched in upregulated

genes (Figures S1A, B). At 6h of drought, upregulated genes are

characterized by an enrichment of MYB motifs and cellular redox

homeostasis (hydrogen peroxide metabolism, response to oxidative

stress, cellular oxidant detoxification) (Figures S2A, B). Therefore,

time point 1h was selected for heat and 6h for drought. The same

five train-test splits per time point as for Figures 5, S4, were used for

model training and testing. There is a pronounced variation in the

performance of a model to predict gene expression in response to 1h

of heat based on the features included for model training

(Figures 6A, B). The performance is the lowest (AU-ROC of 0.72

and AU-PR of 0.73) when a model is trained on TFBSs alone,
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whereas it is the highest (AU-ROC of 0.89 and AU-PR of 0.9) when

trained on pCREs, TFBSs and (di)nucleotide content. Comparing

the latter to a model trained on pCREs and TFBSs (AU-ROC of 0.81

and AU-PR of 0.83), suggests that the (di)nucleotide content further

adds to a correct prediction of the transcriptional response to heat.

Moreover, training a model on just (di)nucleotide content of coding

and noncoding DNA yields a better performance than models

trained on pCREs or TFBSs. Compared to heat, the variation in

model performance to predict gene expression in response to 6h of

drought is smaller (Figures S5A, B). The performance of a model

trained solely on TFBSs is lower compared to a model trained on

other (combinations of) features. The performance is lowest for the

latter (AU-ROC of 0.72 and AU-PR of 0.71) and the highest for

models trained on pCREs and (di)nucleotide content (AU-ROC of

0.88 and AU-PR of 0.91). There is no further increase in model

performance, when TFBSs are also used for training. These results

suggest that known TFBSs are inferior to pCREs for the prediction

of the transcriptional response to 6h of drought. Nevertheless, the

performance of models trained on pCREs and TFBSs is 1% higher

than that of models trained solely on pCREs.

To get a better understanding of the relative contribution of

different features (known and putative regulatory motifs, noncoding

and coding features) to the prediction of gene expression in response

to heat or drought, the 25 highest ranking positive features and the

five highest ranking negative features were compared when models

are trained on: 1) TFBSs, 2) pCREs, 3) pCREs & TFBSs and 4)

pCREs, TFBSs & (di)nucleotide content (Figures 6C, S5C, and Table

S1). For the response to 1h of heat, 21 of the 25 highest ranking

positive TFBSs are HSF binding sites when trained on TFBSs alone.

The remaining four are two TBP binding sites, one TALE and one

NAC binding site. Consistently, when only pCREs are used for

model training, of the 25 positive pCREs, eight are related to TBP

and ten to HSF binding sites. The remainder are related to GATA,

EIN3, AP2, E2F/DP and bHLH binding sites. If a model is trained on

pCREs and TFBSs, 16 of the 25 highest ranking positive motifs are

knownHSF binding sites, while one is a known TBP binding site. All

of these 17 binding sites are in common with those when a model is

trained solely on TFBSs. The other 8 are pCREs: ATATAG (TBP),

CTATATA (TBP), ATTTATAG (TBP), CTATAA (HSF), TATAAA

(TBP), CTATAAA (TBP), TATATA (TBP) and ATTTATA (TBP).

Thus, whereas, nine pCREs related to an HSF binding site are part of

the top 25 motifs for a model trained on pCREs, only one remains

when a model is trained on pCREs and TFBSs. These results suggest

that when both known and putative HSF binding sites are used for

model training, known HSF binding sites have greater added value.

Because of their strongly negative importance, motifs GGCCCA

(TCP), CTCCCC (TCP), CCCAAA (MADS-BOX), ATGGGCC

(TCP) and ACCCTA (MYB) appear to be characteristic of

unresponsive genes to heat stress. If trained on pCREs, TFBSs and

(di)nucleotide content, 15 of the 25 highest ranking features are

known HSF binding sites, which are in common with those when a

model is trained on TFBSs and TFBSs & pCREs. The other ten are all

CDS (di)nucleotides. The nucleotide content of GC, AT, CG and G

in the coding sequence are the highest ranking features. These results

indicate that the (di)nucleotide content of the coding sequence can

further improve model performance.
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FIGURE 6

Variation in model performance and most important features for predicting gene expression in response to 1h of heat, based on the used feature
space for model training. (A, B) Comparison of AU-ROC and AU-PR, respectively, for models trained on pCREs, TFBSs and (di)nucleotide content and
all possible combinations. pCREs and TFBSs represent noncoding features in the proximal promoter. (Di)nucleotide content represents both coding
and noncoding features in the proximal promoter, open reading frame, and 3’UTR. The area under the curve (AUC) is reported for each trained
model. (C) The top 25 features with a positive and the top 5 features with a negative SHAP value are compared between models trained on TFBSs,
pCREs, TFBSs & pCREs and TFBSs, pCREs and (di)nucleotide content. Common most important features are connected using a line. Different
markers are used for the different types of features.
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In sharp contrast with heat, only one TBP binding site has a high

motif importance relative to the other 24 highest ranking TFBSs for

predicting the transcriptional response to drought, including WOX,

SET, bZIP, E2F/DP, HD-ZIP, C2H2, G2-like, HSF, NAC and various

MYB andMYB-related bindings sites (Figure S5C and Table S1). This

could explain the lower model performance of models trained on

TFBSs alone (Figures S5A, B). When a model is trained on pCREs

and TFBSs, the TBP binding site showing high motif importance if

trained on TFBSs alone, is part of the highest ranking motifs,

however, its relative importance is considerably reduced when a

model is trained on pCREs as well. The remaining 24 top motifs are

thus pCREs, 22 of which are in common with the highest ranking

pCREs when a model is trained solely on pCREs. Of these, nine have

similarity with TBP binding sites, three with MYB, three with GATA,

three with AT-HOOK and two with bZIP. The pCREs CGATCG

(GATA), AGCTAC (MYB) and ATATAG (TBP) are specific for the

model trained on pCREs alone whereas CGATCA (GATA) and

ATATATA (TBP) are specific for the model trained on pCREs and

TFBSs. Because of their strongly negative importance, motifs

GGCGGA (AP2), GAGGAGA (SBP), CTCCGC (AP2),

CGGCGGA (AP2) and CCCCTC (TCP) appear to be characteristic

of unresponsive genes to drought stress. When a model is trained on

pCREs, TFBSs and (di)nucleotide content, no TFBSs are among the

25 highest ranking features. Eight of these 25 features are pCREs:

ATTAAT (AT-HOOK), AGCTAG (MYB), TATAAATA (TBP),

TAGCTA (MYB), TATAAA (TBP), CATGCA (NAC), TAATTAA

(HOMEODOMAIN) and AATTAA (AT-HOOK). The remaining 17

most important features are (di)nucleotides, four are intron and 13

are coding sequence (di)nucleotides. The content of CG, AT, AC, and

TT in the codings sequence constitute the highest ranking features.

Hence, similar to heat, the (di)nucleotide content of the coding

sequence can further improve the performance of a model to

predict the transcriptional response.
4 Discussion

Global warming causes aggravated heatwaves and devastating

droughts, posing a serious threat to our food production. We are in

need of crops that can produce more with less input and are resilient

to unfavorable growth conditions. To purposefully engineer plants,

further deciphering of the regulatory grammar driving gene

expression in response to abiotic stress is indispensable. Supervised

machine learning has enabled significant improvements in the

prediction of transcriptional responses and has proven to be a

powerful and versatile tool to identify important regulatory

elements. Optimizing training data and tuning machine learning

models is a challenging and iterative process that depends on the goal

of modeling. More training data generally improves the prediction

performance. In this study, however, the goal is not to forecast stress

responsive genes, but to identify the major drivers of gene expression

prediction to unravel the regulatory grammar of the transcriptional

response to abiotic stress. For that purpose, using more genes could

be inferior to using more informative genes. Our results suggest that it
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is not necessary to use all available genes. An equally good

performance can be achieved for both heat and drought by training

an RF model on a well-considered selection of the most and least

responsive genes, and has some major advantages compared to using

the complete gene set for model training. Building a feature space and

training a model is computationally less expensive and time-

consuming. Using the same number of genes across time points

allows a more reliable comparison of model performance, which is

important considering the temporal variation in the number of

differentially expressed genes in response to abiotic stress. The

computational cost of calculating SHAP values, used as a measure

of relative feature importance, increases with the number of features

and the depth of decision trees. When calculating the SHAP values

for an RF model trained on all nonresponsive and upregulated genes

in response to heat (> 4000 genes), it is required to calculate SHAP

values on a sample of genes, whereas this was not the case for the

1000 most upregulated genes subset. Computing SHAP values based

on a sample of genes reduces the reliability of the importance

estimate. Hence, by working with a well-considered selection of

genes (for heat the 1000 most responsive upregulated genes), the

calculation of the feature importances is based on the same number of

genes as used for model training.

Gene expression is mainly, but not exclusively, regulated at the

level of the promoter – the cis-regulatory region flanking the TSS.

Most binding sites of TFs and other RNA-polymerase related

proteins controlling transcription initiation, occur upstream of

the TSS (de los Reyes et al., 2015). The distance of TF binding

sites relative to the TSS varies substantially across genes. The

promoter’s regulatory architecture is key to understand gene

expression regulation. Using proximal or distal promoter

regulatory elements for model training revealed, for both heat

and drought, a comparable performance, indicating that the

upstream region closest to the TSS is the most important for gene

expression prediction. In agreement with our findings, the

performance to classify maize nonresponsive and upregulated

genes in response to heat was similar for models trained on the

cis-regulatory information in the 500 bp compared to the 2 kb

region upstream of the TSS (Zhou et al., 2022).

To unravel the regulatory grammar controlling the

transcriptional response to abiotic stress by identifying major

drivers of gene expression, we trained ML models on both known

and putative regulatory elements. The most important motifs for

gene expression prediction are interesting for the design of synthetic

stress-inducible promoters to overcome shortcomings of native

promoters in crop engineering (Mehrotra et al., 2011; Liu and

Stewart, 2015; Rushton, 2016). TFBSs can be collected from existing

databases, whereas pCREs are identified by determining enriched

oligomers in upregulated compared to nonresponsive genes,

potentially yielding novel regulatory motifs. We demonstrate that

there is a minor impact of k-mer finding approach on model

performance and the most important features for gene expression

prediction in response to abiotic stress. However, we have identified

several advantages and disadvantages associated with their usage.

ROD can simultaneously identify k-mers enriched in upregulated
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compared to nonresponsive genes, and the other way around. For

the purpose of designing synthetic stress-inducible promoters, this

is a valuable asset, as those characteristic of nonresponsive genes

should be excluded from the design. ROA uses a custom

background model, containing the frequencies of 6, 7 and 8-mers

in nonresponsive genes, instead of the actual promoter sequences

for the enrichment analysis. Both ROA and ROD cannot detect

oligomers longer than 8 nucleotides, however, given that the most

important pCREs for predicting the response to heat or drought are

predominantly 6 and 7-mers, this does not seem to be a major

shortcoming. For each oligomer of length k, both approaches

identify overrepresented k-mers independently of shorter and

longer ones, resulting in redundancy among significantly enriched

k-mers. The PG strategy keeps only significantly overrepresented k-

mers that have a lower p-value than its predecessor, reducing the

redundancy among significantly enriched k-mers. However,

overrepresented k-mers that have no shorter, significantly

enriched variant are not identified.

Temporal discrepancies in transcriptional reprogramming

imply variation in the regulatory grammar driving gene

expression over time. We therefore modeled the transcriptional

response to heat or drought for different time points and compared

the most important regulatory motifs. For heat, there is a

pronounced temporal variation in model performance and most

important motifs for gene expression prediction. Consistent with

previous studies, our results suggest that HSF and TBP regulatory

elements are key for the early response to heat. HSFs were shown to

activate the expression of heat shock and other heat responsive

genes by binding to promoter Heat Shock Elements (HSEs) (Guo

et al., 2016). A synthetic promoter, consisting of an HSE upstream

of a TATA-box, was capable of driving the expression of a GUS

gene in response to heat in multiple plant species, including rice

(Maruyama et al., 2017). Furthermore, HSF1, a central regulator of

the heat stress response, was shown to directly interact with TBPs,

the general TATA-box binding TFs (Reindl and Schöffl, 1998;

Savinkova et al., 2023). At later time points, regulatory elements

associated with MYB, E2F/DP, AP2, NAC, bHLH and bZIP TFs

were the most important for predicting the transcriptional response

to heat. Consistently, various genes encoding HSF, MYB, bHLH,

E2F/DP, NAC, bZIP TFs were upregulated in response to heat at

some point in time. Previous research established a role for MYB,

AP2, NAC and bZIP TFs in the regulation of heat-responsive genes

(Xie et al., 2019; Zhao et al., 2020; Park et al., 2021). Some bHLH

genes were shown to exhibit altered expression in response to heat

(Zhang et al., 2018; Zhang et al., 2020) and a bHLH was identified in

hybrid rice under heat stress (Wang Y. et al., 2020). Vandepoele and

collaborators identified various E2F target genes in rice, involved in

cell cycle regulation and DNA replication (Vandepoele et al., 2005).

In Arabidopsis, it was shown that the function of E2F/DP proteins is

mainly controlled by their nuclear localization, mediated by their

interaction with other proteins (Kosugi and Ohashi, 2002). Heat

stress is known to pause cell cycle progression (Eekhout and De

Veylder, 2019). Our identification of E2F/DP related regulatory

elements as important motifs for the gene expression prediction at

this time point, thus suggests a role for E2F/DP TFs and their target
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genes in the response to heat. Consistently, an E2F/DP binding site

emerged as a highly ranked motif for predicting the transcriptional

response to combined heat and drought stress in Arabidopsis

(Azodi et al., 2020). TBP related regulatory elements are

important drivers of gene expression prediction over time. In

accordance with the enrichment of MYB related TFBSs in

upregulated genes, we show that motifs associated with MYB

binding sites are important for the response to heat at later time

points (6, 12 and 24h). For drought, there is less temporal variation

in model performance and the most important regulatory elements

for gene expression prediction over time. More common regulatory

elements – TBP, MYB, bZIP, GATA and AT-HOOK – emerge for

the response to drought, with time point 24h being the exception.

Remarkably, REVEILLE regulatory elements (5′-AAATATCT-3′),
constitute the most important motifs for gene expression prediction

at this time point, suggesting circadian effects (Rawat et al., 2009).

Accordingly, circadian rhythm is enriched in upregulated genes at

time point 24h. Similar to heat, TBP and MYB associated regulatory

elements are important for predicting the transcriptional response

to drought over time. Consistent with previous studies (Zhao et al.,

2020; Guo et al., 2021; Hu et al., 2022), also bZIP, bHLH and NAC

related motifs emerge as common drivers of gene expression

prediction for heat and drought at some point in time. Motifs

related to MYB and NAC were also key features for the prediction

of the transcriptional response to both heat and drought in

Arabidopsis (Azodi et al., 2020). GATA regulatory elements play

a more prominent role in predicting the transcriptional response to

drought compared to heat. In rice, OsGATA8 was reported to

regulate the expression of key genes involved in drought tolerance

and the scavenging of ROS (Nutan et al., 2020). In tomato,

overexpression of SlGATA17 was shown to promote drought

tolerance (Zhao et al., 2021). AT-HOOK regulatory elements

emerge as important drought-specific gene expression predictors.

The rice gene OsAHL1, containing an AT-hook motif, was shown

to improve drought tolerance in rice (Zhou et al., 2016). In line with

our findings, various genes encoding MYB, NAC, bHLH, HSF, bZIP

and GATA TFs were upregulated in response to drought at some

point in time.

Previous studies have shown that known and putative

regulatory elements differ in their relevance for gene expression

prediction (Azodi et al., 2020; Moore et al., 2022). To assess their

relative importance, we compared the performance and most

important motifs between models trained on pCREs and/or

TFBSs. For both heat and drought, pCREs outperform TFBSs in

predicting gene expression. This was also true for the response to

wounding and combined heat and drought stress (Azodi et al., 2020;

Moore et al., 2022). For drought, a model trained on TFBSs alone

has a poorer performance and training a model on both pCREs and

TFBSs fails to improve model performance compared to pCREs

alone, indicating that known TF bindings sites are insufficient for

predicting the drought response. Consistent with previous results,

the most important regulatory elements were related to GATA, AT-

HOOK, NAC, TBP, MYB and bZIP. As opposed to drought, the

comparable performance of a model trained on TFBSs or pCREs

and the improved performance when a model is trained on both,
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indicate that known TFBSs are valuable for predicting the response

to heat and that pCREs and TFBSs are not fully redundant.

Consistent with previous results, HSF and TBP related regulatory

elements are the most important for predicting the early

transcriptional response to heat when a model is trained on

pCREs and/or TFBSs. Interestingly, the HSE (5′-GAAnnTTC-3′)
does not emerge among the main regulatory elements when a model

is trained on pCREs alone, but parts of the consensus HSF binding

site do. This is probably due to the presence of degenerate

nucleotides in the binding site that are not well modeled using

the applied pCRE detection method.

There is compelling evidence that gene expression regulation is

not restricted to TFs and the region around the TSS. Also coding

regions can be used to predict gene expression (Washburn et al.,

2019; Zrimec et al., 2020; Meng et al., 2021; Zrimec et al., 2021). We

therefore evaluated the importance of the (di)nucleotide content of

both coding and noncoding genomic regions for predicting the

transcriptional response to heat or drought. For both heat and

drought, training models on (di)nucleotide content outperformed

models trained on pCREs and/or TFBSs and further increased the

performance when used for training together with pCREs and

TFBSs. For both abiotic stresses, the highest ranking features

cover multiple (di)nucleotide content features. Consistent with

the response to cold stress (Meng et al., 2021), coding sequence

(di)nucleotides, in particular CG and AT, emerged as the most

important for gene expression prediction in response to heat or

drought. A high CG content and a low AT content (data not shown)

are associated with a high feature importance, indicating that they

are characteristic of upregulated genes. Cytosines within GC sites

play a role in regulating gene expression through both methylation-

dependent and methylation-independent mechanisms (Hartl et al.,

2019; Schmitz et al., 2019). AU-rich elements have been shown to

play a role in RNA stability and degradation (Schoenberg and

Maquat, 2012). Furthermore, it was shown that the higher the

expression of a gene in response to drought, the higher the GC/AT

ratio (Mohasses et al., 2020). Hence, (di)nucleotide content proves

to be a valuable predictor of gene expression in plants and

contributes to the growing awareness that gene expression

regulation spans both coding and noncoding regions.

With this study, we present a detailed guide for generating

training data and building a feature space based on coding and

noncoding features to model the transcriptional response to abiotic

stress. Our approach to using machine learning for gene expression

prediction is aimed at maximizing the contrast between upregulated

and nonresponsive genes by non-random class balancing and using

only the most and least responsive genes for model training.

Furthermore, we explored the most relevant information for

building a feature space (promoter length and k-mer finding

approach). We developed a comprehensive methodology for

building and interpreting machine learning models that enabled

us to identify both time point-specific and common noncoding

regulatory elements for the response to heat or drought stress, as

well as abiotic stress-specific and common noncoding regulatory

elements. We show that the coding sequence (di)nucleotide content

can further improve model performance.
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