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Editorial on the Research Topic

Regulation of plant organelle biogenesis and trafficking
The emergence of membrane-bounded organelles is a hallmark of eukaryotic cells,

allowing multiple and incompatible biochemical processes to occur simultaneously (Gomes

and Shorter, 2019; Mathur, 2020). Each organelle contains a specific set of proteins, lipids,

and cofactors that define its characteristic morphology and function. Meanwhile, the

activities and functions of cellular organelles must be well orchestrated for the cell to

function properly as a biological unit (Cohen et al., 2018; Perico and Sparkes, 2018). The

process of organelle biogenesis involves the coordinated expression of genes, signaling

pathways, and molecular interactions that result in the formation and maintenance of

organelle structure and function. Furthermore, proper regulations of organelle subcellular

localization, trafficking, and interactions are crucial for cell growth, development, and

homeostasis (Lippincott-Schwartz et al., 2000; Noack and Jaillais, 2017). Thus, organelle

biogenesis, function, and diversity are fundamental and critical to every cell.

The organelles play essential roles in various physiological and metabolic processes,

including photosynthesis, cell wall construction, hormonal distribution, and cell signaling

(Saftig and Klumperman, 2009; Kang et al., 2011; Perico and Sparkes, 2018; Li et al., 2020;

Robinson, 2020; Shimizu et al., 2021). Moreover, the trafficking and interactions of

organelles within cells are dynamic processes that involve coordinated action of various

components, including motor proteins, cytoskeletal elements, and membrane trafficking

regulators such as small GTPases and soluble N-ethylmaleimide-sensitive-factor

attachment protein receptors (SNAREs). They are also influenced by environmental cues

such as light, temperature, and various other biotic and abiotic stresses (Uemura and Ueda,

2014; Luo et al., 2017; Yun and Kwon, 2017; Rosquete and Drakakaki, 2018; Won and Kim,

2020). Understanding the mechanisms underlying plant organelle biogenesis and

trafficking is essential for improving plant growth and development, as well as for

devising new biotechnological applications that rely on the targeted delivery of
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molecules to specific plant cells or tissues (Miao et al., 2008;

Michoux et al., 2011; Ou et al., 2014; Lomonossoff and

D’Aoust, 2016).

In this Research Topic issue, several essential aspects of

organelle biogenesis, membrane trafficking, and protein sorting in

both model and non-model plants have been advanced. In

eukaryotic cells, new proteins and lipids are delivered from their

site of synthesis in the endoplasmic reticulum (ER) to various

subcellular destinations. The Golgi apparatus is a central

organelle in secretory membrane traffic and sorting. In plant cells,

the Golgi additionally serves as a major biosynthetic organelle for

synthesizing polysaccharides, which are key elements for the plant

cell wall construction (Reyes et al., 2011; Chung and Zeng, 2017).

The morphogenesis and maintenance of the stacked cisternal

structure of the Golgi body are critical for its biological functions.

Rui et al. provide an update on key regulators that mediate ER-

Golgi, intra-Golgi, and post-Golgi trafficking pathways.

Furthermore, they focus on functional molecules that participate

in retrograde vesicular transport from trans-Golgi to cis-Golgi

cisternae, including Arf1, coatomer, the COG complex, SYP31

and 32, Rab GTPases and Golgi matrix proteins.

In addition, soluble N-ethylmaleimide-sensitive factor

attachment protein receptor (SNARE) proteins are a family of

proteins that are essential to mediate membrane fusion in

eukaryotic cells. They also play a crucial role in various cellular

processes, including organelle interactions, vesicular trafficking,

cytokinesis, and are involved in growth, development and stress

responses in plants (Grefen and Blatt, 2008; Kwon et al., 2020).

VPS45 is a protein that belongs to the Sec1/Munc18 family and

interacts with and regulates Qa-SNARE function during membrane

fusion. Mugume et al.identified a mutant of VPS45, which is caused

by a point mutation in the VPS45 gene that differs from the lethal

vps45 knockout mutation in Arabidopsis. They further revealed that

impaired VPS45 function causes vacuolar defects and leads to a loss

of turgor pressure that is needed for proper tip growth. Besides, Luo

et al. summarized recent progress in understanding the biological

functions and signaling network of SNAREs in vesicle trafficking

and the regulation of root growth and development in Arabidopsis.

Proteins of the secretory pathway are transported from the

Golgi stack to the trans-Golgi network (TGN) for sorting and

trafficking to different subcellular localizations. In plant cells, the

TGN has been identified as an independent organelle that also

functions like the early endosome (EE) of animal cells and is

therefore also referred to as TGN/EE (Dettmer et al., 2006; Lam

et al., 2007; Richter et al., 2009; McKay et al., 2022). It is also the

source for the biogenesis of the multivesicular bodies (MVBs), the

late endosomes (LEs) that facilitate the trafficking to the lytic

vacuole (Scheuring et al., 2011). Shimizu and Uemura review the

recent results from fast live imaging by spinning disk confocal

microscopy and from 3D reconstructions by electron tomography

that allowed to distinguish the Golgi-associated TGN (GA-TGN)

from the Golgi-independent TGN (GI-TGN) and also specialized

domains within the GA-TGN. The markers AP-1, Epsin1, clathrin

and VAMP721 are associated with a domain involved in trafficking

to the plasma membrane, while AP-4, MTV1 and VAMP727 are

associated with another domain involved in trafficking to the
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vacuole. Whether clathrin is involved in the latter pathway is

unclear. The GI-TGN derives from the former domain of the

GA-TGN and produces AP-1/clathrin-coated vesicles, which may

play a role in retrograde trafficking. The secretory trafficking is

further complicated by the separate sorting and transport of

proteins to different domains of the plasma membrane, as is seen

in root endodermal cells. Inhibitors differently affect transport to

the two target membranes, but this sorting has not yet been

localized within the TGN. Finally, not all protein trafficking to the

vacuoles may implicate the TGN, as AP-3 mediated sorting of

several proteins may well already occur at the trans-Golgi.

Plant adaptation relies on neofunctionalization of the

endomembrane system (ES) to acquire new organelles, which

may serve for secondary metabolism. This approach is often

ignored due to the intricacy of angiosperms. Bryophytes, with

their simple cellular structures and unique organelles such as oil

bodies (OBs), are great models for studying the role of the

endomembrane system (ES) in the production of plant secondary

metabolites (PSMs), as well as how new organelles are acquired

during evolution (He et al., 2013; Kanazawa et al., 2020; Romani

et al., 2020; Romani et al., 2022). Liverwort’s OBs are single-

membrane organelles containing lipophilic globules and PSMs in

a protein matrix, and are typically found in gametophyte cells (He

et al., 2013; Romani et al., 2022). Recent studies on OBs in

Marchantia polymorpha have identified several key transcriptional

factors, including ERF, MYB and HDZ, which coordinate the

redirection of the secretory pathway toward OB formation

(Romani et al., 2020). Research on the M. polymorpha SNARE

protein (MpSYP12B) found in OBs suggests that these organelles

may have originated from the expansion of secretory trafficking

systems in plants (Kanazawa et al., 2020). Furthermore, the same

research group recently identified that maintaining the shape of the

OB is a complex process that involves the COPI components

(Kanazawa et al.). Systemic research on OB provides compelling

evidence to support the notion that the redirection of the secretory

pathway contributes to OB formation and shape, although the

physiological significance of maintaining OB shape requires

further study (Kanazawa et al., 2020). This research underscores

the importance of studying OBs in bryophytes and highlights the

need for similar future studies on non-model organisms to

maximize our understanding of organelles and trafficking.

Ultimately, such studies can enrich our knowledge in this field.

Mitochondria, the cell’s “powerhouse”, produce respiratory

ATP and are essential for eukaryotic life. Most mitochondrial

proteins are encoded by the nuclear genome, synthesized in the

cytosol, and translocated to the mitochondria (Møller et al., 2021).

Nevertheless, mitochondria are known as semi-independent

organelles, which also contain their own mitochondrial genome

(mitogenome) (Barrera-Paez and Moraes, 2022). Understanding

the plant mitogenome can help us better understand the function of

mitochondria in plant cells, and develop strategies to improve plant

health and crop yields by editing the mitochondrial genome (Yang

et al., 2022). Mitogenomes from different plant species can be used

to study the evolution of plant lineages, as well as to investigate the

relationships between plant species and other organisms such as

fungi and bacteria. In addition, plant mitogenomes can also serve as
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a tool for studying the phylogenetics of different plant species

(Zardoya, 2020). In recent years, high-throughput sequencing

techniques have accelerated the sequencing of mitogenomes and

uncovered the great diversity of organizations, gene contents, and

modes of replication and transcription found in living eukaryotes.

Feng et al. have assembled complete mitogenomes of 23 species that

cover seven families of Fagales. By their analysis of their

mitogenomic structures and capacity in phylogeny, they offer a

fresh perspective on the evolution of mitochondrial genomes and

the variations in their size. Furthermore, Bi et al. completed the

assembly of the complete mitochondrial genome of Populus simonii

and provide insights into the stability of genome sizes and gene

contents in the genus Populus.

Together, the biogenesis and trafficking of plant organelles

involve complex cellular processes that are coordinated by various

signaling pathways and molecular interactions. Recent advances in

our understanding of the regulation of plant organelle biogenesis

and trafficking have provided new insights into the complex cellular

processes underlying plant growth and development. Further

research in this fascinating and challenging area will undoubtedly

uncover new regulatory pathways and molecular mechanisms,

providing new targets for plant/crop improvement, environmental

sustainability, and biotechnological applications.
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