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Tobacco Mosaic Virus (TMV) and Potato Virus Y (PVY) pose significant threats to

crop production. Non-destructive and accurate surveillance is crucial to effective

disease control. In this study, we propose the adoption of hyperspectral and

machine learning technologies to discern the type and severity of tobacco leaves

affected by PVY and TMV infection. Initially, we applied three preprocessing

methods – Multivariate Scattering Correction (MSC), Standard Normal Variate

(SNV), and Savitzky-Golay smoothing filter (SavGol) – to corrected the leaf full-

length spectral sheet data (350-2500nm). Subsequently, we employed two

classifiers, support vector machine (SVM) and random forest (RF), to establish

supervised classification models, including binary classification models (healthy/

diseased leaves or PVY/TMV infected leaves) and six-class classification models

(healthy and various severity levels of diseased leaves). Based on the core

evaluation index, our models achieved accuracies in the range of 91–100% in

the binary classification. In general, SVM demonstrated superior performance

compared to RF in distinguishing leaves infected with PVY and TMV. Different

combinations of preprocessing methods and classifiers have distinct capabilities

in the six-class classification. Notably, SavGol united with SVM gave an excellent

performance in the identification of different PVY severity levels with 98.1%

average precision, and also achieved a high recognition rate (96.2%) in the

different TMV severity level classifications. The results further highlighted that

the effective wavelengths captured by SVM, 700nm and 1800nm, would be

valuable for estimating disease severity levels. Our study underscores the efficacy

of integrating hyperspectral technology and machine learning, showcasing their

potential for accurate and non-destructive monitoring of plant viral diseases.
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1 Introduction

Tobacco Mosaic Virus (TMV) and Potato Virus Y (PVY) are

widespread virus diseases in fields and cause massive economic

losses to crops (Scholthof et al., 2011; Khateri et al., 2014; Korbecka-

Glinka et al., 2021). Both PVY and TMV infect a wide range of

plants, especially tobacco and other members of the family

Solanaceae, causing symptoms such as leaf mosaic, vein clearing,

and deformation (McDonald and Singh, 1996; Yang and Klessig,

1996; Quenouille et al., 2013). The key to effective viral disease

control is to directly monitor the occurrence and prevalence of

diseases. However, the traditional methods of visual or molecular

identification are time-consuming, inefficient, and destructive. At

the same time, TMV and PVY infections are difficult to be separated

and could develop into severe symptoms rapidly under an ideal

environment, which leads to missing the best control period

(Figure 1B). Therefore, automatic identification of the disease

occurrence and severity degree of plants in the field in time will

be of great benefit for precise prevention by guiding the chemical

application where and when needed at an appropriate dose, further

controlling the spread of TMV and PVY in time and avoiding great

production loss. Furthermore, the automated disease identification

can be integrated into innovative disease-resistant plant breeding

process, expediting the phenotyping process and yielding time

savings compared to the visual assessment by human raters.

Modern agriculture has benefited greatly from the high-tech

vision solutions such as artificial intelligence, machine learning, etc.

For example, spectrum technology has often been used in precision

agriculture to fill gaps in continued human monitoring. Spectral

reflectance captures crop biomass, disease information, and crop

quality (Gnyp et al., 2014; Martıńez-Martıńez et al., 2018). The

principle of spectroscopic technology is to identify the content and

composition of substances using the different characteristics of

different substances such as light absorption and reflection (Fang

et al., 2015). In particular, at the onset of PVY and TMV infection,

leaf structural characteristics and chlorophyll levels begin to change.

These changes will further trigger the reflection spectrum. Hence,
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taking advantage of these fluctuations in the reflection spectrum, we

could carry out disease detection and monitoring thanks to modern

techniques avoiding irretrievable yield loss caused by missing the

best control time. The advantages of applying spectral technology to

monitor crop diseases are fast, non-destructive, and wide-area

detectable. It has been verified in previous studies that the usage of

leaf spectral information could effectively monitor and distinguish

leaf disease (Huang et al., 2012; Hu et al., 2016; Kong et al., 2018;

Martıńez-Martıńez et al., 2018; Long et al., 2021; Cai et al., 2022;

Fernández et al., 2022). However, there are scarce studies to explore

the application value in the detection of virus diseases.

Furthermore, searching for sensitive wavelength bands is the

focus of spectroscopic technology applications. The optimal

wavelength of the leaf spectrum can be quickly and accurately

located by machine learning (Steddom et al., 2005; Li et al., 2022; Lv

et al., 2022). Machine learning algorithms can process a large

number of data sets with irregular surfaces, find the potential

probability distribution of the data, and make predictions, which

can be used for the diagnosis and prediction of crop diseases.

Machine learning is mainly classified into supervised classification

and unsupervised classification. Supervised classification algorithms

include support vector machine (SVM), random forest (RF),

decision Tree, KNN algorithm, linear regression, and other

methods often used in the binary classification regression

analysis. Unsupervised classification algorithms are mainly used

for cluster analysis. Most of the applications have been

implemented using supervised variants of machine learning

algorithms rather than unsupervised ones. Besides, among the

above algorithms, RF training speed is fast, having strong model

generalization ability. The SVM algorithm is suitable for analyzing

finite samples, overcoming the shortcomings of some other binary

support vector machines, and improving multi-classification

accuracy (Uddin et al., 2019).

Machine learning holds immense potential for enhancing

accuracy. Hence, the fusion of spectral data and machine learning

techniques has been harnessed for leaf disease diagnosis (Lamba

et al., 2021). Nevertheless, spectral data often carries inherent noise,
A B

FIGURE 1

(A) The equipment ASD Field Spec4 (up) and the strategy of spectra data collection in this study (down); (B) the PVY/TMV diseased leaves with
different severity levels (Wang et al., 2020).
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making the careful selection of appropriate algorithms and models

paramount in the accurate identification of tobacco diseases. By

analyzing the full-length spectra (350-2500nm) of healthy and

diseased tobacco leaves, this study aims to establish robust and

effective classification models for TMV and PVY diseases by two

classifiers: support vector machine (SVM) and random forest (RF)

(Figure 1). The outcomes of this research will be helpful to facilitate

the early-stage disease type and the severity level assessments,

scientifically informed strategies for preventing and controlling

leaf diseases.
2 Materials and methods

2.1 Test materials and the test equipment

The study was performed in the JiMo experimental area of the

Tobacco Research Institute, Chinese Academy of Agricultural

Sciences, Qingdao City, China (120.58°N, 36.45°E). The TMV or

PVYN pathogens and tobacco seedlings K326 were provided by the

Plant Protection Institute of the Chinese Academy of

Agricultural Sciences.

The test equipment is ASD Field Spec4 portable handheld

ground object spectrometer, which is equipped with VNIR (350-

1000nm) 512-pixel silicon array detector in the visible region,

SWIR1 (1001-1800nm) graded index InGaAs detector, and

SWIR2 (1801-2500mm) graded index InGaAs detector. The

acquisition wavelength range is 350-2500nm, the wavelength

reproducibility is 0.1nm, and the wavelength accuracy is 0.5nm.
2.2 Test methods

2.2.1 Disease inoculation
The tobacco plant variety is K326 cultivated to the 7-8 leaf stage

under the greenhouse conditions (25 ± 1°C, 65% ± 5% relative

humidity, and 14:10h light: dark photoperiod). After the leaves were

dusted, the healthy leaves were inoculated with pathogens TMV or

PVY by mechanical inoculation method according to (Piche

et al. (2004).

2.2.2 Spectral data acquisition
Parameters of the FieldSpec4 equipment were adjusted

according to the usage specifications (Figure 1A). The optical

fiber probe was at a 5° angle of view, and a distance of 10 cm

above the blade surface for measurement. The lens was aimed at the

whiteboard to optimize the instrument, and then the lens was

moved to the tested leaf to store the leaf reflectance spectrum data.

The whiteboard optimization was done for every ten tobacco

plants measured.

Tobacco plants at 7-8 leaf stages were selected for measurement.

Six measurement points were picked on each tobacco leaf at the

base of the leaf, the middle of the leaf, and the top of the leaf using

the leaf vein as the axis of symmetry (Figure 1A). The average value

of these six points was taken as the spectral reflectance of the leaf.
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2.2.3 Disease data collection
Six disease severity grades were applied to this study according

to the disease grading standard GB/T23222-2008, namely, healthy

leaf (no symptoms on the whole plant), grade 1 (Zero to one-

quarter of the leaf is mosaic), grade 3 (one quarter to one-third of

the leaf is mosaic), grade 5 (one third to a half of the leaf is mosaic,

slight deformation or slightly darken vein), grade 7 (a half to two-

thirds of the leaf is mosaic, deformation or vein necrosis), and grade

9 (two thirds to the whole leaf is mosaic, severe deformation or

severe vein necrosis) (Figure 1B).

The spectral reflectance of healthy and TMV or PVY diseased

leaves at the five unhealthy classes of grade 1 (TMV1 or PVY1),

grade 3 (TMV3 or PVY3), grade 5 (TMV5 or PVY5), grade 7

(TMV7 or PVY7) and grade 9 (TMV9 or PVY9) were collected

respectively, using the same method in 2.2.2. 893 samples were

obtained in total (Table 1). A number of 286 samples were obtained

for TMV-diseased leaves, 456 for PVY-diseased leaves, and 151 for

healthy leaves (Table 1).
2.3 Data processing

2.3.1 Data preprocessing
The collected spectral data includes over 2150 wavenumber

points. In the actual spectral data acquisition process, the

environmental conditions, sampling time, sampling points, and so

on would affect the collecting result by inducing scattering and

noises. Therefore, before the model was built, the original spectral

data were perpetrated by three data preprocessing methods:

Multivariate Scattering Correction (MSC), Standard Normal

Variate (SNV), and Savitzky-Golay smoothing filter (SavGol).
TABLE 1 Spectrum data collection of tobacco diseased leaf and
healthy leaf.

training sample test sample sample size

healthy 125 26 151

PVY 361 95 456

TMV 229 57 286

PVY1 20 4 24

PVY3 24 10 34

PVY5 96 22 118

PVY7 120 34 154

PVY9 102 24 126

TMV1 37 14 51

TMV3 60 10 70

TMV5 47 12 59

TMV7 36 13 49

TMV9 45 11 56

Diseased 589 153 742
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MSC is one of the common methods of hyperspectral data

preprocessing, which can effectively eliminate the spectral difference

caused by the scattering level and correct the baseline shift, and

offset the phenomenon of spectral data (Windig et al., 2008). The

formulas are as follows:

a. The average of all spectral data as the “ideal spectrum”

Data
��!

= on
i=1

Dataij
n

(1)

b. The baseline translation and offset of each sample were

obtained by solving the least squares problem by unary linear

regression between the spectrum of each sample and the average

spectrum.

Datai = kiData
��!

+ bi (2)

c. The spectrum of each sample was corrected by subtracting the

obtained baseline translation and dividing by the offset.

Datai(MSC) =
(Datai−bi)

ki
(3)

SNV was used to eliminate the effects of solid particle size,

surface scattering, and optical path variation on the near-infrared

band (NIR) diffuse reflectance spectra (Dhanoa et al., 1995). The

formula is:

X
i,SNV=

xi,k−xiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o

m
k=1

(xk−xi )

(m−1)

q  
(4)

xi is the average of the spectra of the i sample; k=1,2,…, m. m is the

wave point; i=1,2,…,n;

n is the corrected sample number; Xi, SNV is the

transformed spectrum.

SavGol could improve the smoothness of the spectrum, reduce

the interference of noise, and ensure that the shape and width of the

signal remain unchanged while filtering out the noise (Savitzky and

Golay, 1964; Mishra et al., 2019). SavGol smoothing uses

polynomial functions to smooth signals. It involves selecting a

window, fitting a polynomial to the data within it, and replacing

the central point with the polynomial’s value. The window size and

polynomial choice are typically manual, based on visual inspection.

In our work, we used a second-order polynomial and a 5-point

window for smoothing.

2.3.2 Model establishment
Since spectral data may have multicollinearity, SVM and RF

algorithms are used to prevent over-fitting. All the data set was

divided into two parts: 80% as the training set, and the remaining

20% of the data set as the test set to evaluate the performance of the

trained algorithms in the test set.

The SVM algorithm divides the optimal hyperplane by

constructing feature space. The idea of maximizing the

classification margin is the core of the SVM method. SVM

contains several parameters, such as kernel function, gamma

value, and penalty factor C (Boser et al., 1992; Cortes and

Vapnik, 1995). In this study, the Linear is used as the kernel

function. The optimal model parameters were determined by

GridSearch in the training set based on 50% fold cross-validation.
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The penalty factor Cs were 1 for SVM +MSC, 40 for SVM + SNV, 1

for SVM + SavGol.

RF algorithm is an algorithm, integrated with a large number of

decision trees. The final predicted result is obtained according to the

summary of the scores of the decision tree nodes on the dataset.

Each decision tree classifies the input vector, and the final

classification result is determined by the vote of each tree.

Therefore, the number of decision trees is the most important

parameter affecting RF, and the optimal number of decision trees is

determined by GridSearch based on 50% fold cross-validation in the

training set (Breiman, 2001; Liaw and Wiener, 2002). The numbers

of decision trees were 53 for RF + MSC, 39 for RF + SNV and 25 for

RF + SavGol.

The binary classification is the identification of healthy and

diseased tobacco leaves, or PVY diseased leaves and TMV diseased

leaves. The six-class classification is suffered TMV grades TMV1,

TMV3, TMV5, TMV7, TMV9 and healthy leaves, respectively, and

suffered PVY grades PVY1, PVY3, PVY5, PVY7, PVY9 and healthy

leaves. The sample dataset was randomly divided into a training set

and a test set according to 8:2 (Details information was listed in

Table 1). Each algorithm was trained with the best parameters

through the training set, and the trained algorithm evaluated the

performance of the model on the test set (Figure 2).

2.3.3 Model performance evaluation
Evaluation indicators of each classifier: “Precision” means the

ratio of the number of correctly classified samples of a certain

category to the predicted samples of this category; “Recall” means

the ratio of the number of correctly classified samples of a certain

category to the real number of the category, f1 is the comprehensive

evaluation of “precision” and “recall”; “accuracy” means the

proportion of the number of samples that are correctly predicted;

“support” means the number of samples (Lamba et al., 2021).

precision = (TP)
(TP+FP) (5)

Recall = TP
(TP+FN) (6)

F1score =
(2*TP)

(2*TP+FN+FP) (7)

Accuracy = (TP+TN)
(TP+TN+FP+FN) (8)

TP is the number of true positive; TN is the number of true

negative; FP is the number of false positive; FN is the number

of negative.

As more attention is paid to diagnostic accuracy in agricultural

disease diagnosis, precision scores are the main evaluation index in

this study. The higher the precision score, the better performance of

the model will be.
2.4 Data analysis

There are three different methods of data preprocessing and two

classifiers to create six combinations of algorithmic models
frontiersin.org
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(Table 2). All data processing was run by Python3.9 and R

4.0.1 versions.
3 Results

3.1 Spectral data preprocessing

Mean spectral reflectance curves under different conditions are

shown in Figure 3. We could see that the spectral reflectance

patterns of various kinds of leaves give the same variation trend

(Figures 3A, E). In general, there are three significant peaks around

780nm, 1250nm, and 1600nm and one valley value under the near-

infrared band in healthy, PVY, or TMV-infected leaves. Under the
Frontiers in Plant Science 05
above three peaks, there are different degrees of overlaps among the

healthy and various levels of diseased leaves.

After different pretreatments, the spectra’ reflectance changed

in different ways. For TMV-infected leaves, SNV (Figure 3C) and

MSC (Figure 3D) modified the spectral reflectance significantly in

the near-infrared band (NIR), while producing overlaps of spectral

reflectance around the 780nm band. Similar to a scenario in the

TMV experiment, pretreatments of SNV (Figure 3G) and MSC

(Figure 3H) increased the reflectance discrimination ability of

different severity levels of PVY diseased leaves but reduced the

spectral resolution ability around the 780nm band.

Overall, MSC and SNV preprocessing methods revealed a

relatively outstanding ability to improve the NIR band’s spectral

resolution. The spectral reflectance after SavGol treatment did not
TABLE 2 The average precision (%) of each algorithm combination in different classification models.

algorithm models
Binary classification Six-class classification

healthy and diseased leaf PVY and TMV TMV PVY

SavGol+SVM 97.4 100.0 96.2 98.1

MSC+SVM 97.0 99.5 96.2 97.4

SNV+SVM 97.4 98.0 96.2 96.9

SavGol+RF 97.4 100.0 98.4 88.7

MSC+RF 96.6 90.3 88.7 76.6

SNV+RF 97.0 97.0 85.2 91.5
FIGURE 2

Workflow of this study.
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change significantly. In addition, the resolution of PVY-diseased

leaves is better than TMV-diseased leaves (Figure 3).
3.2 Tobacco leaf disease
binary classification

3.2.1 The binary classification of healthy leaf and
diseased leaf

The number of 893 samples was randomly divided into a

training set (80% with 714 samples) and a test set (20% with 179

samples) (Table 1). As shown in Tables 2, 3; Figure 4, in the binary

classification of healthy leaf and diseased leaf, all the preprocessing

methods and classifiers gave high recognition precision and
Frontiers in Plant Science 06
accuracy of healthy leaves with over 93%. The misclassification

for the RF classifier mainly came from the mistaken healthy leaves

of diseased ones (Figure 4). The recognition precision of SavGol

+RF, SavGol+SVM, and SNV+SVM combinations reached up to

98% (Table 2), which could be potentially adopted for the accurate

identification of diseased leaves and healthy leaves.

3.2.2 The binary classification of PVY diseased
leaf and TMV diseased leaf

A total of 742 samples were input for the classification of PVY

diseased leaf and TMV diseased leaf. 590 samples for the training set

and 152 samples for the test set. Tables 2, 4; Figure 5 showed that in

the identification of PVY diseased leaves, the average precision after

the SavGol pretreatment method was the highest at 100%. The
TABLE 3 Evaluation index scores of each algorithm model in the binary classification of healthy leaf and diseased leaf.

algorithm models leaf precision recall f1 - score support accuracy

SavGol+SVM
diseased 0.987 0.993 0.99 153

0.983
healthy 0.96 0.923 0.941 26

SavGol+RF
diseased 0.987 0.993 0.99 153

0.983
healthy 0.96 0.923 0.941 26

MSC+SVM
diseased 0.987 0.987 0.99 153

0.983
healthy 0.926 0.962 0.943 26

MSC+RF
diseased 0.974 0.993 0.984 153

0.972
healthy 0.957 0.846 0.898 26

SNV+SVM
diseased 0.987 0.993 0.99 153

0.983
healthy 0.96 0.923 0.941 26

SNV+RF
diseased 0.981 0.993 0.987 153

0.978
healthy 0.958 0.885 0.92 26
f

A B D

E F G H

C

FIGURE 3

The leaf reflectance of tobacco leaves. (A) PVY: spectra without any correction; (B) PVY MSC corrected spectra; (C) PVY: SavGol corrected spectra;
(D) PVY: SNV corrected spectra; (E) TMV: spectra without any correction; (F) TMV: MSC corrected spectra; (G) TMV: SavGol corrected spectra; (H)
TMV: SNV corrected spectra.
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recognition precision of TMV-diseased leaves by the combination

of MSC+RF was lower than 86% (Table 4), and most of the errors

were misjudging TMV-diseased leaves as PVY diseased leaves

(Figure 5). The overall classification result was better when

combined SVM classifier. The algorithm models of SavGol+RF,

SavGol+SVM, and MSC+SVM combinations could greatly help

achieve the accurate identification of TMV and PVY diseases.
Frontiers in Plant Science 07
3.3 TMV six-class classification

There are 437 samples for the TMV six-class classification. 349

samples were randomly separated into the training set, and 88

samples in the test set (Table 1). In the TMV six-class classification,

it is known from Table 5; Figure 6 that in the cases of healthy,

TMV1, TMV5, TMV7, and TMV9 recognition, most of the models
TABLE 4 Evaluation index score of each algorithm model in the binary classification of PVY-infected leaf and TMV-infected leaf.

algorithm models disease precision recall f1-score support accuracy

SavGol+SVM
PVY 1.00 1.00 1.00 95

1.00
TMV 1.00 1.00 1.00 54

SavGol+RF
PVY 1.00 1.00 1.00 95

1.00
TMV 1.00 1.00 1.00 54

MSC+SVM
PVY 0.99 1.00 0.995 95

0.993
TMV 1.00 0.981 0.991 54

MSC+RF
PVY 0.946 0.916 0.935 95

0.913
TMV 0.86 0.907 0.891 54

SNV+SVM
PVY 0.959 1.00 0.979 95

0.973
TMV 1.00 0.926 0.962 54

SNV+RF
PVY 0.989 0.989 0.989 95

0.986
TMV 0.981 0.981 0.981 54
f

A B

D E F

C

FIGURE 4

The confusion matrix of each algorithm model in the binary classification of healthy leaves and diseased leaves. A–F: Number of correctly and
misclassified samples for six classification models: (A) SavGol+SVM, (B) MSC+SVM, (C) SNV+ SVM, (D) SavGol+RF, (E) MSC+RF, and (F) SNV+RF.
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A B

D E F

C

FIGURE 5

The confusion matrix of each algorithm model in the binary classification of PVY diseased leaf and TMV diseased leaf. A–F: Number of correctly and
misclassified samples for six classification models: (A) SavGol+SVM, (B) MSC+SVM, (C) SNV+ SVM, (D) SavGol+RF, (E) MSC+RF, and (F) SNV+RF,
respectively.
TABLE 5 Evaluation index score of the six-class classification of TMV diseased leaf.

algorithm models severity grade precision recall f1-score support accuracy

SavGol+SVM

healthy 1.00 1.00 1.00 28

0.966

TMV1 1.00 0.786 0.88 14

TMV3 0.769 1.00 0.869 10

TMV5 1.00 1.00 1.00 12

TMV7 1.00 1.00 1.00 13

TMV9 1.00 1.00 1.00 11

SavGol+RF

healthy 0.903 1.00 0.949 28

0.966

TMV1 1.00 0.786 0.88 14

TMV3 1.00 1.00 1.00 10

TMV5 1.00 1.00 1.00 12

TMV7 1.00 1.00 1.00 13

TMV9 1.00 1.00 1.00 11

MSC+SVM

healthy 1.00 1.00 1.00 28

0.966

TMV1 1.00 0.786 0.88 14

TMV3 0.769 1.00 0.869 10

TMV5 1.00 1.00 1.00 12

TMV7 1.00 1.00 1.00 13

(Continued)
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TABLE 5 Continued

algorithm models severity grade precision recall f1-score support accuracy

TMV9 1.00 1.00 1.00 11

MSC+RF

Healthy 0.862 0.893 0.877 28

0.875

TMV1 0.889 0.571 0.696 14

TMV3 0.769 1.00 0.869 10

TMV5 1.00 1.00 1.00 12

TMV7 0.80 0.923 0.857 13

TMV9 1.00 0.909 0.952 11

SNV+RF

healthy 1.00 1.00 1.00 28

0.966

TMV1 1.00 0.786 0.88 14

TMV3 0.769 1.00 0.869 10

TMV5 1.00 1.00 1.00 12

TMV7 1.00 1.00 1.00 13

TMV9 1.00 1.00 1.00 11

SNV+SVM

healthy 1.00 1.00 1.00 28

0.955

TMV1 1.00 0.714 0.833 14

TMV3 0.714 1.00 0.833 10

TMV5 1.00 1.00 1.00 12

TMV7 1.00 1.00 1.00 13

TMV9 1.00 1.00 1.00 11
F
rontiers in Plant Science
 09
 f
A B

D E F

C

FIGURE 6

The confusion matrix of each algorithm model in the six-class classification of TMV diseased leaf. (A–F): Number of correctly and misclassified
samples for six classification models: (A) MSC+RF, (B) SavGol+SVM, (C) SNV+RF, (D) MSC+SVM, (E) SavGol+RF, and (F) SNV+ SVM.
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have performed excellently. Unlike the mediocre performance of

PVY3 identification, the recognition precisions of the TMV3 leaf

were relatively poor in all models (Table 5).

We could see that both classifiers had better recognition of

healthy leaves and TMV5, and the misjudgments were mostly

concentrated in TMV1 and TMV3. For example, the errors of

models using SVM as a classifier were mostly misjudgments of

TMV1 to TMV3. The misjudgments of combinations including RF

as a classifier were mainly at the TMV1 level (Figure 6). The

classification precision of SavGol+RF for different TMV disease

grades was the highest, with a rate of 98% (Table 2).

The full spectral analysis revealed that all bands contributed

fluctuated information. Figure 7 shows the effective bands captured

by the combination of MSC+SVM, SavGol+SVM, and SNV+SVM

were concentrated around 1801nm and 1802nm. The effective

bands captured by the combinations with the RF classifier

dispersed extremely. These may indicate that the different

important bands captured by different classifiers may be one of

the important reasons that affect the recognition accuracy.
3.4 PVY six-class classification

A total of 607 samples was collected for PVY six-class

classification analysis, among which 485 samples were randomly

divided into the training set and 122 samples were into the test set.

In the results of the PVY six-class classification, the

performance of the same preprocessing method and classifier

varied greatly among the severity grade classifications. In the

recognition of severity levels PVY1 and PVY3, the precisions of

models including the SVM classifier were 100% while RF has a poor

estimation ability with low precision rates. For the recognition of

PVY5, only the models after SavGol pretreated came up to 90%. For
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PVY7 and PVY9 identification, all models are generally excellent

with high precision rates between 96% and 100% (Table 6).

Overall, the results showed that the precision rates of the

models combined with the SVM classifier were high (Table 6).

The errors centered on misidentifying PVY3 as healthy leaves. For

the RF classifier, mainly misjudged PVY3 and PVY5 (Figure 8B).

The SavGol+SVM was awarded the best model among six

combinations in our data set, with an average precision of 98%,

which could be used to identify different disease grades of

PVY (Table 2).

The pattern of captured characteristic bands is similar to the

TMV experiment. The effective bands of PVY-diseased leaves

captured by different treatment combinations were different

(Figure 9). Three combinations showed better recognition

performances, SavGol +SVM, MSC+SVM, and SNV+SVM. The

feature bands contributing more information to the model building

were relatively centralized, 699nm, 698nm, 700nm, and other near-

infrared bands. However, the important bands caught by

combinations using RF as a classifier are highly dispersed. For

SNV+RF, they are far infrared bands such as 2338nm and 962nm,

while those captured by SavGol +RF are near-infrared bands such as

826nm, 835nm, and 867nm. For MSC+RF, they are far infrared

bands around 2331nm, 1803nm, and 2307nm.
4 Discussion

Spectroscopy has been used in precision agriculture for fast and

non-destructive determining crop disease epidemic situations

(Martıńez-Martıńez et al., 2018; San-Blas et al., 2020; Cai et al.,

2022; Fernández et al., 2022; Li et al., 2022; Lv et al., 2022). Machine

learning in leaf disease recognition is superior to traditional

methods such as regression and clustering analyses (Ingale and
A B
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C

FIGURE 7

Characteristic wavelength maps of TMV diseased leaf. The spectral signatures of each wavelength were calculated by two algorithms (SVM and RF)
with three pretreatment methods (MSC, SNV and SavGol): (A) MSC+SVM, (B) SavGol+SVM, (C) SNV+ SVM, (D) MSC+RF, (E) SNV+RF, and (F) SavGol
+RF. Height of peaks indicate the contribution of each wavelength to the predictive power of the model.
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Baru, 2019). Combined with automatic extracting spectral

characteristics to improve the precision of the model, machine

learning could be better applied to precision agriculture to guide the

diagnosis of agricultural diseases. Here, these two technologies
Frontiers in Plant Science 11
(hyperspectral and machine learning) were utilized to diagnose

the type and severity degree of virus diseases PVY and TMV on

tobacco. The optimal model for plant virus disease diagnosis was

explored by setting up six combinations with three spectral data
TABLE 6 Evaluation index score of each algorithm model in the PVY diseased leaf six-class classification.

algorithm models severity grade precision recall f1-score support accuracy

SavGol+SVM

healthy 0.966 1.00 0.982 28

0.975

PVY1 1.00 1.00 1.00 4

PVY3 1.00 0.90 0.947 10

PVY5 0.917 1.00 0.957 22

PVY7 1.00 0.94 0.97 34

PVY9 1.00 1.00 1.00 24

SavGol+RF

healthy 0.844 0.96 0.90 28

0.918

PVY1 0.667 1.00 0.80 4

PVY3 1.00 0.70 0.824 10

PVY5 0.909 0.91 0.909 22

PVY7 1.00 0.88 0.938 34

PVY9 0.96 1.00 0.98 24

MSC+SVM

healthy 0.964 0.964 0.964 28

0.967

PVY1 1.00 1.00 1.00 4

PVY3 1.00 0.90 0.947 10

PVY5 0.88 1.00 0.936 22

PVY7 1.00 0.941 0.97 34

PVY9 1.00 1.00 1.00 24

MSC+RF

healthy 0.565 0.929 0.703 28

0.762

PVY1 0.571 1.00 0.727 4

PVY3 0.80 0.40 0.533 10

PVY5 0.692 0.409 0.529 22

PVY7 0.968 0.882 0.923 34

PVY9 1.00 0.833 0.909 24

SNV+SVM

healthy 0.966 1.00 0.982 28

0.959

PVY1 1.00 1.00 1.00 4

PVY3 1.00 0.70 0.824 10

PVY5 0.846 1.00 0.917 22

PVY7 1.00 0.94 0.97 34

PVY9 1.00 1.00 1.00 24

SNV+RF

healthy 0.90 0.68 0.931 28

0.943

PVY1 0.80 1.00 0.889 4

PVY3 0.875 0.70 0.778 10

PVY5 0.917 1.00 0.957 22

PVY7 1.00 0.91 0.954 34

PVY9 1.00 1.00 1.00 24
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preprocessing methods (MSC, SNC, and SavGol) and two machine

learning classifiers (SVM and RF).

Overall, all the models have excellent capabilities in the

identification of the type and infection severities of TMV/PVY

diseased leaves. In the binary classification model, the SVM

classifier performed better compared to RF with over 97%
Frontiers in Plant Science 12
precision (Table 2). Using an SVM classifier, Fernández et al.

(2022) also achieved a good separation effect of yellow powder

disease four days after cucumber leaves inoculation, and the overall

accuracy rate was above 95% (Fernández et al., 2022). For the six-

class classification, the performance of the SVM classifier is also

obviously good and the best combination is SavGol+SVM (Table 2).
A B

D E F

C

FIGURE 8

The confusion matrix of each algorithm model in the six-class classification of PVY diseased leaf. (A–F): Number of correctly and misclassified
samples for six classification models: (A) MSC+SVM, (B) SavGol+SVM, (C) SNV+ SVM, (D) MSC+RF, (E) SavGol+RF, and (F) SNV+RF.
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FIGURE 9

Characteristic wavelength maps of PVY diseased leaf. The spectral signatures of each wavelength were calculated by two algorithms (SVM and RF)
with three pretreatment methods (MSC, SNV and SavGol): (A) MSC+SVM, (B) SNV+ SVM, (C) SavGol+SVM, (D) MSC+RF, (E) SNV+RF, and (F) SavGol
+RF. Height of peaks indicate the contribution of each wavelength to the predictive power of the model.
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However, our results illustrate that different classifiers have distinct

diagnostic precisions for different diseases, which is similar to the

diagnosis result of rice diseases using SVM (Sethy et al., 2020). The

errors of different classifiers were not completely consistent either

(Figures 6, 8), which might be caused by the slight deviations from

the original manual definition of severity grades.

Lastly, machine learning was also used to automatically extract

spectral features (Barradas et al., 2021). The results illustrated the

effective wavelengths for identifying diseases located in visible and

near-infrared light bands. In detail, the characteristic wavelengths

for identifying PVY diseases were concentrated in the vicinity of

700nm, which was similar to the sensitive wavelength of other leaf

diseases (Long et al., 2021). A previous study discovered a strong

correlation between the reflectance of the band near 700nm and

chlorophyll content, carotene, and other leaf pigments (Chen et al.,

2012). Besides, when the leaf is infected by disease pathogens, the

visible area will have higher reflectance (Shi et al., 2009; Sankaran

and Ehsani, 2013; Wang et al., 2014). The characteristic wavelength

of TMV-diseased leaves captured by SVM is near 1800nm. The

near-infrared band is related to the internal structure and dry

matter of leaves. Therefore, the change in the internal structure of

leaves infected by the virus will change the spectral reflectance. But

most studies were focused on the spectral wavelength range of 380–

1023nm, which only found a similar effective wavelength of around

700nm (Xie et al., 2015; Zhu et al., 2017; Sethy et al., 2020). Here,

the full-length spectra study revealed the potential candidate

effective bands in the NIR region. Based on the captured effective

bands, it is clear that even the spectral reflectance resolution became

higher after MSC and SNV treatment in the NIR, but the

identification abilities of the models with MSC or SNV were still

lower than models with SavGol.

In yet other words, different spectral features could be caused by

different diseases, while various feature bands might be caught by

diverse classifiers for the same disease further leading to irregular

classification accuracies (Kong et al., 2018). Therefore, all the

combinations using SVM as a classifier captured the same

effective bands of the same disease, while the combinations

including the RF classifier had a huge variation in the effective

wavelength capture for the same disease leaves. This may be one

reason that the RF classifier has underperformed in this scenario.
5 Conclusions

Given the precise plant disease management, early detection

plays a pivotal role in guiding timely interventions and preventing

potential losses in production. Identification of the disease type

proves invaluable in selecting the proper control strategies and

expediting the breeding process. Moreover, the rapid development

speed of tobacco viral diseases in the field underscores the challenge

of sustaining minimal impact over time. Thus, assessing infection

severities becomes crucial in choosing the appropriate intensity of

control efforts. This study facilitates a comprehensive investigation

into a rapid and non-invasion diagnostic model of the type and

severity grades of two important virus disease -TMV and PVY, and

further explore the optimal classification models. These classifiers
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process the categorization of tobacco-diseased leaf severity by

capturing the feature wavelengths, paving the way for future

large-scale promotion and application. Take, for instance,

unmanned aerial vehicle (UAV)-based hyperspectral platforms,

which have gained significant prominence due to their

lightweight, flexibility, and ease of operation for detecting plant

diseases (Vanegas et al., 2018). Nevertheless, there are still certain

limitations to consider. Specifically, the acquisition cost of

hyperspectral data remains relatively high, regardless of financial

or labor expenses. External factors can also influence image quality

during data collection, including factors such as measurement

timing, light intensity, solar altitude angle, and more.

To sum up, all the classification models examined in this study

demonstrated commendable performance in distinguishing PVY

and TMV diseases in tobacco. Moreover, the SVM classifier did a

better job than RF in the binary and six-class classification of PVY

and TMV-diseased tobacco leaves. Additionally, the synergy

between the SavGol preprocessing method and the SVM classifier

yielded exceptional precision rates exceeding 96% across all

classification tasks. In the light of feature wavelengths caught by

SVM, specifically the 700nm band of PVY diseased leaf and the

1800nm band of TMV diseased leaf holds significant promise for

the development of PVY and TMV disease classification model in

the future large-scale monitoring, such as UAV spectral detection.

In short, the integration of hyperspectral technology and machine

learning offers a promising avenue for early detection of PVY and

TMV disease leaves to achieve effective crop management.
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