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Plant phenotyping is a critical field in agriculture, aiming to understand crop

growth under specific conditions. Recent research uses images to describe plant

characteristics by detecting visual information within organs such as leaves,

flowers, stems, and fruits. However, processing data in real field conditions, with

challenges such as image blurring and occlusion, requires improvement. This

paper proposes a deep learning-based approach for leaf instance segmentation

with a local refinement mechanism to enhance performance in cluttered

backgrounds. The refinement mechanism employs Gaussian low-pass and

High-boost filters to enhance target instances and can be applied to the

training or testing dataset. An instance segmentation architecture generates

segmented masks and detected areas, facilitating the derivation of phenotypic

information, such as leaf count and size. Experimental results on a tomato leaf

dataset demonstrate the system’s accuracy in segmenting target leaves despite

complex backgrounds. The investigation of the refinement mechanism with

different kernel sizes reveals that larger kernel sizes benefit the system’s ability to

generate more leaf instances when using a High-boost filter, while prediction

performance decays with larger Gaussian low-pass filter kernel sizes. This

research addresses challenges in real greenhouse scenarios and enables

automatic recognition of phenotypic data for smart agriculture. The proposed

approach has the potential to enhance agricultural practices, ultimately leading

to improved crop yields and productivity.

KEYWORDS

deep learning, leaf instance segmentation, cluttered background, filtering,
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frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fpls.2023.1211075/full
https://www.frontiersin.org/articles/10.3389/fpls.2023.1211075/full
https://www.frontiersin.org/articles/10.3389/fpls.2023.1211075/full
https://www.frontiersin.org/articles/10.3389/fpls.2023.1211075/full
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2023.1211075&domain=pdf&date_stamp=2023-08-30
mailto:sckim7777@jbnu.ac.kr
mailto:hskim@jbnu.ac.kr
https://doi.org/10.3389/fpls.2023.1211075
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2023.1211075
https://www.frontiersin.org/journals/plant-science


Ma et al. 10.3389/fpls.2023.1211075
1 Introduction

Understanding the growth processes of plants is essential for

optimizing crop cultivation conditions (Hilty et al., 2021). The

interpretation of crop responses is often tied to environmental and

nutritional factors, and visual observations of plant development

play a significant role in this understanding (Heuvelink, 2005).

These visual cues offer tangible evidence of a plant’s well-being and

the effects of different conditions on its growth. However,

comprehending the intricate processes involved in plant growth

and development is not a trivial task. It demands a high level of

expertise and intuition, acquired through experience and dedicated

study. Researchers, agronomists, and farmers continually strive to

deepen their knowledge of plant growth processes and develop

innovative approaches to harness this understanding for sustainable

and efficient agricultural practices (Costa et al., 2019).

Plant development processes, including stems, leaves, flowers,

and fruit ripening, directly impact plant yield, quality, and quantity

of final products. Phenotyping becomes indispensable in identifying

these changes and understanding plant responses (Pieruschka and

Schurr, 2019). For example, in tomato plants, critical phenotyping

variables such as leaf color, shape, size, and stem diameter offer

insights into the plant’s health, stress levels, and the potential

presence of diseases or pests (Geelen et al., 2018).

Recent advances in computer vision and deep learning have

prompted significant interest in plant-related research (Costa et al.,

2019). Previous studies have successfully employed techniques (Liu

and Wang, 2021) such as image classification, object detection, and

instance segmentation for tasks such as detecting diseases and pests

(Mohanty et al., 2016; Fuentes et al., 2017; Fuentes et al., 2018; Jiang

et al., 2020; Fuentes et al., 2021; Dong et al., 2022), counting leaves

(Farjon et al., 2021), and detecting fruits (Afonso et al., 2020). In

relation to our research, Das et al. (2023) proposed an ensemble

segmentation model with UNet as the base encoder–decoder for

detecting coleoptile emergence time, showcasing its potential for

phenotyping applications. Similarly, Yang et al. (2020) utilized the

Mask Region-based Convolutional Neural Network (Mask R-CNN)

architecture for leaf segmentation. The researchers conducted

thorough investigations to identify optimal hyperparameters for

both segmentation and classification techniques. Despite these

significant achievements, the challenge of deploying systems in

real-world scenarios with diverse variables and cluttered

backgrounds persists (Barbedo, 2018).
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In real-world scenarios, plant leaves often overlap or get

occluded by other elements, making it challenging for

segmentation models to accurately distinguish individual

instances (Zhang and Zhang, 2023). Additionally, variations in

lighting, shadows, and image quality, with issues like blurred

leaves and noise in the images can impact the model’s ability to

extract meaningful features for accurate segmentation (Rzanny

et al., 2017). Moreover, the limited availability of annotated

training data for specific plant species (Xu et al., 2023) and

growth stages poses a significant challenge in achieving robust

and generalized segmentation models (Okyere et al., 2023).

Furthermore, existing methods may struggle with instances of

varying sizes and shapes, leading to incomplete or inaccurate

segmentation results (Yang et al., 2020). Addressing these

problems is critical to advancing the field of plant leaf instance

segmentation and enabling applications in precision agriculture and

automated plant phenotyping.

To address these technical gaps, this paper proposes a

systematic deep learning-based approach for leaf instance

segmentation in cluttered backgrounds. The study investigates the

application of a filter-based instance refinement mechanism to

enhance leaf instance segmentation, exploring its application on

both training and testing data. Figure 1 showcases the segmentation

process of plant leaves within a cluttered greenhouse background.

The proposed approach employs a refinement mechanism based

that operates locally on target areas, leading to enhanced

recognition of individual leaf instances. This refinement step is

crucial for overcoming challenges related to occlusion, blurriness,

and focus commonly encountered in real-world data collection

scenarios. The output of the segmentation process provides

segmented masks and bounding box information for each

detected leaf instance. Leveraging these results, further processing

is conducted to derive essential phenotypic characteristics,

including the accurate counting of leaves and the determination

of their respective areas. This comprehensive approach not only

successfully identifies and segments plant leaves amidst cluttered

backgrounds but also enables the extraction of critical phenotypic

information that offers valuable insights into the plant’s health,

growth, and overall performance. The results obtained from this

figure demonstrate the effectiveness and potential of the proposed

method for advancing plant phenotyping in greenhouse

environments, contributing to the optimization of agricultural

practices and crop management.
FIGURE 1

Overview of the proposed framework for instance segmentation of plant leaves in cluttered greenhouse backgrounds. It incorporates a refinement
mechanism that operates locally on target areas, leading to enhanced recognition of individual leaf instances. The output results from this process
allow us to derive essential phenotypic characteristics, including the accurate counting of leaves and the determination of their respective areas.
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The contributions of this work are summarized as follows:
Fron
− A deep learning-based method for segmenting plant leaf

instances, with instance segmentation and mask detection,

is proposed and thoroughly validated on experiments

conducted on our tomato plant dataset.

− The introduction of a simple yet effective local refinement

mechanism based on filtering techniques applied locally to

the leaf instances significantly improves the robustness of

data used for training and testing, overcoming challenges

related to data collection such as occlusion, blurriness, and

focus.

− Our study offers a practical method for plant phenotyping

using RGB images from real greenhouse environments,

providing insights into data utilization for this application.
The rest of the paper is organized as follows: Related works on

leaf instance segmentation and plant phenotyping techniques are

reviewed in Section 2. The proposed method and strategy are

introduced in Section 3. Experimental results, both qualitative and

quantitative, are presented in Section 4. Finally, Section 5 concludes

the research and outlines potential directions for future work.
2 Related works

This section presents an overview of the techniques used for leaf

segmentation and plant phenotyping, including both traditional

approaches and deep learning-based studies.
2.1 Traditional techniques for
plant phenotyping

Plant phenotyping is a critical field in agriculture, providing

valuable insights into crop growth and characteristics (Walter et al.,

2015). Traditional methods have been utilized in this domain,

including manual measurements of plant organ features and

machine vision techniques for data collection (Kolhar and Jagtap,

2021). For instance, Praveen Kumar and Domnic (2019) employed

statistical-based image enhancement, graph-based leaf region

extraction, and circular Hough Transform for leaf counting. Zhang

et al., 2018 explored plant segmentation using contour techniques

and hand-crafted features, while Tian et al., 2019 used an adaptive K-

means algorithm for tomato leaf image segmentation. Although these

methods can be effective in controlled scenarios, their performance

might be limited when applied in real-world situations with diverse

variations and challenges.

As agriculture often involves cluttered backgrounds, occlusions,

varying lighting conditions, and other complexities, these traditional

approaches may struggle to handle the level of intricacy present in

real-life environments. Consequently, the adoption of learnable

approaches, such as deep learning, becomes more appropriate for

tackling these challenging conditions (Xiong et al., 2021).
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2.2 Leaf instance segmentation in
cluttered backgrounds

In recent years, there has been a growing demand for systematic

plant phenotyping, leading to increased interest in utilizing deep

learning and computer vision-based techniques for image-based

plant analysis (Costa et al., 2019; Fuentes et al., 2019). The main

objective is to extract meaningful features from specific plant

organs, such as leaves, flowers, stems, and fruits, to effectively

characterize and evaluate their condition (Singh et al., 2018).

Detection or segmentation architectures are commonly employed

to provide detailed information at the instance level, such as

bounding boxes (Dong et al., 2022) or masks (Xu et al., 2022),

which prove valuable for applications such as plant disease and pest

detection, as well as leaf, flower, or fruit counting.

The Leaf Segmentation Challenge (LSC) (Scharr et al., 2015)

and the Workshop on Computer Vision Problems of Plant

Phenotyping (CVPP) (Scharr et al., 2017) have significantly

advanced plant phenotyping research. These initiatives aimed to

develop state-of-the-art techniques for automatically obtaining

phenotyping characteristics, with a particular focus on counting

the number of leaves. As part of these efforts, they introduced new

datasets with annotation labels for leaves and plants, inspiring

various studies to address the challenge. For example, some

researchers proposed methods for leaf segmentation using

information like leaf borders, color, and texture features (Pape

and Klukas, 2015), while others introduced neural network

architectures for leaf counting (Aich and Stavness, 2017). Despite

having limited training data, these approaches achieved satisfactory

results. To tackle the issue of limited data availability, Kuznichov

et al. (2019) explored data augmentation techniques to create

synthetic samples based on existing data.

In the realm of plant segmentation with complex backgrounds,

significant contributions have been made in recent years. For

instance, Yang et al. (2020) employed Mask R-CNN with a VGG-

16 feature extractor for leaf segmentation in complicated

backgrounds, achieving a performance of 91.5%. The dataset used

in their study consisted of images with clear leaf information,

making leaves easily distinguishable from the background.

Similarly, Br et al. (2021) proposed a segmentation method based

on leaf images was proposed to identify the attributes of plant

diseases. The researchers used a comprehensive dataset of various

plant leaf images and developed a two-stream deep learning

framework that accurately segments plants and counts leaves of

different sizes and shapes. In Fan et al. (2022), the researchers

introduced an auxiliary binary mask from the segmentation stream

to enhance counting performance, reducing the impact of complex

backgrounds. More recently, Lin et al. (2023) proposed a self-

supervised semantic segmentation model that groups semantically

similar pixels based on self-contained information, enabling a

color-based leaf segmentation algorithm to identify leaf regions

jointly. Furthermore, they introduced a self-supervised

color correction model for images captured under complex

illumination conditions.
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While substantial progress has been made in plant leaf

segmentation, most of the work has focused on outdoor

environments, primarily due to the availability of datasets. In

contrast, our research focuses on complex real-world greenhouse

environments of tomato plants, where challenges such as leaf

occlusions and varying scales are prevalent. To address these

issues, we introduced a refinement mechanism based on filtering

techniques, aiming to enhance the robustness of leaf instance

segmentation and overcome the problem of image blurring. Our

approach contributes to the advancement of plant phenotyping in

challenging greenhouse settings and holds potential implications for

agricultural practices and automation.
3 Proposed method

This section provides a detailed explanation of the proposed

approach and the techniques utilized for segmenting leaf instances in

cluttered backgrounds. The primary architecture takes an input

image and generates output results in the form of leaf instance

masks. A pivotal aspect of our method is the data refinement

mechanism, which enhances the robustness of the images used for

both training and testing. This is achieved by locally applying filtering

techniques to each target leaf instance. The implementation involves

two distinct stages: one for training data and another for test data. An

overview of the implementation process is illustrated in Figure 2.
3.1 Dataset description

In this study, we created a dataset specifically designed for the

segmentationof leaf instances and the analysis of clutteredbackgrounds.

The dataset comprises 372 images of tomato plants, captured using

multiple camera devices in various greenhouse environments. The

images were taken under changing lighting conditions and feature

diverse backgrounds. Each photo was captured parallel to the plants,
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encompassing surrounding areas as depicted in Figure 3A. The dataset

exhibits complexities such as (1) variations in target leaf sizes and

appearances, (2) different levels of leaf occlusion, and (3) blurred

regions caused by camera movement and focus.

For generating ground-truth data, leaf regions were meticulously

annotated using masks, regardless of their visual appearance,

encompassing both well-defined and blurred samples. The

annotations were performed manually utilizing an available toolbox

formask segmentation, as shown in Figure 3B.Overall, the annotations

encompass 3,636 instances, with 2,045 instances allocated to the

training set, 641 to the validation set, and 950 to the test set.
3.2 Instance segmentation architecture

Leaf instance segmentation has been implemented using Mask

R-CNN (He et al., 2017) as the core architecture. Mask R-CNN is a

two-stage framework designed for both instance segmentation and

object detection tasks. It leverages a Feature Pyramid Network

(FPN) as its backbone to extract essential features from input

images. In the first stage, a Region Proposal Network (RPN)

generates Region of Interest (RoI) proposals, while in the second

stage, Mask R-CNN predicts bounding boxes, class labels, and

masks for each RoI. The overall architecture for leaf instance

segmentation is illustrated in Figure 4.

During training, the end-to-end instance segmentation model

aims to minimize the multi-task loss for each sampled RoI, which is

composed of three components: classification loss Lcls(pi, p*i ),
bounding box regression Lbbox(t , t*i ), and mask loss Lmask as

shown in Equation (1).

L = Lcls + Lbbo + Lmask (1)

The classification loss is a logarithmic loss over two classes

(object or not object) and is computed based on the output score pi
of the classification branch for each anchor i and its corresponding

ground-truth label p*i .
FIGURE 2

Overview of the proposed approach for plant leaf instance segmentation in cluttered backgrounds. The model encompasses two key elements: a
refining mechanism directly applied to the data used for training or testing, and an instance segmentation architecture responsible for generating
accurate leaf instances in the images.
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The regression loss is activated only when the anchor contains

an object. It computes the difference between the predicted

bounding box parameters ti and the ground-truth parameters t*i ,
which include four variables [tx,ty,tw,th], where (x,y) are the

coordinates of the bounding box center, and its width and

height (w,h).
The mask loss is an average binary cross-entropy loss applied to

the dedicated mask branch. As an instance segmentation approach,

Lmask utilizes the classification branch to allow the network to

generate masks for each class separately, avoiding confusion among

different categories.
3.3 Proposed local refinement mechanism

During data collection for our application, camera focus and

blur were the most common image quality issues. These issues had a

significant impact, particularly when dealing with cluttered

background conditions and defining target areas accurately. Our
Frontiers in Plant Science 05
research aims to address this challenge by introducing a “local

refinement mechanism,” a simple yet effective technique that

enhances the robustness of training and test data. The goal is to

enable the system to accurately segment leaves regardless of

background information.

After obtaining the annotated dataset, we applied the local

refinement mechanism to the instances in both the training and test

data. The main methods involved using Gaussian low-pass filtering

and High-boost filtering, either independently or in combination, to

improve the system’s recognition capabilities.

3.3.1 Gaussian low-pass filter
GLPF allows transmitting signals with lower frequency, thereby

helping to reduce noise and blurring regions in the image (Gonzalez

and Woods, 2018). It smooths the image by averaging nearby pixels

within a local region, reducing the disparity between pixel values.

The effect of image blurring results is larger, as the smoothing mask

also becomes larger. The GLPF generates blurring instance regions

to assess the model’s ability to segment leaves under these
FIGURE 4

Instance segmentation architecture based on Mask R-CNN.
A

B

FIGURE 3

Examples of the tomato plants dataset, showcasing the images of the plants (A) alongside their corresponding mask annotations (B). The mask
annotations were applied to the foreground leaves, encompassing both clear and blurred samples, to provide comprehensive ground-truth data for
the segmentation task.
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conditions. Equation (2) specifies a GLPF:

fG(x, y) =
1

2ps 2 e
−x2+y2

2s2 (2)

where x is the distance from the center on the horizontal axis, y

is the distance from the center to the vertical axis, and s is the

standard deviation of the Gaussian distribution.

3.3.2 High-boost filter
HBF emphasizes high-frequency image details without

eliminating low-frequency components. It sharpens the image

and enhances edges (Gonzalez and Woods, 2018). Multiplying the

original image by an amplification factor A yields the definition of

an HBF. The value of A determines the nature of the HBF, where

higher values lead to brighter backgrounds, resulting in noise

enhancement and image sharpening. Equation (3) defines the HBF:

fHB(x, y) = (A − 1)f (x, y) + fhp(x, y) (3)

where A represents the amplification factor, and fhp is a high-

pass filter. We applied the HBF locally to leaf instances to improve

their regions’ sharpness, facilitating leaf boundary detection,

especially in cases with occlusion. We experimented with different

kernel sizes to find the optimal value for our approach.

We devised two scenarios for applying the refinementmechanism:
Fron
− Scenario 1: We aimed to determine whether applying the

refinement mechanism enhances the robustness of features

in the training dataset, as shown in Figure 5B.

− Scenario 2: We applied the refinement mechanism to the test

data to assess whether the features from the training dataset

effectively handle changes in the test data, as shown in

Figure 5B.
We evaluated the system’s response to these changes by

applying the local refinement filter with different kernel sizes.

Figures 5C, D illustrate example images after applying the GLPF

and HBF, respectively. In Section 4, we present the qualitative and

quantitative results of our approach. Additional specific illustrations

of the applied local refinement mechanism can be found in

Figures A1 and A2 of the Appendix. These figures showcase how

the mechanism is implemented on both the training and

test datasets.

To avoid overfitting, data augmentation techniques were

employed to increase the number of images in the training

dataset on the two aforementioned cases. From this point

onwards, we will use the abbreviation (ATD) to refer to the

augmented training dataset. We used both online and offline data

augmentation, including intensity and geometric transformations.

Specifically, online data augmentation was executed during

training, applying operations such as horizontal flip, Gaussian

blur, brightness and contrast enhancement, and pixel loss. Offline

data augmentation, performed as a separate process to the entire

dataset before training, generated more images using techniques

such as brightness and contrast enhancement, pixel dropout,
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horizontal flipping, rotation, and random combinations of all

of them.
3.4 Evaluation metrics

We evaluated the performance of the proposed model using the

Intersection Over Union (IoU) thresholding operation and the

mean Average Precision (mAP) metric (Everingham et al., 2009).

The standard MS COCO metrics were used for instance

segmentation and bounding box detection. The mAP is calculated

by computing the AP for each class and then averaging across all

classes, taking into account the trade-off between precision and

recall, and considering false positives (FPs) and false negatives

(FNs). Equation (4) presents the formula for the mAP calculation.

mAP =
1
No

N

i=1
APi (4)

Our primary focus in this evaluation was on the system’s ability

to accurately identify leaf instances and potentially predict more leaf

samples than those available in the training dataset. We present the

results of our experiments in the following section to support

our claims.
4 Experimental results

In this section, we provide the implementation details and

present both quantitative and qualitative experimental results on

the tomato plants dataset. These evaluations demonstrate the

performance of our applied strategy in real-field scenarios.
4.1 Implementation details

For our implementation, we fine-tuned the model end to end

using a pre-trained model on the MS-COCO dataset. To train the

network, we utilized Stochastic Gradient Descent (SGD) along with

the Adam optimizer, setting the learning rate to 0.000125,

momentum to 0.9, and weight decay to 1e-4. After training the

model for 50 epochs, we obtained the final instance segmentation

weights. The training process was conducted on a computer

equipped with 4 GPUs Titan RTX.

The original images had a size of (4,032 and 3,024), and we

resized the input images to (1,333 and 1,000). For implementation,

we used the PyTorch framework, where the input tensor size was (6,

3, 1,333, and 1,000), which corresponds to the batch size, number of

channels, width, and height, respectively. The first layer of the

network used a 7 × 7 kernel size with a stride of 2. In the following

convolutional layers, the kernel size was predominantly 3 × 3, and

the stride was either 1 or 2, depending on the layer. In the Feature

Pyramid Newtok (FPN), 1 × 1 and 3 × 3 convolutional layers were

used. ReLU was applied after each convolutional layer to introduce

non-linearity into the model. In the final stage of Mask R-CNN, a
frontiersin.org
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sigmoid activation function was used in the mask branch. The

training curves of the model are presented in Figure A3 in

the Appendix.
4.2 Backbone feature extractor

We initiated our experiments by comparing the performance of

different backbone architectures, namely, ResNet-18, ResNet-34,

ResNet-50, and ResNet-101, to determine the most suitable one for
Frontiers in Plant Science 07
our specific application. For this comparison, we directly trained the

model using the original images without applying the local

refinement mechanism on the leaf instances. The results of this

evaluation are presented in Table 1. Among the tested networks,

ResNet-50 demonstrated the highest performance in segmenting

instance leaves, achieving an IoU > 0.5 of 91.6%. Our

findings indicated that Mask R-CNN benefited significantly

from deeper networks, particularly ResNet-50. As a result, we

selected this architecture as the baseline backbone to conduct

further experiments.
A

B

C

D

FIGURE 5

Application of the local refinement mechanism either on the training dataset (A) or the test dataset (B). The impact of the filters with different kernel
sizes on the images is demonstrated in the examples presented in (C, D) for the Gaussian low-pass and High-boost filters, respectively. [See
Figures A1 and A2 in the Appendix for more detailed representations of the schemes in (A, B)].
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4.3 Refinement mechanism applied to the
training dataset

In this experiment, we focused on evaluating the first scenario

presented in Section 3.3 and illustrated in Figure 5A. The goal was

to assess the impact of the refinement mechanism when applied to

the local leaf instances of the training dataset, with the intention of

emulating the presence of blurry leaves in the data. By introducing

blurriness, we aimed to generate the necessary features that would

allow the model to perform well on the original test dataset, which

contains instances of leaves with clearer visual appearance.

To achieve this, we utilized a GLPF in two different configurations:

4.3.1 Refinement mechanism applied to the
augmented training dataset

In this configuration, the model was trained on the augmented

training dataset, which included instances of leaves with varying

levels of blurriness introduced through the GLPF. The objective

here was to assess the model’s ability to generalize effectively on the

test data, which comprises images of original uncorrupted leaves.

Figure A1 A in the Appendix illustrates the implemented strategy

for this scenario.

4.3.2 Refinement mechanism applied to the
augmented training dataset and combined with
the original samples

In this case, we combined the blurred dataset with the original

augmented dataset. The purpose was to provide the model with
Frontiers in Plant Science 08
more detailed features of the target areas, and the refinement

mechanism acted as a type of data augmentation technique.

However, for our specific task, we aimed to examine its impact as

part of a partially corrupted dataset. Figure A1 B in the Appendix

shows the strategy implemented for this configuration.

To comprehensively evaluate the model’s performance under

different settings, we conducted a thorough analysis involving the

number of predicted masks corresponding to leaves and the AP on

the test dataset. This evaluation was carried out by applying various

kernel sizes for the GLPF, which introduced multiple levels of

blurring in the training data. To ensure the reliability of our

findings, we conducted three rounds of model training and

calculated the standard deviation.

The results presented in Table 2 unveiled two prominent trends:

In the first scenario, where the refinement mechanism was applied

solely to the ATD, we observed a slight reduction in AP. However,

an interesting phenomenon occurred; the model seemed to learn to

associate the noise generated by applying the GLPF. Consequently,

while the AP decreased slightly, the number of detected masks

increased. This intriguing observation suggests that the model

acquired enhanced capabilities to handle such blurred data during

training, thereby becoming more robust against such changes.

In contrast, the second scenario, where original data were

combined with the ATD, revealed a different outcome. Here, the

performance of the model decreased, accompanied by a decline in

the number of predicted masks. This decline can be attributed to the

model’s primary focus on recognizing clear data. Consequently,

when confronted with blurred data, the model became frequently
TABLE 1 Backbone architecture.

Model
Segmentation Bounding box detection

AP50 AP75 AP50–95 AP50 AP75 AP50–95

ResNet-18 73.0 37.2 38.6 72.6 29.9 35.6

ResNet-34 82.1 51.6 48.1 81.4 48.8 46.7

ResNet-50 91.6 83.4 74.5 91.3 81.4 71.6

ResNet-101 90.2 75.6 67.2 89.0 69.2 60.9
TABLE 2 Results of the refinement mechanism applied to the training dataset.

Model Kernel size Predicted masks
Segmentation Bounding box detection

AP50 AP75 AP50–95 AP50 AP75 AP50–95

Baseline – 889 ± 11 91.5 ± 0.4 83.5 ± 0.5 74.5 ± 0.1 91.2 ± 0.3 80.9 ± 1.4 71.4 ± 0.7

GLPF on applied to the ATD

5 897 ± 3 91.9 ± 0.1 83.3 ± 1.8 75.0 ± 0.3 91.3 ± 0.8 80.4 ± 1.1 71.4 ± 0.3

7 909 ± 4 91.3 ± 0.2 83.3 ± 1.0 74.6 ± 0.3 91.2 ± 0.2 80.5 ± 0.3 71.1 ± 0.4

9 915 ± 4 91.5 ± 0.1 83.3 ± 0.5 74.6 ± 0.2 91.1 ± 0.2 80.3 ± 1.2 71.1 ± 0.1

GLPF applied to the ATD + OI

5 863 ± 4 89.7 ± 0.4 82.2 ± 0.8 74.4 ± 0.1 88.9 ± 0.6 79.3 ± 1.0 0.9 ± 0.2

7 865 ± 7 89.7 ± 0.3 82.2 ± 1.1 74.2 ± 0.2 89.4 ± 0.2 79.2 ± 0.6 70.8 ± 0.1

9 870 ± 2 90.1 ± 0.8 82.2 ± 1.0 74.3 ± 0.6 89.2 ± 0.3 79.6 ± 0.2 71.2 ± 0.9
fro
ATD, Augmented training dataset.
OI, Original images.
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confused, leading to a drop in performance. As the kernel size for

the GLPF increased and blurring became more severe, this

confusion further exacerbated the model’s inability to accurately

segment leaves.

These findings strongly indicate that the blurring data

introduced by the GLPF, when applied to the training dataset,

significantly contributed to making the model robust against

blurring effects in the data. Consequently, this adaptation played

a vital role in improving the model’s ability to accurately segment

leaves. Figure 6 provided some qualitative examples of the model’s

performance, further highlighting the challenges and limitations

posed by introducing blurriness in the training dataset.

This study showcased the significance of the refinement

mechanism, particularly when applied to the ATD, in enhancing

the model’s robustness against blurriness in the data, leading to

improved leaf instance segmentation performance. However,

caution is required when combining original and blurred data
Frontiers in Plant Science 09
during training, as it may adversely affect the model’s ability to

handle blurriness. These insights have practical implications for

real-world applications.
4.4 Refinement mechanism applied to the
test data

In the previous experiment, we applied the refinement

mechanism to the training data, which resulted in a decline in

performance. To address this challenge, we conducted two

additional experiments, focusing on the test dataset to explore

alternative solutions. These experiments correspond to the second

scenario outlined in Section 3.3 and Figure 5B, and their outcomes

are summarized in Table 3.

In this experiment, we employed the refinement mechanism in

two different configurations:
A

B

C

D

E

FIGURE 6

Example qualitative results on the tomato plant dataset. (A) Original images. (B) Ground truth (actual annotations). (C) Predicted results on the original
images. (D) Predicted results using Gaussian low-pass filter on the training dataset. (E) Predicted results using the High-boost filter on the test dataset.
The visual comparison highlights how different approaches, such as applying filters to the training or test datasets, influence the model’s predictions.
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4.4.1 Refinement mechanism with GLPF applied
to the test dataset

The objective of this experiment was to assess how the presence of

instance blurriness in the test data influences the model’s predictions.

As revealed by the results in Table 3, increasing the kernel size of the

GLPF had an adverse effect on both AP and the number of predicted

masks. Larger kernel sizes caused the RoIs to become more blurred,

resulting in a challenging situation for the model to accurately detect

the presence of leaves. The leaves tended to merge with the

background, leading to a reduction in overall performance.

4.4.2 Refinement mechanism with HBF applied to
the test dataset

In this case, we sought to determine whether applying HBF to the

test data, utilizing the refined instances, could enhance the prediction

of leaf samples (see Figure A2 A in the Appendix for the implemented

strategy). As indicated in Table 3, by locally applying HBF, the system

predictedmore leaves, a favorable outcome for downstream processing

to obtain phenotypic data. Notably, the AP also improved for both

segmentation and bounding box detection, signifying an overall

enhancement in performance compared with the baseline.

The results of these experiments demonstrate the advantageous

impact of the refinement mechanism, particularly when using HBF.

The HBF approach enabled the model to capture more intricate

information, resulting in an increased number of correctly

predicted leaf instances. While the application of GLPF had a

detrimental impact due to increased blurriness, the usage of HBF

significantly improved the prediction of leaf instances, contributing

to a more effective and precise segmentation.

Figure 6E provides an example of a qualitative result,

showcasing the visual impact of the strategy on the model’s

predictions. This illustration further supports the effectiveness of

using the refinement mechanism with HBF in improving leaf

instance segmentation in the tomato plant dataset.
4.5 Effects of the implemented strategies

4.5.1 Effect of the refined data by HBF
To gain further insights into the contribution and impact of the

refinement mechanism, we conducted an in-depth analysis using
Frontiers in Plant Science 10
both GLPF and HBF on the test dataset. First, we applied a GLPF to

the test dataset, generating fuzzy instances, and then consecutively

applied an HBF to the same areas. For this analysis, we utilized the

weights of the model trained with the original augmented images to

make predictions on the test data. (See Figure A2 B in the Appendix

for the implemented strategy).

Figure 7A illustrates the changes in the predicted leaf instances

based on the size of the HBF core, taking into account the accepted

level of blur given by the GLPF. It becomes evident that the model

started to benefit from an HBF kernel size greater than 7 × 7 while

being constrained by a GLPF kernel size of 3 × 3 or 5 × 5.

Furthermore, a trade-off between blurriness and refinement was

observed. Larger HBF kernel sizes, such as 15 × 15, exhibited better

performance, generating more accurately segmented leaves than

those present in the original test data. Additionally, we computed

the average change rate (ave) for the GLPF kernel sizes, and it

became apparent that the model was generally influenced by more

significant levels of blurriness provided by the GLPF.

4.5.2 Effect of the blurred data by GLPF
The effect of the blurred data by the GLPF is depicted in Figure 7B,

showing the corresponding impact of applying GLPF on the instances

of the test data.We used the results obtained with different kernel sizes

to measure the changes in predicted leaf instances. Consistent with the

findings in Section 4.4, it was observed that the level of blur introduced

by the GLPF, based on its kernel size, negatively affected the number of

predicted masks. As a result, larger values of kernel size led to a

reduction in the presence of predicted leaves.

4.5.3 Effect of the refinement mechanism on the
prediction of ground-truth labels

Figure 7C complements the aforementioned analysis by

showing the performance gain of the predicted instances

compared with the ground truth of the test data. The application

of HBF substantially improved the predictions regardless of the

presence of blur samples. The performance enhancement was found

to be dependent on the size of the kernel. Specifically, a 15 × 15

kernel size positively influenced the final results, effectively

overcoming the issues caused by GLPF blurring effects.

To visually illustrate the effects of the refinement mechanism on

the test data with GLPF and HBF, we present qualitative examples
TABLE 3 Results of the refinement mechanism applied as postprocessing.

Method Kernel size Predicted masks
Segmentation Bounding box detection

AP50 AP75 AP50–95 AP50 AP75 AP50–95

Baseline - 889 ± 11 91.5 ± 0.4 83.5 ± 0.5 74.5 ± 0.1 91.2 ± 0.3 80.9 ± 1.4 71.4 ± 0.7

GLPF applied to the test dataset

5 869 ± 15 91.2 ± 1.1 82.6 ± 1.3 73.9 ± 0.5 90.4 ± 0.5 79.5 ± 0.4 70.9 ± 0.4

7 840 ± 38 90.4 ± 1.1 81.6 ± 0.8 72.7 ± 0.4 89.7 ± 1.2 75.8 ± 1.5 72.8 ± 0.4

9 811 ± 48 89.2 ± 1.0 81.1 ± 1.6 71.4 ± 0.5 88.7 ± 2.0 77.8 ± 1.0 68.5 ± 0.9

HBF applied to the test dataset

5 901 ± 4 92.0 ± 0.8 83.9 ± 0.7 75.1 ± 0.3 91.8 ± 0.5 81.6 ± 0.7 72.0 ± 0.3

7 909 ± 13 92.3 ± 0.8 83.8±1.2 75.3±0.6 91.9±1.2 82.1±2.6 72.9±2.5

9 918 ± 2 92.7 ± 0.9 84.5±1.3 75.9±1.1 92.6±1.5 82.8±3.3 73.5±3.8
fro
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in Figures 8 and 9. The figures showcase two cases: one with

multiple leaves (Figure 8) and the other with few leaves

(Figure 9). Notably, the use of GLPF and HBF resulted in

contrasting performance. While larger kernel sizes of the GLPF

negatively impacted the prediction of the ground truth, the larger

kernel sizes of the HBF proved beneficial by increasing the number
Frontiers in Plant Science 11
of correctly predicted samples without compromising performance.

The HBF effectively enhanced the clarity of RoIs and counteracted

the blurring effects of GLPF. Consequently, the model segmented

more leaves when the HBF was applied. However, it is important to

note that this outcome was highly dependent on the size of the

kernel used by the HBF filter.
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FIGURE 7

Effects of the implemented refinement strategy on the predicted leaf instances. (A) Effect of HBF and GLPF kernel sizes: A kernel size of 15 × 15
positively influenced the model’s performance, resulting in more segmented regions compared with the original test dataset. The “ave” value
represents the average change rate across all kernel sizes. (B) Effect of GLPF kernel sizes: The level of blurriness had a negative impact on the
number of predicted samples. Larger kernel sizes resulted in reduced presence of predicted leaves. (C) Improved segmentation of leaves through
HBF on GLPF-filtered instances: HBF significantly enhanced the segmentation of leaves, based on the ground-truth labels in the test data, even
when blurriness was present in the GLPF-filtered samples.
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4.6 Comparison with other state-of-the-
art architectures

In order to thoroughly assess the effectiveness of our refinement

mechanism, we conducted comparative experiments using the HBF

on the test data alongside other state-of-the-art methods such as

PointRend (Kirillov et al., 2020), Mask Scoring R-CNN (Huang

et al., 2019), CARAFE (Wang et al., 2020), Hybrid Task Cascade

(HTC) (Wang et al., 2020), Cascade R-CNN (Cai and Vasconcelos,

2018), and Mask R-CNN (He et al., 2017). To ensure fair
Frontiers in Plant Science 12
comparisons, all models were based on the Albumentation

transformations method, with (w) and without (w/o) the

inclusion of our refinement strategy (Buslaev et al., 2020).

The experimental results, presented in Table 4, clearly

demonstrate that the proposed refinement strategy significantly

improved the performance of all implemented models. Regarding

segmentation metrics, Mask R-CNN with the refinement strategy

achieved the highest performance with an AP of 92.7% when IoU >

0.5. The HTC model also exhibited comparable capabilities with an

AP50 score of 92.1% when using our strategy. Notably, the Cascade
A

B

FIGURE 8

Example results of applying (A) GLPF and (B) HBF on the test data using an image with multiple leaves. As the GLPF kernel size increased, the
prediction performance declined. However, with HBF, the system benefited from larger kernel sizes, resulting in the generation of more accurately
segmented leaf instances.
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R-CNN model exhibited the highest improvement of 3.2% after

incorporating our refinement mechanism.

In terms of bounding box detection, our improvedMask R-CNN

achieved the top score with an AP50 of 92.6%. Among the models,

Mask Scoring R-CNN displayed the most substantial improvement

in performance, with an AP50 score of 87.7%, representing an

increase of approximately 18.7%. Overall, all models experienced

performance gains through the application of our refinement
Frontiers in Plant Science 13
strategy, demonstrating its effectiveness in enhancing leaf instance

segmentation in cluttered background conditions.
5 Conclusion

This paper introduced an approach for leaf instance

segmentation based on deep learning, specifically this research
A

B

FIGURE 9

Example results of applying (A) GLPF and (B) HBF on the test data using an image with few leaves. As the GLPF kernel size increased, the prediction
performance declined. However, with HBF, the system benefited from larger kernel sizes, resulting in the generation of more accurately segmented
leaf instances.
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represents a significant step forward in the domain of leaf instance

segmentation, offering an innovative and effective approach to

tackle the challenges associated with cluttered backgrounds and

varying image quality. Through the integration of a local refinement

mechanism, we have demonstrated improvements in the accuracy

and robustness of leaf instance segmentation. Our proposed

refinement mechanism, incorporating Gaussian low-pass and

HBF, serves as a key driver behind the effectiveness of our

approach. The ability to apply this mechanism either during

training or on the test dataset highlights its versatility and

adaptability to different scenarios. The refined feature

representations within leaf instances enabled the model to better

distinguish target leaves, even in the presence of blurriness

and cluttered backgrounds. Our qualitative and quantitative

experimental results performed on our tomato leaf dataset

reinforced the reliability and accuracy of our system in data from

real-world greenhouse scenarios. The ability to accurately segment

target leaves despite challenging conditions, such as occlusion and

overlapping, highlights the potential applications of our approach

in plant phenotyping.
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TABLE 4 Comparison with other state-of-the-art methods.

Model
Refinement Segmentation Bounding box detection

w/o w AP50 AP75 AP50–95 AP50 AP75 AP50–95

Point Rend
✓ 86.9 82.0 76.4 85.8 80.6 74.1

✓ 88.8 85.0 78.4 88.6 82.7 76.1

Mask scoring R-CNN
✓ 86.3 79.4 72.4 69.0 86.5 76.9

✓ 87.4 80.5 73.6 87.7 79.7 70.8

CARAFE
✓ 89.2 84.4 76.8 88.1 82.3 74.9

✓ 91.2 85.7 78.2 90.0 84.7 76.2

Cascade R-CNN
✓ 86.6 82.9 75.9 85.5 80.0 75.1

✓ 89.8 86.1 78.7 89.3 83.0 78.0

Hybrid task cascade
✓ 91.8 85.5 77.9 91.4 81.9 75.0

✓ 92.1 86.0 78.4 91.7 83.3 75.7

Mask R-CNN
✓ 91.6 83.4 74.5 91.3 81.4 71.6

✓ 92.7 84.5 75.9 92.6 82.8 73.5
fr
ontiersin.org

mailto:afuentes@jbnu.ac.kr
https://doi.org/10.3389/fpls.2023.1211075
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Ma et al. 10.3389/fpls.2023.1211075
References
Afonso, M., Fonteijn, H., Fiorentin, F. S., Lensink, D., Mooij, M., Faber, N., et al.
(2020). Tomato fruit detection and counting in greenhouses using deep learning. Front.
Plant Sci. 11, 1759. doi: 10.3389/FPLS.2020.571299/BIBTEX

Aich, S., and Stavness, I. (2017). Leaf counting with deep convolutional and
deconvolutional networks Proceedings - 2017 IEEE International Conference on
Computer Vision Workshops, ICCVW 2017. 2080–2089. doi: 10.1109/ICCVW.2017.244

Barbedo, J. G. A. (2018). Factors influencing the use of deep learning for plant disease
recognition. Biosyst. Eng. 172, 84–91. doi: 10.1016/J.BIOSYSTEMSENG.2018.05.013

Br, P., Av, S. H., and Ashok, A. (2021). “Diseased leaf segmentation from complex
background using indices based histogram,” in Proceedings of the 6th International
Conference on Communication and Electronics Systems, ICCES 2021. 1502–1507.
doi: 10.1109/ICCES51350.2021.9489112

Buslaev, A., Iglovikov, V. I., Khvedchenya, E., Parinov, A., Druzhinin, M., and
Kalinin, A. A. (2020). Albumentations: fast and flexible image augmentations. Inf. 11
(2), 125. doi: 10.3390/INFO11020125

Cai, Z., and Vasconcelos, N. (2018). “Cascade R-CNN: delving into high quality
object detection,” in 2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR). 6154–6162. doi: 10.1109/CVPR.2018.00644

Costa, C., Schurr, U., Loreto, F., Menesatti, P., and Carpentier, S. (2019). Plant
phenotyping research trends, a science mapping approach. Front. Plant Sci. 9, 426195.
doi: 10.3389/FPLS.2018.01933/BIBTEX

Das, A., Das Choudhury, S., Das, A. K., Samal, A., and Awada, T. (2023). EmergeNet:
A novel deep-learning based ensemble segmentation model for emergence timing
detection of coleoptile. Front. Plant Sci. 14, 1084778. doi: 10.3389/FPLS.2023.1084778/
BIBTEX

Dong, J., Lee, J., Fuentes, A., Xu, M., Yoon, S., Lee, M. H., et al. (2022). Data-centric
annotation analysis for plant disease detection: Strategy, consistency, and performance.
Front. Plant Sci. 13, 1037655. doi: 10.3389/FPLS.2022.1037655/BIBTEX

Everingham, M., Van Gool, L., Williams, C. K. I., Winn, J., Zisserman, A., et al.
(2009). The pascal visual object classes (VOC) challenge. Int. J. Comput. Vision 88 (2),
303–338. doi: 10.1007/S11263-009-0275-4

Fan, X., Zhou, R., Tjahjadi, T., Das Choudhury, S., and Ye, Q. (2022). A
segmentation-guided deep learning framework for leaf counting. Front. Plant Sci. 13,
844522. doi: 10.3389/FPLS.2022.844522/BIBTEX

Farjon, G., Itzhaky, Y., Khoroshevsky, F., and Bar-Hillel, A. (2021). Leaf counting:
fusing network components for improved accuracy. Front. Plant Sci. 12, 1063.
doi: 10.3389/FPLS.2021.575751/BIBTEX

Fuentes, A., Yoon, S., Kim, S., and Park, D. (2017). A robust deep-learning-based
detector for real-time tomato plant diseases and pests recognition. Sensors 17 (9), 2022.
doi: 10.3390/s17092022

Fuentes, A. F., Yoon, S., Lee, J., and Park, D. S. (2018). High-performance deep neural
network-based tomato plant diseases and pests diagnosis system with refinement filter
bank. Front. Plant Sci. 9, 1162. doi: 10.3389/FPLS.2018.01162/BIBTEX

Fuentes, A., Yoon, S., Lee, M. H., and Park, D. S. (2021). Improving accuracy of
tomato plant disease diagnosis based on deep learning with explicit control of hidden
classes. Front. Plant Sci. 12, 2938. doi: 10.3389/FPLS.2021.682230/BIBTEX

Fuentes, A., Yoon, S., and Park, D. S. (2019). Deep learning-based phenotyping
system with glocal description of plant AnoMalies and symptoms. Front. Plant Sci. 10,
460700. doi: 10.3389/FPLS.2019.01321/BIBTEX

Geelen, P. A. M., Voogt, J. O., and van Weel, P. A. (2018). Plant Empowerment: The
Basic Principles: how an Integrated Approach Based on Physics and Plant Physiology
Leads to a Balanced Growing Method for Protected Crops Resulting in Healthy Resilient
Plants, High Yield and Quality, Low Energy Costs and Economic (The Netherlands:
LetsGrow.com).

Gonzalez, R., and Woods, R. (2018). Digital Image Processing. 4th edn (New York:
Pearson).

He, K., Gkioxari, G., Dollar, P., and Girshick, R. (2017). “Mask R-CNN,” in
Proceedings of the IEEE International Conference on Computer Vision, 2017. 2980–
2988. doi: 10.1109/ICCV.2017.322

Heuvelink, E. (2005). Tomatoes. 13th edn (CABI: CABI Publishing). doi: 10.1079/
9780851993966.0000

Hilty, J., Muller, B., Pantin, F., and Leuzinger, S. (2021). Plant growth: the what, the
how, and the why. New Phytol. 232 (1), 25–41. doi: 10.1111/NPH.17610

Huang, Z., Huang, L., Gong, Y., Huang, C., and Wang, X. (2019). “Mask scoring R-
CNN,” in Proceedings of the IEEE Computer Society Conference on Computer Vision
and Pattern Recognition, 2019-June. 6402–6411. doi: 10.1109/CVPR.2019.00657

Jiang, D., Li, F., Yang, Y., and Yu, S. (2020). “A tomato leaf diseases classification
method based on deep learning,” in Proceedings of the 32nd Chinese Control and
Decision Conference, CCDC 2020 . 1446–1450. doi: 10.1109/CCDC49329.
2020.9164457
Frontiers in Plant Science 15
Kirillov, A., Wu, Y., He, K., and Girshick, R. (2020). “PointRend: image segmentation
as rendering,” in 2020 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR). 9796–9805. doi: 10.1109/CVPR42600.2020.00982

Kolhar, S., and Jagtap, J. (2021). Plant trait estimation and classification studies in
plant phenotyping using machine vision – A review. Inf. Process. Agric. 10, 114–135.
doi: 10.1016/J.INPA.2021.02.006

Kuznichov, D., Zvirin, A., Honen, Y., and Kimmel, R. (2019). “Data augmentation
for leaf segmentation and counting tasks in rosette plants,” in IEEE Computer Society
Conference on Computer Vision and Pattern Recognition Workshops, 2019-June. 2580–
2589. doi: 10.1109/CVPRW.2019.00314

Lin, X., Li, C. T., Adams, S., Kouzani, A. Z., Jiang, R., He, L., et al. (2023). Self-
supervised leaf segmentation under complex lighting conditions. Pattern Recognit. 135,
109021. doi: 10.1016/J.PATCOG.2022.109021

Liu, J., andWang, X. (2021). Plant diseases and pests detection based on deep learning:
a review. Plant Methods 17 (1), 1–18. doi: 10.1186/S13007-021-00722-9/TABLES/4
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Appendix
A

B

FIGURE A1

Local refinement mechanism (GLPF) applied to the augmented training dataset. (A) Applying the mechanism to the original images. (B) Combining
the blurred dataset with the original images. The number inside the parenthesis shows the number of images.
A

B

FIGURE A2

Local refinement mechanism applied to the test dataset. (A) HBF. (B) GLPF followed by HBF. The number inside the parenthesis shows the number
of images.
Frontiers in Plant Science frontiersin.org16

https://doi.org/10.3389/fpls.2023.1211075
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Ma et al. 10.3389/fpls.2023.1211075
FIGURE A3

Training curves of the model.
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