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Fast screening of total
nutrient contents in strawberry
leaves and spent growing
media using NIRS

Bart Vandecasteele* and Chris Van Waes

Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Melle, Belgium
Introduction: In closed-loop soilless cultivation, the main nutrient sinks are

nutrients retained either by the crop or in spent growing media. Measurement of

nutrients in spent growing media and in the aboveground vegetative plant

biomass at crop termination can be a tool for assessing and optimizing

nutrient efficiency. The first aim of this study was to test the potential of near-

infrared reflectance spectroscopy (NIRS) to forecast the various nutrient

contents in strawberry leaves, which would then allow for assessment of crop

nutrient status and total nutrient uptake by strawberry plants. The second aim

was to test NIRS as a high throughput technique for assessing the N, K, Ca, Mg

and organic matter (OM) content and the pH, EC and C:N and C:P ratios for a

dataset of composts, plant fibers and spent growing media. The NIRS prediction

model for fast screening of the total nutrient contents in spent growing media

was compared with a single extraction method.

Methods: A database with 369 dried and ground strawberry leaf samples with

known contents of N, P, K, Ca, and Mg were scanned using NIRS. The database

covered a range of leaf contents of 6-35 g N/kg dry matter (DM), 0.7-6.3 g P/kg

DM and 2-29 g K/kg DM. A dataset of 458 samples of different types of materials

used in growing media was validated with a dataset of 109 samples.

Results: Validation for the strawberry leaves indicated potential for this

application, with R2 values of 0.90 or higher for N, K and Ca, and R2 values

higher than 0.85 for P and Mg. Validation for the dataset of composts, plant fibers

and spent growing media also indicated the potential for this application, with R2

values of 0.90 or higher for organic matter, and with R2 values of 0.85 or higher

for total Ca, pH and C:N. A first test indicated potential for the calibration based

on fresh samples of compost, plant fiber as well as spent growing media or dried

(not ground) samples.

Discussion: Use of NIRS on fresh samples would eliminate the need for drying

and grinding the samples and would reduce screening time. The ammonium

acetate extraction is a reliable alternative to NIRS for fast screening of the total P,

K, Ca, and Mg contents in composts, plant fibers and spent growing media.

KEYWORDS

crop nutrient uptake, sustainable growing media, peat replacement, controlled
environment agriculture (CEA), circular horticulture, high throughput, vertical farming
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1 Introduction

Soilless cultivation in greenhouses is an example of a controlled

environment agriculture system with high nutrient and water use

efficiency. In greenhouse cultivation based on closed fertigation

systems, two pools of nutrients can be removed after strawberry

cultivation: the nutrients taken up in the aboveground plant

biomass and the accumulated nutrients in the spent growing

media (Vandecasteele et al., 2023). Assessment of these nutrient

pools at crop termination is relevant for various applications. This

knowledge is useful for both scientific and operational purposes,

and indicates whether measures are needed to minimize the

occurrence of nutrient sinks (Vandecasteele et al., 2020). For

greenhouse management, this assessment can be relevant to

measures aiming at increased the nutrient efficiency, including the

need for adapted fertigation, and for optimal processing and reuse

of the biomass (van Tuyll et al., 2022). Knowledge of the nutrient

content of spent growing media is important in light of the possible

reuse or recycling of spent media and the enclosed nutrients

(Vandecasteele et al., 2020).

Nutrient contents in strawberry leaves at the end of the cultivation

may indicate whether any elements were deficient and which of them,

if any, actually limited strawberry growth and yield (e.g., Pritts et al.,

2015; De Tender et al., 2021). Nutrient content may also interact with

diseases and pathogens, thus yielding additional insights into crop

optimization via the nutrient supply. Renewable materials are

increasingly used in growing media blends, which heightens the risk

for unbalanced fertigation, as the materials themselves may be a source

of nutrients. For this reason, assessment of nutrient contents in virgin

growingmedia at the start of the cultivation is becomingmore relevant.

Concerns about sustainability of peat extraction are influencing the

composition of growingmedia for professional soilless cultivation, with

increasing substitution of peat by other materials (Atzori et al., 2021).

The materials currently used in growing media can be clustered into

two groups: plant fibers including peat, coir, bark, wood fibers and

straw fibers, and composts including green compost, vegetable, fruit

and garden waste (VFG) compost and other compost types or

digestates (Atzori et al., 2021). Processed spent growing media may

be reused in a subsequent cultivation (Vandecasteele et al., 2020). Non-

peat materials may contain more nutrients than virgin peat, resulting in

a need for an adapted fertilizer application when changing frommainly

peat-based growing media to peat reduced blends.

Chemical analyses of leaves and growing media are time-

consuming and expensive. In contrast, near infrared reflectance

spectroscopy (NIRS) is a sensitive, fast and non-destructive

analytical technique and may be a potential solution for fast and

cheap chemical and biochemical characterization of materials

(Galvez-Sola et al., 2010a; Peltre et al., 2011; Viaene et al., 2017).

NIRS has been reported as a fast method of screening of chemical

and biochemical properties during the composting process (Galvez-

Sola et al., 2010b; Viaene et al., 2017), screening of chemical

composition of compost or digestate products (Galvez-Sola et al.,

2010a; Peltre et al., 2011; Zennaro et al., 2022) and determination of

humic acids in composts (Meissl et al., 2008). NIRS has potential for

predicting chemical parameters and phytotoxicity of peats and

peat-based growing media (Ludwig et al., 2006; Terhoeven-
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Urselmans et al., 2008) as well as for determining the degree of

maturity and biological stability of composts (Lohr et al., 2016;

Erhart et al., 2017). Erhart et al. (2017) used a NIRS model for

predicting single maturity parameters and an integrated maturity

index based on the dissolved organic carbon, oxygen uptake rate,

Solvita maturity index and the nitrate content of composts. Adapa

et al. (2011) and Elakiya and Arulmozhiselvan (2021) demonstrated

the success of Fourier transform infrared spectroscopy (FTIR)

analysis for quantifying lignin, hemicellulose and/or cellulose

functional groups in untreated or fiberized cereal straw and

coconut coir, respectively, and Higashikawa et al. (2014) used

FTIR for predicting the maturity of organic wastes, composts and

compost-based growing media.

Literature indicates great potential for application of NIRS for

in situ nutrient analysis of plant leaf tissue (Ulissi et al., 2011; Lohr

et al., 2016; Prananto et al., 2020), and thus for crop monitoring

during cultivation. As nutrient contents in the leaves indicate

nutrient availability and may reflect deficiency or imbalances,

such knowledge may allow growers to discriminate between

effects of nutrients versus effects of other factors to optimize crop

performance. NIRS can be used for global monitoring/screening of

the cultivation, as it is a fast and clean methodology that allows

producers to assess crop and fruit quality, nutrient contents and

general crop health as well as to identify optimal harvest times,

classify the strawberries in a sorting line in real time, and identify

the authenticity of strawberry production methods (Amodio et al.,

2017). NIRS may be used for monitoring different N forms and N

availability in growing media during cultivation (Zhu and Li, 2013).

Another technique for fast screening is based on single

extraction methods to assess either nutrient availability or the

total nutrient contents in growing media (Handreck, 1995; Hauck

et al., 2022). Several sensor-based techniques are available for

assessing and managing the N status of the crop based on optical

properties (Muñoz-Huerta et al., 2013). For assessing other

nutrients than N as well, total contents in selected leaves or other

crop parts are determined based on total analysis, or nutrients are

assessed based on petiole sap measurements (Bottoms et al., 2013).

When signs of unbalanced nutrient uptake by crops are detected, it

may be already too late to correct the fertilizer addition in due time.

A more proactive approach is soilless cultivation is to assess and

optimize the nutrient status in the root zone or the growing

medium. This may be achieved based on regular analysis of root

solution composition during cultivation (Voogt and Bar-Yosef,

2019), or through chemical single extraction methods (Blok et al.,

2019). The nutrients in the root zone or in the extracts are not

necessarily correlated to the total nutrient contents in the growing

medium: these methods aim at investigating nutrient contents

available to plants, and whether the growing medium contains

high concentrations of elements which may be damaging to the

plant (Blok et al., 2019). Extraction protocols differ in the pH

conditions mimicked during extraction, ranging between non-

buffered conditions (sample pH is maintained during extraction)

and strongly standardized pH conditions (irrespective of the sample

pH). In the present study, the ammonium acetate (AmAc)

extraction was tested as a single extraction. This method has been

developed to assess the need to supply fertilizers to peat-based
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growing media, but has now been validated for new materials in

growing media (composts, plant fibers) and reused growing media.
1.1 Aims and objectives

One objective of this study was to assess whether NIRS can be

used to measure the total nutrient contents in the aboveground

plant biomass of strawberry plants. Another was to assess whether a

NIRS calibration model for chemical composition of composts,

plant fibers and spent growing media could be used to assess the

pH, EC, nutrient and organic matter (OM) content of spent

growing media. A third objective was to compare the NIRS

prediction model with a single extraction method for fast

screening of the total nutrient contents in spent growing media.

The single extraction method used was the AmAc extraction. The

novelty of this study is related to four aspects:
Fron
- Quantification of nutrients in leaves: most studies focus on

assessment of N, but here macro-nutrients other than N

were also tested

- Testing the use of NIRS for growing media blends besides

peat-based blends, for virgin materials and for spent

growing media

- Combination of the application of NIRS in different

compartments in controlled environment agriculture, i.e.,

on the crop (i.e., leaves) versus the horticultural substrate

(composts, plant fibers and spent growing media) based on

extended datasets in terms of number of samples (>350 leaf

samples and >500 substrate samples), matrices and

coverage

- Comparison of fast screening for nutrient contents with a

single extraction (AmAc) versus NIRS
2 Methods

2.1 Dataset of strawberry leaves for NIRS

The nutrient content as measured by chemical analysis (see

below) in a dataset with 294 strawberry leaves was calibrated using

NIRS, and another dataset with 75 leaf samples was used to validate

the prediction of the total nutrient content. The leaf samples in both

datasets originated from 12 trials with cultivar ‘Elsanta’ grown

under variable conditions and experimental setups in different

greenhouses, with different growing media blends and a range of

fertilizer types and doses. In some of these trials, nutrients supplied

by the fertilizers were the limiting factor, while in other trials the

supply of nutrients did not limit plant development (e.g., in the case

of standard drip fertigation). The samples for both datasets were

randomly selected, with samples from each trial included in both

the calibration and validation dataset. “Leaf” is defined as the

aboveground vegetative biomass, including the stalks and the

three separate leaflets of the compound leaves. Remaining fruits

were removed before sampling, then the vegetative aboveground
tiers in Plant Science 03
biomass (without remaining fruits) was harvested, weighed,

manually cut into 2 cm pieces and a subsample was dried at 70°C

for further processing. Assessment of optimal range and nutrient

deficiency for foliar composition is based on Pritts et al. (2015).
2.2 Growing media dataset for NIRS

A dataset of 458 samples of different types of materials used in

growing media (calibration dataset) was validated with a dataset of

109 samples (validation dataset). The calibration dataset consisted

of 162 compost samples, 202 samples of plant fibers and 94 spent

growing media samples. The validation dataset consisted of 39

compost samples, 46 samples of plant fibers and 24 spent growing

media samples. The calibration and validation datasets reflected a

range of materials, feedstock mixtures and process conditions. The

compost samples covered a wide range of compost facilities, seasons

of composting, and compost types (i.e., green compost, VFG

compost, woody composts). The dataset of plant fibers consisted

of different batches of peat, coir products, wood fiber, bark, other

woody materials, straw fibers (including different batches of reed or

miscanthus straw and flax shives) and plant fibers from nature

conservation or landscape management. Spent growing media were

collected from different crops and from different growers or trials,

and with variable initial composition of the blend. The samples for

both datasets were selected at random.
2.3 Processing NIRS spectra for leaves and
growing media samples

Dry and ground (< 1 mm) leaf or growing media samples were

scanned with a FOSS XDS monochromator instrument (FOSS,

Hillerød, Denmark) using ISIscan v2.85.3 software. The inverse

reflectance (log (1/R)) was measured from 400 to 2500 nm in steps

of 0.5 nm. The samples were scanned in duplicate and the spectra were

averaged. Data processing and calibration development was executed

with WINSI v4.9.0 software. The wavelength range used during

scanning of the samples was also the range used for data analysis

(400-2500 nm). Depending on the measured characteristic, one or

more samples identified as spectral outlier (mahalanobis distance > 3)

were removed from the calibration dataset by the software in the first

round; additional spectral outliers, if any, were not removed in the

second round. To reduce scatter effects, standard normal variate and

detrend scatter correction was applied to the spectra. Modified partial

least squares regression (Shenk and Westerhaus, 1991) served as

calibration model. Cross-validation (by groups, with cycling group

formation) was used to select the optimum number of partial least

squares (PLS) terms. A second derivative mathematical treatment was

used, denoted below as the 2,8,6,1 model with 2: Derivate, second

derivate is used, 8: Gap: gap over which the derivate is calculated (range

between 4 and 20 nm, here 8 nm), 6: Smooth: smoothing segment of

points (4: small amount of smoothing, 20: large amount of smoothing,

here 6), and 1: Second smoothing segment: value “1” indicates that no

second smooth is used. The standard error of calibration (SEC),

standard error of cross validation (SECV) and the determination
frontiersin.org
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coefficient (R2) of the simple linear regression between reference values

(chemical analyses) and NIRS predicted values of the calibration set or

validation dataset were calculated.

For the validation set, the standard error of prediction (SEP)

and the R2 of the linear regression between reference values

(chemical analyses) and NIRS predicted values were calculated on

the basis of the calibration equations derived from the calibration

database. The ratio of Prediction to Deviation, i.e., the ratio of the

standard deviation of the validation dataset to the standard error of

prediction (SD/SEP) was calculated to reflect the performance of

the calibrations.

Outliers were not removed from the validation dataset for the

strawberry leaves. Outliers detected in the growing media dataset

during the first validation were checked case by case and were

excluded from analysis in the validation statistics. After removal of

these outliers from the validation dataset, the validation was

repeated; no outliers were removed in the second round.
2.4 NIRS for fresh and dried (not ground)
growing media

A total of 72 samples of fresh and dried composts, plant fibers

and spent growing media were collected to test whether the sample

processing time could be reduced by eliminating the need to dry

and grind the samples. The fresh samples were scanned with a FOSS

DS2500 monochromator instrument (FOSS, Hillerød, Denmark) as

this equipment allows to scan larger sample volumes (250 ml cup).

The inverse reflectance (log (1/R)) was measured from 400 to 2500

nm in steps of 0.5 nm. After scanning, the samples were dried for

48h at 70°C in a ventilated oven and then scanned again.
2.5 Fast screening for nutrients with a
single extraction

For assessing the prediction of total P, K, Ca and Mg contents

based on the AmAc extraction, a dataset with 150 samples of

different types of materials used in growing media (calibration

dataset) was validated with a dataset with 29 samples (validation

dataset). The calibration dataset consisted of 45 compost samples,

36 samples of plant fibers and 69 spent growing media samples, and

the validation dataset consisted of 9 compost samples, 7 samples of

plant fibers and 13 spent growing media samples. The calibration

and validation datasets reflected a range of materials, feedstock

mixtures and process conditions. The samples for both datasets

were selected at random. The AmAc extraction is executed on a

volume basis and the results are reported as g/L substrate. Total

contents and AmAc extractable concentrations for P, K, Mg and Ca

were therefore both expressed in g/L substrate. Total contents were

converted from g/kg DM to g/L substrate based on the dry bulk

density. To meet the criterion of a normal distribution, total

contents and AmAc extractable concentrations were square root-

transformed prior to linear regression analysis. Total contents of the

samples in the validation dataset were predicted based on the AmAc
Frontiers in Plant Science 04
extractable concentrations of these samples and the equation of the

calibration curve. The predicted total contents for the samples in the

validation dataset were then compared with the measured total

contents, and the quality of the prediction was assessed based on the

R2 and the slope of this linear regression model.
2.6 Chemical composition of plants and
growing media

Methods are based on European Standards developed by CEN, the

European Committee for Standardization. European Standard EN

numbers refer to the specific standards. Sample preparation of

growing media for determination of total nutrient content, dry

matter content, moisture content and laboratory compacted bulk

density was executed according to EN 13040 (CEN, 2007).

Compacted dry bulk density was calculated based on the fresh bulk

density and the moisture content of the sample. Leaves and spent

growing media were dried at 70°C and mechanically ground with a

cutting mill (Pulverisette 19, Fritsch, Idar-Oberstein, Germany) for

leaves and in a cross beater mill (SK100, Retsch, Haan, Germany)

equipped with heavy-metal-free grinding tools and a 1 mm sieve used

for growing media. Samples were stored in closed PP containers before

chemical and NIRS analysis. Total N content (determined according to

the Dumas method, EN13654-2 (CEN, 2001)) was measured using a

Skalar Primacs SNC 100-IC analyzer (Skalar, Breda, The Netherlands).

Total contents of P, K, Mg and Ca were determined by 5110 VDV

Agilent ICP-OES (Agilent, Santa Clara, CA, USA) in the extract

following digestion (120 min at 105°C) of 0.5g dried and ground

material with 4mLHNO3 (p.a. 65%) and 12mLHCl (p.a. 37%) using a

DigiPREP MS 200 Block Digestion System (SCP SCIENCE, Québec,

Canada). Determination of OM content was done according to EN

13039 (CEN, 2011c) by ashing in a Heraeus muffle oven at 550°C.

Electrical conductivity (EC) (EN 13038 (CEN, 2011b)) and pH-H2O

(EN 13037 (CEN, 2011a)) were measured on fresh samples in a 1:5 soil

to water (v/v) suspension. AmAc extractable K, Ca, P, and Mg

concentrations were measured by ICP-OES after extracting the fresh

sample in AmAc buffered at pH 4.65 (1:5 solid:water v/v).
2.7 Accuracy and precision of
predictions based on NIRS or the
ammonium acetate extraction

The accuracy and precision of the NIRS predictions and

predictions based on the AmAc extraction were assessed based on

the slope and the determination coefficient (R2) of the validation

results, respectively. Accuracy refers to how close a measurement is

to the true or accepted value. In this study, the contents measured in

the lab are used as the accepted values. The closer the slope of the linear

regression of the validation between predicted and measured values is

to 1, the higher the accuracy of the prediction. Precision refers to how

close measurements of the same item are to each other. The closer the

determination coefficient (R2) of the linear regression of the validation

is to 1, the greater the precision of the prediction.
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3 Results

3.1 Chemical characteristics of leaves,
composts, plant fibers and spent
growing media

Summary statistics for the calibration and validation datasets

are given in Figures 1, 2. N, P and Mg contents are highest in the

leaves, lower for spent growing media than for composts, and lowest
Frontiers in Plant Science 05
for the plant fibers. K contents are higher in leaves and composts

than in spent growing media and plant fibers. For Ca, composts

have the highest contents and plant fibers have the lowest contents.

In general, spent growing media and plant fibers were characterized

by higher OM, C/N and C/P ratios, and lower pH-H2O and EC than

for the composts. In cases where some parameters are in the low

range within the calibration dataset, prediction by NIRS may be less

accurate. There was no risk for a limited range for any of the tested

characteristics in the calibration dataset. By combining composts,
FIGURE 1

Box plots representing the range in N, P, K, Mg and Ca contents in the calibration (dark) vs validation (light) datasets for leaves (green), composts
(brown), spent growing media (blue) and plant fibers (red). A box plot illustrates the variation in samples of a statistical population through their
quartiles (the lower and upper box dimension indicates the 25th and 75th percentile) and the lines extending from the box indicating variability
outside the upper and lower quartiles. Points indicate outliers.
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plant fibers and spent growing media in one dataset, a higher range

for each characteristic is obtained. The box plots indicate that the

calibration and validation datasets have a similar distribution of

measured values. The high range observed in the box plots for each

matrix indicates the relevance for assessing the nutrient content and

other characteristics of these materials.
3.2 NIRS prediction of nutrient
contents in leaves

The leaf samples for the calibration dataset were collected in

different trials using different fertilizer application systems. In some

of these trials, nutrients supplied by the fertilizers were the limiting

factor, while in other trials the supply of nutrients did not limit

plant development. As a result, the database covered a broad range

of nutrient contents in the leaves, with a range of 6-35 g/kg DM, 0.7-

6.3 g P/kg DM and 2-29 g K/kg DM. Correlation between nutrient

contents in the leaves was highest (R = 0.80) between P and K, while

the lowest correlation (R = -0.22) was observed between Mg and Ca.

The correlation coefficients are below 0.90, which does not reduce

the use of NIRS for fast screening of nutrients. The higher the R²

and the lower the SECV (standard error of cross validation), the
Frontiers in Plant Science 06
better the calibration. The best results for strawberry leaves

(Table 1) in the validation dataset were obtained for total N, P, K

and Ca (R2 > 0.90) while prediction was somewhat weaker for Mg

(R2 = 0.86). Similar conclusions can be drawn for the ratio SD/SEP,

which was higher than 5 for N and K, higher than 3 for P and Ca,

and higher than 2 for Mg (Table 1). The higher the ratio SD/SEP,

the better the prediction potential, indicating a higher range in the

dataset versus a low standard error on the prediction. The slope of

the linear regression between predicted values and the results of the

chemical analysis is close to 1, with values between 0.97 and 1.05.

Only a limited number of outliers were detected in the validation

dataset, with a small impact on the validation outcome. These

outliers were not removed from the validation dataset.
3.3 NIRS prediction of nutrient contents
and other characteristics in growing media

In contrast to the leaf samples, the outliers in the growing media

dataset had a clear impact on the validation outcome, and the outliers

detected during the first validation were removed from the validation

dataset. Outliers can occur for several reasons: analytical errors,

variability of lab analyses or measurements beyond the optimal range
FIGURE 2

Other chemical characteristics: Box plots representing the range in organic matter (OM), pH, electrical conductivity (EC), C/N, C/P in the calibration
(dark) vs validation (light) datasets for composts (brown), spent growing media (blue) and plant fibers (red).
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of the applied analytical method, or a less accurate prediction of the

characteristics of the sample by NIRS. Analytical measurement of very

low values may be less correct when they are in the range of the limit of

detection or the limit of quantification of the method. High values may

suffer from overestimation due to the need for stronger dilution of the

extract before analysis, and the related higher analytical uncertainty.

The outliers were checked case by case. Outliers weremostly detected at

the model boundaries or at the boundaries of the extraction method. In

this case, the qualitative categorization of the characteristic as very low

or very high may already provide sufficient information. Most outliers

could not directly be related to the reliability of the NIRS prediction,

but mostly pointed to analytical errors, measurement uncertainty or

variability of lab analyses. Outliers for K, Mg and Ca were all compost

samples with high contents for these elements. Outliers for EC were

also compost samples. EC is the only characteristic that may be prone

to an effect of drying of the sample. EC is measured on fresh material,

but dried samples were scanned for NIRS. The drying process may

have resulted in deviant values.

Correlation between nutrient contents in the growing media

was highest (R = 0.88) between Mg and Ca, while the lowest

correlation (R = 0.49) was observed between Mg and K, and

between N and K. The correlation coefficients are below 0.90,

which confirms that NIRS can be used for fast screening of

nutrients. The NIRS validation results for assessing chemical

properties of materials used in growing media are given in

Table 2. None of the nutrients in the materials resulted in an R2

higher than 0.90. For P, Mg and Ca R2 was higher than 0.80, while

R2 was 0.79 and 0.73 for N and K, respectively. For chemical

composition, R2 was higher than 0.90 for OM and higher than 0.80

for C/N and pH. The validation for C/P (0.79) and EC (0.67)

resulted in a lower R2. In general, the values for the ratio SD/SEP

were low (= below 3, except for OM) (3.5). In summary, there is

potential for indicative prediction of these characteristics in

compost, plant fibers and spent growing media. The slope ranges

between 0.86 and 1.04 with only a lower value for EC (0.80). The

best values for the slope are obtained with the validation for OS, N,

pH, C:N, P and Ca (values between 0.96 and 1.04).
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3.4 NIRS on unprocessed growing
media samples

R2 values for the calibration curve based on the dried (not

ground) samples were comparable to the calibration curve based on

the fresh samples (Table 3). For the calibration curve based on the

dried samples, R2 was higher than 0.90 for OM, EC, total P and K.

For pH, R2 was higher than 0.85, while R2 was 0.83 and 0.65 for C:N

and total N, respectively. These data indicate that grinding of the

samples is not required, resulting in a shorter sample processing

time. Further reducing the processing time by scanning fresh rather

than dried samples has potential for using NIRS for fast screening of

growing media.
3.5 Single extraction for fast screening

The validation results indicate very good prediction of total P

and K using the AmAc extraction, while the results for Ca and Mg

indicate good prediction (Table 4). Based on the slope of the linear

regression equation (Table 4), the availability of elements in the

AmAc extraction relative to the total contents decreases from K > P

> Ca > Mg. The single extraction is an alternative to NIRS for

assessing total P, K, Ca and Mg content in growing media.
4 Discussion

4.1 Assessment of nutrient retention in
leaves and spent growing media

At the end of greenhouse cultivation based on closed fertigation,

nutrients accumulate in both the aboveground plant biomass and the

spent growing media. Nutrient contents in leaves may indicate which

elements were deficient and thus limited growth and yield. Avoidance

of excessive nutrient accumulation at the end of cultivation by

optimizing the fertilizer application is a major topic in the transition
TABLE 1 Calibration and validation results for total nutrient content in strawberry leaves, mean, standard deviation (SD), SEP and SECV are expressed
in %/DM for N or mg/kg DM for the other elements (N: number of samples used for the calibration or validation, DM, dry matter; SEP, standard error
of prediction; SECV, standard error of cross validation; R2, determination coefficient of the calibration or validation).

Calibration Validation

Constituent N Mean SD R² SECV SD/
SECV N Mean SD SEP Bias SEP

(C) Slope R² SD/
SEP

Total N %/DM 288 1.8 0.6 0.99 0.1 7.6 75 1.8 0.5 0.1 0.1 0.1 0.99 0.98 6.5

Total P
mg/kg
DM

287 2890 1111 0.93 334
3.3

75 2979 1046 340 33 340 0.97 0.90 3.1

Total K
mg/kg
DM

286 16054 9560 0.99 1428
6.7

75 16498 9394 1335 180 1332 0.98 0.98 7.0

Total Mg
mg/kg
DM

290 4203 837 0.91 303
2.8

75 4229 821 307 -9 309 1.05 0.86 2.7

Total Ca
mg/kg
DM

285 13591 4626 0.97 915
5.1

75 14103 4321 1117 162 1113 1.04 0.94 3.9
fronti
R2 and slope of the validation refer to the linear regression between the total nutrient content predicted based on the calibration equation versus the total nutrient content measured by analysis.
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TABLE 4 Calibration and validation results for assessing total contents based on AmAc extractable concentrations (both are expressed in mg/L
substrate).

Calibration equation R² Calibration R² Validation Slope Validation

P Sqrt (total P) = 1.22* Sqrt (P-AmAc) + 2.23 0.91 0.90 0.85

K Sqrt (total K) = 0.93* Sqrt (K-AmAc) + 1.80 0.97 0.98 0.95

Ca Sqrt (total Ca) = 1.45* Sqrt (Ca-AmAc) - 8.60 0.90 0.87 0.86

Mg Sqrt (total Mg) = 1.53* Sqrt (Mg-AmAc) - 4.40 0.88 0.88 0.74
F
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R2 and slope of the validation refer to the linear regression between the total nutrient content predicted based on the calibration equation versus the measured total nutrient content.
TABLE 2 Calibration and validation results for the materials used in growing media.

Calibration Validation

Constituent Unit N Mean SD R² SECV SD/
SECV N Mean SD SEP Bias Slope R² SD/

SEP

Total N %/DM 419 1.042 0.468 0.85 0.211 2.2 102 1.195 0.575 0.267 0.051 1.04 0.79 2.2

Total P
mg/kg
DM

327 1508 903 0.88 405 2.2
92

1426 962
406 -26 0.96 0.83 2.4

Total K
mg/kg
DM

309 5892 4349 0.86 1870 2.3
89

4293 3677
2044 -528 0.86 0.73 1.8

Total Mg
mg/kg
DM

306 2444 1359 0.84 603 2.3
88

2000 1341
590 -39 0.89 0.82 2.3

Total Ca
mg/kg
DM

312 15500 8501 0.84 3782 2.2
91

13910 9648
3780 548 0.96 0.85 2.6

OM %/DM 434 61.9 26.4 0.95 6.7 4.0 104 55.4 24.3 6.933 -0.133 0.98 0.92 3.5

pH-H2O (-) 317 7.00 1.38 0.88 0.53 2.6 86 6.77 1.53 0.59 0.05 1.00 0.85 2.6

EC μS/cm 310 526 509 0.87 210 2.4 81 453 325 199 -23 0.80 0.67 1.6

C/N (-) 426 43.0 41.7 0.87 15.4 2.7 103 31.2 26.0 9.3 -2.1 1.02 0.88 2.8

C/P (-) 321 312 265 0.84 122 2.2 92 345 282 131 -1.4 0.94 0.79 2.2
fron
Mean, standard deviation (SD), SEP and SECV are expressed in the unit for the characteristic (N: number of samples used for the calibration or validation, SEP, standard error of prediction;
SECV, standard error of cross validation; R2, determination coefficient of the calibration or validation; OM, organic matter; DM, dry matter; EC, electrical conductivity). R2 and slope of the
validation refer to the linear regression between the value predicted based on the calibration equation versus the value measured by analysis.
TABLE 3 Calibration results for the dried but unprocessed versus fresh materials used in growing media.

Dried but unprocessed samples Fresh samples

Constituent Unit N Mean SD R2 SECV SD/SECV N Mean SD R2 SECV SD/SECV

Total N %/DM 69 1.5 0.7 0.65 0.5 1.4 69 1.6 0.7 0.87 0.5 1.3

Total P mg/kg DM 60 1827 1172 0.96 510 2.3 54 1778 1151 0.82 653 1.8

Total K mg/kg DM 55 6792 4922 0.92 1933 2.5 53 6702 4741 0.95 1946 2.4

OM %/DM 70 58 25 0.97 8 3 70 57 24 0.96 11 2.1

pH-H2O (-) 69 6.9 1.5 0.88 0.7 2.1 67 6.9 1.5 0.87 0.8 2.0

EC μS/cm 69 720 707 0.91 314 2.2 69 766 763 0.91 343 2.2

C/N (-) 69 32 36 0.83 20 2 68 30 35 0.82 20 1.7
Mean, standard deviation (SD) and standard error of cross validation (SECV) are expressed in the unit for the characteristic (N: number of samples used for the calibration or validation, R2:
determination coefficient of the calibration, OM, organic matter; DM, dry matter; EC, electrical conductivity).
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towards circular horticulture (Vandecasteele et al., 2023). Data on the

amounts of nutrients removed by plants and spent media in relation to

other nutrient flows in greenhouses are needed to assess the

importance of these nutrient pools, and the impact of measures to

reduce the risk that they become nutrient sinks (van Tuyll et al., 2022).

In conclusion, NIRS as a high throughput technique has a variety of

potential applications in controlled environment agriculture: to avoid

nutrient limitations or imbalances, to prevent excessive nutrient

accumulation, to optimize fertilizer application, to optimize reuse of

growingmedia, or to serve as a benchmarking tool to enable growers to

make peer comparisons. The fast and cheap screening using NIRS

enables the comparison of nutrient contents in the leaves and spent

growing media at the end of cultivation between different years/crop

cycles and between greenhouses. This provides useful information

about the impact of cropmanagement on nutrient export. The range in

N, P, K, Ca and Mg contents in the dataset with strawberry leaves was

high. Values for N, P, K, Ca and Mg in the dataset with strawberry

leaves were both higher and lower than the nutrient contents for

optimal strawberry growth (Pritts et al., 2015). This indicates the

potential to further optimize fertigation management in soilless

strawberry cultivation in order to avoid suboptimal uptake, which

could potentially result in suboptimal yield, as well as luxury

consumption and nutrient imbalances, which could potentially result

in imbalances with other nutrients and can lead to excessive nutrient

exports at crop termination.

Results illustrate that NIRS is a promising tool for predicting the

total N, P, K, Ca, and Mg contents in strawberry leaves. This validation

is based on one cultivar only and may thus need further validation for

other cultivars. The range of nutrients measured in both the dataset of

strawberry leaves and the dataset of composts, plant fibers and spent

growing media versus the optimum range illustrate the presence of

both very high and very low nutrient contents. Correct assessment of

these pools can support proper greenhouse management and indicate

how these nutrients can be reused or recycled. Nutrients retained in

spent growing media may be applied as fertilizer during reuse of spent

growing media (Vandecasteele et al., 2020) or during use as soil

improver (Vollmer et al., 2022). New materials in growing media

like compost or biochar have higher nutrient contents than

conventional peat or coir, and can thus potentially replace fertilizers

in soilless cultivation systems (Atzori et al., 2021). NIRS, when used as a

technique for assessing total nutrient contents in materials used in

growing media or in reused spent growing media, may allow for the

quantification of the fertilizer replacement value of growing media

blends at the start of cultivation.
4.2 Leaves versus spent growing media

NIRS is a good technique to assess organic compounds in crops

or other materials. The validation curves indicate a better prediction

for nutrients in the leaves versus nutrients in the spent growing

media. This may indicate that nutrients in the leaves are more

bound in organic structures than is the case for spent growing

media, but leaf samples are also more homogeneous than growing

media samples. Residual nutrients in the root biomass in spent

growing media are organically bound, but may represent only a
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small part of the total nutrient content in the spent growing media.

Nutrient retention in spent growing media is mainly due to

accumulation of nutrients provided as fertilizer. For plant fibers,

nutrients should be included in the plant biomass as organically

bound components, comparable to strawberry leaves. This may be

valid for compost as it is produced from plant material, but the

plant material in compost has undergone a thermophilic processing

step. The dataset of composts, plant fibers and spent growing media

represents more variable conditions than the dataset with

strawberry leaves. The leaf samples in both the calibration and

validation dataset were all from one cultivar, while the datasets of

spent growing media, composts and plant fibers covered a wide

range of different materials from different origins, with the spent

growing media covering a wide range of crops. The collected

samples for spent growing media, composts and plant fibers thus

cover a broader range of materials, processing conditions and

represent an overall higher variability. During implementation of

the calibration curves for leaves and spent growing media, the

calibration datasets must be continually updated with new samples

to assure the ongoing reliability of the prediction (in other words, to

guarantee that it is sufficiently representative for a wide range

of samples).

One calibration curve based on different matrices was used for

assessing materials used in growing media (composts and plant

fibers), characterization of virgin growing media blends, and

characterization of spent growing media as such or processed by

composting. This approach results in a calibration curve with a

higher range of values for the measured characteristic. It has two

main advantages: 1) it is not necessary to categorize an unknown

sample as a compost, a plant fiber or a spent growing medium; and

2) the calibration curve is more robust in the context of circular

horticulture. A disadvantage may be that SEC, SECV and SEP may

increase when datasets are combined. In the transition towards

circular horticulture, circular use of materials implies that spent

growing media may again be applied as growing media, either

through direct reuse, heat treatment or composting.
4.3 Fresh versus dried and processed
samples or single extraction

Using NIRS or a single extraction for characterization of leaves or

growing media strongly reduces both the cost and processing time

compared to chemical characterization. Drying of samples greatly

impacts processing time as it takes at least 48 h. For some

applications, drying and/or grinding is not required and fresh

material may even result in a better prediction of chemical

characteristics of peat and peat-based growing media using NIRS

(Ludwig et al., 2006; Terhoeven-Urselmans et al., 2008) or of the

stability andmaturity of organic wastes using FTIR (Higashikawa et al.,

2014). The test with fresh and dried samples of composts, plant fibers

and spent growing media indicated the potential for reducing the

processing time of the samples by eliminating the need to dry and grind

the samples. Using NIRS with unprocessed fresh and dried growing

media samples deserves further attention but may result in less accurate

predictions than for dried and ground samples. Multiple regression
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methods for processing NIRS data are available; future research should

focus on a comparison of PLS with other processing methods,

including deep learning techniques (Zhang et al., 2019; Li et al., 2023).

NIRS was tested on dried and ground strawberry leaf samples

under lab conditions, which represents the optimal scenario

(Prananto et al., 2020). These authors concluded that dried

and ground samples result in a better calibration compared to

fresh leaf samples due to the standardization of moisture and

particle size, and that NIRS performed better in a laboratory

compared to field conditions due to interfering external factors

such as moisture, temperature, solar radiation and leaf orientation

(Prananto et al., 2020). However, when using NIRS for monitoring

crop development and nutrient status, this technique should be

applied on fresh leaves in the field or in the greenhouse (e.g., Ulissi

et al., 2011). Based on the high quality validation results for most

nutrients in our study, NIRS probably has potential for screening

or classifying fresh leaves as well (Borraz-Martinez et al., 2019).

NIRS and AmAc extraction were compared for fast screening of

total P, K, Ca and Mg contents in composts, plant fibers and spent

growing media. Both screening methods performed equally well in

the test, with AmAc extraction being faster and easier to perform. The

accuracy of the prediction (based on the slope) was better for NIRS,

while the precision of the prediction (based on R2 values) was better

for the AmAc extraction. From the similar correlation between

AmAc-extractable and total nutrients, we conclude that AmAc is a

proxy for total nutrient content rather than for nutrient availability in

composts, plant fibers and spent growing media. Ammonium acetate

extractable concentrations were determined in an extraction buffered

at pH 4.65. This pH is lower than the pH used in other extraction

protocols, which may explain why the AmAc extraction reflects total

rather than available nutrient contents.
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