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Editorial on the Research Topic

Reactive oxygen species in chloroplasts and chloroplast antioxidants
under abiotic stress
An unavoidable consequence of aerobic metabolism by living cells is the production of

reactive oxygen species (ROS) as regular cellular metabolic by-products. Plant cellular

metabolism is continuously producing ROS, such as superoxide anion radical (O •−
2 ),

hydrogen peroxide (H2O2), and singlet oxygen (1O2), at basal levels, which are unable to

cause damage, as they are scavenged by different antioxidant mechanisms (Asada, 1999;

Apel and Hirt, 2004; Moustaka and Moustakas, 2014). Biotic and abiotic stresses, such as

metal toxicity, salinity, drought, chilling, UV-B radiation, and insects, result in an

enhancement of ROS (1O2, O
• −
2 , H2O2, OH

•) creation in plants due to disturbance of

cellular homeostasis, which can result in oxidative stress (Moustakas, 2021; Sperdouli et al.,

2021; Moustakas, 2022). Oxidative stress results from the imbalance between the

production of ROS and the scavenging of their reactive intermediates by antioxidants

(enzymatic and non-enzymatic), causing cellular damage that can lead to cell death (Mittler

et al., 2004; Gill and Tuteja, 2010; Foyer, 2018). Thus, response of plants to this imbalance

before the damage of their cellular structures is critical for maintaining high rates of

photosynthesis and also for their survival (Moustaka et al., 2015; Foyer, 2018).

Chloroplasts are considered as one of the most important producers of ROS in plant

cells and, more specifically, the light reactions of photosynthesis. Under most abiotic

stresses, the absorbed light energy exceeds the energy that it can handle, and thus it can

damage the photosynthetic apparatus. If this excess excitation energy is not quenched by

the photoprotective mechanism of non-photochemical quenching (NPQ), increased

production of ROS occurs, which can lead to oxidative stress (Müller et al., 2001; Foyer

and Shigeoka, 2011; Moustakas, 2022). Abiotic stress-induced ROS accumulation is

scavenged by enzymatic antioxidants, such as superoxide dismutase (SOD), ascorbate
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peroxidase (APX), monodehydroascorbate reductase, (MDHAR),

dehydroascorbate reductase (DHAR), glutathione reductase (GR),

glutathione peroxidase, (GPX), guaicol peroxidase (GOPX),

glutathione-S- transferase (GST), and catalase (CAT), and non-

enzymatic metabolites, such as ascorbic acid, glutathione, a-

tocopherol, carotenoids, phenolic compounds, and flavonoids

(Noctor and Foyer, 1998; Gill and Tuteja, 2010; Moustakas

et al., 2022).

Despite their destructive activity, ROS are well-described as

second messengers in a variety of developmental and cellular

processes including resilience to abiotic stresses (Gill and Tuteja,

2010; Mittler, 2017; Noctor et al., 2018). The role of chloroplast

antioxidants, which often have overlying or interrelated functions,

is not to totally eliminate O •−
2 , H2O2, and

1O2 but rather to achieve

an appropriate balance between production and subtraction to

match with the operation of photosynthesis and permit an

efficient spread of signals to the nucleus (Foyer, 2018; Adamakis

et al.). Singlet oxygen and H2O2 give rise to independent footprints,

which usually are not antagonistic (Foyer and Noctor, 2013). These

chloroplast-derived oxidative signals can activate regulatory

networks to facilitate plants to sense and respond to biotic and

abiotic stress conditions (Mittler et al., 2004; Gill and Tuteja, 2010;

Foyer and Noctor, 2013; Mittler, 2017). ROS not only activate the

plant’s defense mechanisms in order to cope with the oxidative

stress but also are essential for redox sensing, signaling, and

regulation of plethora physiological functions tightly

accomplishing plant function and development (Mittler, 2017;

Noctor et al., 2018; Adamakis et al.; Moustakas, 2022). It is now

well recognized that maintaining a basal level of ROS in cells is

essential for life (Mittler, 2017; Moustakas, 2022).

In this editorial article, we summarize the articles in this Special

Issue, which will update readers on the subject and could be useful

for scientists working on this Research Topic. Recent advances in

the subject have been attractively presented. Anthocyanins, whose

synthesis is enhanced by biotic and abiotic stresses, function as

sunscreens by modifying the quantity and quality of captured light

and for protecting from UV-B, for the defense against herbivores, as

attracters of pollinators, for the protection from photoinhibition,

for ROS scavenging, and as a stress signaling molecule (Gould et al.,

2000; Moustaka et al., 2020). Kitao et al. reported that outer-canopy

leaves protect themselves against photooxidative stress via

anthocyanins, while simultaneously shading inner canopy leaves

and protecting them from strong light and oxidative stress by

shading (holocanopy hypothesis), contributing to efficient N

resorption as a whole canopy.

By using RNA-sequencing, Moreau et al. studied gene

transcription in tomato leaves treated with the chitooligosaccharides–

oligogalacturonides (COS-OGA) elicitor FytoSave®, which induced

plants to fend off biotrophic pathogens, and observed an

upregulation of sequences that code for chloroplast proteins of the

electron transport chain, especially photosystem I (PSI) and ferredoxin.

They concluded (Moreau et al.) that plant defense induction by COS-

OGA induces a long-term acclimation mechanism and increases the

chloroplast electron transport chain to supply electrons that are needed

to mount defenses against biotrophic pathogens, targeted to the

apoplast, without compromising biomass accumulation.
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In acidic soils with water-logged regions that are often affected

by ferrous iron (Fe2+) toxicity, ROS production is crucial, causing

the major yield-limiting factor of rice production. Regon et al.

reported that under severe Fe2+ toxicity, the biosynthesis of amino

acids, RNA degradation, and glutathione metabolism were induced,

whereas phenylpropanoid biosynthesis, photosynthesis, and fatty

acid elongation were inhibited, while ROS homeostasis was

proposed as an essential defense mechanism under such conditions.

Although a great amount of information has been gathered over

resent years about ROS production in plant cells, our understanding

of how plants perceive ROS presence when triggered by different

type external stress factors and how plants set priorities between

different signals is still low (Mansoor et al., 2022). In an effort to

elaborate ROS signaling, Xu et al. applied ozone (O3) and high light

(HL) combinational treatments in Arabidopsis thaliana and

analyzed gene expression and transcript profiles to distinguish the

signaling effects that are orchestrated due to apoplastic and

chloroplastic ROS increase. RNA-seq experiments identified three

marker genes (ELIP2, APX2, and ZAT12) that displayed differential

fold induction after HL, O3, or combined treatments, and further

analysis showed that the regulation of their transcript levels

responded differentially to signals that originated from inside the

cell (chloroplast) and from outside (apoplast). Therefore, the study

of Xu et al. further illustrated that signals from the different

subcellular compartments have diverse signaling roles since O3

and HL caused differential expression of genes with contrasting

roles. Moreover, the combined O3 + HL treatments emphasized that

the apoplastic and chloroplastic ROS activated dissimilar signaling

pathways, and one signal initiated from HL originated from the

apoplastic ROS and regulated changes in transcript levels for genes

related to pathogen infection and cell death.

Wang et al. studied changes in the transcript levels of a NAC

transcription factor encoding the gene LcNAC13 in Litchi trees

when grown in low or high temperatures. ROS induced with

methyl viologen further confirmed that LcNAC13 transcription

factor is involved in ROS-induced leaf senescence. It seems

therefore plausible that LcNAC13 transcription factor governs

the expression of different genes and is a key regulator of

leaf senescence.

The above studies clearly show the “genomic arsenal”, where

plants have to sense and respond against diversely induced ROS

signaling. Nevertheless, a lot remains to be discovered.
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