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The sugarcane ratooning ability (RA) is the most important target trait for

breeders seeking to enhance the profitability of sugarcane production by

reducing the planting cost. Understanding the genetics governing the RA

could help breeders by identifying molecular markers that could be used for

genomics-assisted breeding (GAB). A replicated field trial was conducted for

three crop cycles (plant cane, first ratoon, and second ratoon) using 432

sugarcane clones and used for conducting genome-wide association and

genomic prediction of five sugar and yield component traits of the RA. The RA

traits for economic index (EI), stalk population (SP), stalk weight (SW), tonns of

cane per hectare (TCH), and tonns of sucrose per hectare (TSH) were estimated

from the yield and sugar data. A total of six putative quantitative trait loci and

eight nonredundant single-nucleotide polymorphism (SNP) markers were

associated with all five tested RA traits and appear to be unique. Seven putative

candidate genes were colocated with significant SNPs associated with the five RA

traits. The genomic prediction accuracies for those tested traits were moderate

and ranged from 0.21 to 0.36. However, the models fitting fixed effects for the

most significant associated markers for each respective trait did not give any

advantages over the standard models without fixed effects. As a result of this

study, more robust markers could be used in the future for clone selection in

sugarcane, potentially helping resolve the genetic control of the RA in sugarcane.

KEYWORDS
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1 Introduction

Sugarcane (Saccharum sp. hybrid) production is vital to the

agricultural economy of tropical and subtropical regions, where

86% of the world’s table sugar is produced (FAO, 2020). Sugarcane

is also used in the production of bioethanol, energy from the bagasse

(sugar production by-product), and paper products. Sugarcane is

commonly managed through an agronomic practice known as

ratooning in which growers plant the sugarcane once and then

harvest the aboveground biomass several times, allowing the plant

to recover between harvests. The first-year crop grown from the seed

cane after planting is called the plant cane (PC) crop. The subsequent

regrowth from the stubble after harvesting is called the ratoon (RT)

crop. RT crops can be collected multiple times. In Florida, during the

2020 growing season, 69.8% of the sugarcane cultivation area was

under RT crops composed of the first ratoon (FR; 30.5%), second

ratoon (SR; 29.5%), third ratoon (7.6%), and fourth ratoon (2.3%)

(VanWeelden et al., 2020). Depending on the growing region, the

proportion of RT crops ranges from 50% to 75% of the total sugarcane

cultivated area in other countries (Xu et al., 2021). Like in every other

sector, agricultural producers are struggling with the high cost of labor

and associated labor shortages all over the world. This problem is

especially acute in western countries like the United States. Ratooning

saves growers’ money on cultivation costs, and it boosts industry

profits because RT crops mature earlier, produce better juice quality,

and have better sugar recovery (Xu et al., 2021). Thus, by increasing

the proportion of acreage in ratoon crops, sugarcane industries can

save on labor costs, increase sugar quality, and decrease soil

disturbance by skipping planting operations every year.

Unfortunately, sugarcane yield tends to decline after the first PC

crop (Xu et al., 2021). Therefore, sugarcane breeders are currently

selecting for a trait they have described as the ratooning ability (RA)

in addition to other desired traits in their breeding objectives to make

the sugarcane industry more profitable. The RA has various

definitions; the most common definition expresses the performance

of RT crops (the first ratoon or the average of all ratoons) as a

percentage relative to the PC crop as described (Equation 3) below

(Milligan et al., 1996; Coto Arbelo et al., 2021). Industry stakeholders

desire varietals that can be grown over an increased number of ratoon

crops while maintaining their yield. Performance is determined by

several morphological and yield traits including root growth of

stubble, germination rate after harvesting, tillering rate, stalk

number in previous crop, and cane yield, which is a product of

stalk population (SP) and stalk weight (SW) (Milligan et al., 1990).

Thus, selecting on those traits will generally improve the RA.

However, the RA of sugarcane is not determined just by genetics

but by a combination of factors including environment (soil,

temperature, humidity, and water supply), cultivation technology

(Xu et al., 2021), and the interactions between them. Several studies

have been reported related to the RA in context of the environment,

biotic and abiotic stress, and management practices (Singh et al.,

2006; Shukla et al., 2008; Gomathi et al., 2013; Ramburan et al., 2013;

Bagyalakshmi et al., 2019; Gao et al., 2019).

Very little is known about the genetics and genetic architecture

of RA in sugarcane (Milligan et al., 1996; Zhou and Shoko, 2012;

Coto Arbelo et al., 2021). The most cited report on the RA studied
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the heritability, correlation between PC and RT crop, and genetic

gain in RT crop of six sugar- and yield-related traits using 37

genotypes (Milligan et al., 1996). Another study suggested that the

high-yielding genotypes with slightly lower RAs might be viable for

commercial production when planted in short ratooning cycles,

since higher SP seems to diminish the yield loss in ratoon crop

(Zhou and Shoko, 2012). Very recently, although a narrow RA

diversity was detected among the 39 tested clones, three checks

using the same strategy recommended two clones for commercial

release having high yield and good RA potential in a multilocation

trial (Coto Arbelo et al., 2021). To the best of our knowledge, no

report has been published related to the identification of

quantitative trait loci (QTLs) or marker–trait associations for the

RA in sugarcane. Investigating the genetic and molecular basis of

the RA using a genome-wide association study (GWAS) in

sugarcane will assist breeders in better understanding the genetic

basis for potentially improving the RA of sugarcane cultivars.

GWASs are widely used to identify genes, mutations, and

putative functional markers that are responsible for complex

quantitative traits through forward genetics analysis (Vuong et al.,

2015; Islam et al., 2016). In comparison with traditional QTL

analyses, GWAS has several advantages, including using materials

with increased diversity and better downstream utility across

diverse germplasms with a shorter development time for new

populations (Abdurakhmonov and Abdukarimov, 2008). Thus,

GWAS has been successfully utilized in many plants for

identifying significant marker–trait associations and putative

candidate genes, such as cotton (Islam et al., 2016; Thyssen et al.,

2018; Wubben et al., 2019), maize (Pace et al., 2015), barley

(Matthies et al., 2014), wheat (Tadesse et al., 2015), sorghum

(Morris et al., 2013), and soybean (Vuong et al., 2015). However,

many genetic studies using GWAS have been reported in sugarcane

(Debibakas et al., 2014; Racedo et al., 2016; Singh et al., 2016;

Barreto et al., 2019; Yang et al., 2019a; Yang et al., 2019b; Yang et al.,

2020; Pimenta et al., 2021; Chen et al., 2022). To the best of our

knowledge, there have been no QTL and/or GWASs related to the

RA trait in sugarcane reported so far. Hence, conducting a GWAS

to detect markers associated with the RA in sugarcane would be an

important contribution to the sugarcane-breeding community.

Discovered significant genetic loci could be incorporated into a

breeding pipeline, but marker-assisted selection (MAS) approaches

have several limitations, for example, many traits are polygenic in

nature with small QTL effects and large genotype-by-environment

interactions (Xu and Crouch, 2008).

In addition to the insights gained from GWAS approaches,

breeders are interested in using genome-wide genotypic data to

estimate the genomic estimated breeding value (GEBV) of testing

individuals (Meuwissen, 2009) and to use these GEBVs for

selection. Numerous animal- and plant-breeding programs have

already used genomic selection (GS) successfully since its

introduction. Unlike MAS, which typically only considers major

effect loci, the use of genome-wide markers allows GS to account for

both major and minor effect loci (Gouy et al., 2013). A breeding

cycle could be shortened if individuals were selected based on their

GEBV in the early phases of the breeding cycle (Jannink et al.,

2010). In sugarcane specifically, predicting the RA could allow
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breeders to potentially shorten the breeding cycle by reducing

ratoon crop cycles during selection.

The utility of GS has increased as new bioinformatics tools and

next-generation sequencing have been developed. Thus, GS has

been evaluated in many crops (Arruda et al., 2015; Bernal-Vasquez

et al., 2017; Gezan et al., 2017; Islam et al., 2020) including 11

studies in sugarcane (Gouy et al., 2013; Olatoye et al., 2019;

Deomano et al., 2020; Hayes et al., 2021; Islam et al., 2021; Voss-

Fels et al., 2021; Yadav et al., 2021; Aono et al., 2022; Batista et al.,

2022; Islam et al., 2022a; O’Connell et al., 2022). However, none of

the studies attempted to predict the RA in sugarcane. Hence, it is

worthwhile to conduct research on evaluating the genomic

prediction accuracy of the RA in sugarcane. It is reported that

incorporating major gene or QTL in the GS models as fixed

covariates could increase the prediction accuracy most of the time

(Bernardo, 2014; Islam et al., 2022a). However, it is not true all the

time: it has also been reported that prediction accuracy was

decreased and model bias was increased by incorporating the

GWAS peak marker as a fixed effect in the GS models depending

on the genetic architecture of the trait (Rice and Lipka, 2019;

Billings et al., 2022).

We have previously reported two GS studies related to disease

resistance, sugar, and yield-related traits using the same population

and the same sets of markers as in the current study (Islam et al.,

2021; Islam et al., 2022a). The objective of this study is to uncover

the genetic basis of the RA and detect the associated markers with

five RA traits in sugarcane. We also evaluated four GS models for

checking the feasibility of GS in the RA trait in sugarcane using the

peak GWAS marker as a fixed covariate in the tested models. This

research contributes to understanding the genetic basis of the RA

traits, developing more robust trait-associated markers, along with

providing information about using the GS approach for sugarcane

clone selection and downstream cultivar release to growers.
2 Materials and methods

2.1 Plant material and field trial

Four hundred fourteen sugarcane clones from the second clonal

stage of the USDA-ARS Sugarcane Breeding Program at Canal Point,

Florida, program and 18 commercial cultivars from the USDA-ARS

Sugarcane Breeding Program in Houma, Louisiana, were grown in a

replicated field trial (Supplementary Table S1) along with two checks,

“CP 00-1101” (Gilbert et al., 2008) and “CP 96-1252” (Edmé et al.,

2005). Each tested clone was replicated twice in an augmented row–

column experimental design, and each check was repeated 17 times.

The details and layout of the field plots are described in our previous

studies (Islam et al., 2021; Islam et al., 2022a). In brief, the field trial

was established at the USDA-ARS Sugarcane Field Station, Canal

Point, Florida, in November 2016. Plots consist of one row (4.6 m in

length) with 1.5-m spacing between plots. Each row had 25 plots with

an alley between two rows of 6 m between each row. The field was

divided into 36 rows. Three crop cycles were evaluated: PC, FR, and

SR. The standard protocol was followed for all necessary management

practices throughout the trial.
Frontiers in Plant Science 03
2.2 Data collection and trait measurement

The details of data collection of yield and sugar traits were

described in our previous reports (Islam et al., 2022a). SP, SW, total

dissolved solids (Brix), juice polarization (Pol), and fiber content

data were collected from the field plot directly for PC, FR, and SR

crop cycles. In September 2017, 2018, and 2019, the millable stalks

per hectare (SP) for each plot were estimated from the number of

stalks per plot counted manually for PC, FR, and SR, respectively.

We harvested 10 stalks from each plot randomly, removed the top

just below the apical meristem, and bundled each plot in February

2018, 2019, and 2020 for PC, FR, and SR, respectively. Those

harvested bundles were utilized to collect SW (kg stalk-1), total

fiber content (%), Pol (%), Brix (%), and moisture content (%).

Sugar content (SC) was then calculated from the corrected Brix and

Pol (Legendre, 1992) using the following formula (Islam et al.,

2022b):

SC ( % ) =
Pol � 26

½105:811 + (Brix − 15)� 0:444� (1)

Cane yield (Mg ha-1) in the form of tonns of cane per hectare

(TCH) was calculated as the product of SW (kg stalk-1) and SP

(stalks ha-1) and divided by 1,000. Theoretical recoverable sucrose

(TRS) was calculated from the juice data and fiber concentration to

estimate the sugar yield (Legendre, 1992). All values of TRS were

multiplied by a correction factor of 0.86 to approximate the

commercial recoverable sugar (CRS; kg ha-1) as suggested by

Islam et al. (2022b). Sucrose yield (Mg ha-1) as tonns of sucrose

per hectare (TSH) was estimated as:

Sucrose yield  =  (TCH � CRS) ÷ 1000 (2)

Following Deren et al. (1995), the economic index (EI) was

calculated from the cane yield, sucrose yield, and costs of

harvesting, hauling, and milling the cane in Florida. The RA (%)

for EI, TCH, TSH, SP, and SW was then estimated as suggested by

Coto Arbelo et al. (2021) and Milligan et al. (1996) using the

following formula:

A = o
N
n=1Rn

P ∗N
∗ 100 (3)

where A is the RA for a given trait expressed as a percent, Rn is

the phenotypic value of the trait in RT crop n, P is the value of the

trait in the PC crop, and N is the number of ratoon crops.
2.3 Genotyping and single-nucleotide
polymorphism markers

DNA extraction, library preparation, sequencing, single-

nucleotide polymorphism (SNP) calling, and filtering protocols

were described in detail in our previous reports (Islam et al.,

2021; Islam et al., 2022a). After extracting, DNA from young

leaves was submitted to RAPiD Genomics LLC (Gainesville, FL,

USA) for library preparation, sequencing, and initial bioinformatic

analysis. Sequencing was done on an Illumina HiSeq 2 X 100

sequencer with the qualified processed samples combined in
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equal amounts. The raw sequence data were demultiplexed using

Illumina’s bcl2fastq, and then reads were cleaned and trimmed

using the FASTX-Toolkit (http://hannonlab.cshl.edu/fastx_toolkit/

index.html). Mosaik (Lee et al., 2014) was used to align clean reads

against the Sorghum bicolor V3.1 reference genome (Paterson et al.,

2009). Using FreeBayes (Garrison and Marth, 2012), the SNPs were

called and then filtered based on read depth for each SNP ≥35 and

minor allele frequency ≥2%. Because of the conversion, marker data

were transformed into numerical format, where 0 was assigned to

the reference allele at each locus, 2 to the alternate allele, and 1 to

the heterozygote. After discarding SNPs with more than two alleles,

10,435 SNPs were remaining for further analysis. The SNP

nomenclature was given starting with sorghum reference genome

chromosome number followed by the location in the chromosome.
2.4 Variance component, heritability,
and correlation

The best linear unbiased predictors (BLUPs) of the RA of the

five tested traits for the sugarcane clones were analyzed using a

single mixed linear model as described below:

yaikhj = m + pj + ga + gj + rjh + cjk + øi + ϵaikhj (4)

where yaikhj was the vector of phenotypic value of genotype a

from population i (a column describing which entry is the tested

clone or one of two checks (CP00-1101 and CP96-1252) evaluated

from the hth row of the kth column from the jth replicate in trial, gj
was the effect of jth complete replicate, rjh was the effect of the hth

row and the jth replicate, cjk was the effect of kth column within the

jth replicate, øi is the fixed effect of the ith population (a column

describing which entry is the clone or check, ga is the random effect

term for the ath genotype with ga ∼ N(0,s 2
g ) and s 2

g is the variance

due to genotype or line effect, and ϵaikhj is the residual error with

ϵaikhj ∼ N(0,  Rs 2
ϵ ), R is a diagonal matrix accounting for

heterogeneous error variance, and s 2
ϵ is the population variance

of ϵaikh. The predict function in ASREML-R 4.0 (Butler et al., 2009)

was used to obtain the BLUPs. The variance component estimates

from a different model were used to estimate the broad sense

heritability (H2) following entry mean basis as H2 = s2g/(s2
g +

s2e/R), where s2g and s2
e reflect variance associated with genotype

and error, respectively, while R indicates the number of replications.

The Pearson correlation coefficients among the five tested RA traits

and resulting heat map were conducted in GraphPad Prism 9

software (www.graphpad.com).
2.5 Relationship among the clones

An additive relationship matrix was constructed for the 432

clones in the genotypic dataset described above using the

AGHmatrix package v2.0.4 in R (Amadeu et al., 2016). Genotypes

were assumed to be decaploid (ploidy = 10), but pseudodiploid

parameterization was used because the genotypic matrix had only

three values (heterozygous, homozygous for reference, and

homozygous for alternate). The resulting matrix was centered,
Frontiers in Plant Science 04
and then singular value decomposition was performed. Principal

components were extracted and plotted using the plotly graphing

package in R (Li and Bilal, 2021).
2.6 Genome-wide association study

Multivariate mixed-linear models for the five traits of interest

were fit using an Average Information Restricted Maximum

Likelihood (REML) algorithm (Gilmour et al., 1995) implemented

in ASReml-R v 4.1.0.160 (Butler et al., 2009). The multivariate

models took the form:

y = Xb + Zu + e (5)

where y was a vector of phenotypes from K cropping cycles that

is partitioned into y’ = [y’1, y’2, y’3] and each vector y’k has length nk
where nk was the number of individuals phenotyped in cropping

cycle k; X = ⊕K
k=1 Xk, where Xk was an incidence vector for each

cropping cycle of length nk; b’ = [b1,b2,b3]’ was a vector of fixed

effects for each cropping cycle; Z = ⊕K
k=1 Zk, where Zk was an nkxc

incidence matrix of unique clones c in cropping cycle k. and u’ =
[u’1, u’2, u’3] was an matrix of random clone effects and each vector

u’k has length c; and e’ = [e’1, e’2, e’3] was a vector of residuals where
each vector e’k has length nk. Clone effects were assumed to follow a

multivariate normal distribution with mean zero and an

unstructured variance–covariance matrix equal to U ⊗ Ic where Ic
was a C x C identity matrix, U was a K x Kmatrix in which cropping

cycle variances of clone effects s 2
uk on the diagonal and s 2

ukk 0 , the

covariance between clone effects in different cropping cycles was on

the off-diagonal. Finally, residuals were assumed to be normally

distributed with mean zero and correlated among cropping cycled

with variance equal to E⊗ Ik where Ik was a K x K identity matrix

and E was a K x K matrix with residual variance within a cropping

cycle s 2
ek on the diagonal and residual covariance between cropping

cycles s 2
ekk 0 on the off-diagonal. BLUPs for each clone in each

cropping cycle were extracted from the model’s predicted values,

and then the RA for each trait was calculated using the equation

from Coto Arbelo et al. (2021) as previously described.

GWAS was performed using the R packages GWASpoly v2.10

(Rosyara et al., 2016) for each trait using the RA metric described

above using the BLUPs calculated from Equation 5 and the same

genomic dataset used throughout the study. A diploid status was

used due to insufficient sequence read depth to estimate allele

dosage. The polygenic covariance matrix was computed for each

chromosome according to the set.K function in GWASpoly. The

maximum genotype frequency was set as 0.988 (1-5/N where N =

432). Both additive and dominance models were tested for each

trait. The significance thresholds for each model and trait

combination were determined for a false discovery rate (FDR) of

0.1 following the method in Storey (2002). Manhattan and qqplots

plots were generated using the qqman v0.1.8 package in R. The LD

contour plots for 14 most significant associated SNPs (p ≤ 0.0001)

was created from genotypic data of the 432 clones of sugarcane

population using JMP genomics 10.0 software and physically

aligned to the sorghum reference genome.
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2.7 Identification of candidate genes

Sorghum reference genome was used, since it is the closest

diploid organism to sugarcane. Genes physically located nearby the

significant associated markers with traits were investigated for their

possible annotation and function in the literature. The tag

sequences containing SNPs associated with traits of interest were

also BLASTed against the sugarcane reference genome “R570” using

the genomic resource provided at https : / /sugarcane-

genome.cirad.fr/ and a default e-value of 1e-10.
2.8 Genomic selection

For each trait, four different genomic prediction models were

evaluated via 5-fold cross-validation repeated 25 times. The 5-fold

validation was completed by randomly selecting four-fifths of the

individuals for the training and the remaining fifth as the validation

population. Iteration number was used to set the seed for

randomization of genotypes into the test and training sets to

ensure the same training set was used to develop all four models.

Details of the four models tested, namely, the Ridge regression

BLUP [RR-BLUP (Endelman, 2011)], Additive-dominance-

epistasis [ADE (Covarrubias-Pazaran, 2016)], Reproducing kernel

Hilbert space [RKHS (Gianola and Van Kaam, 2008)), and Bayes A

(Perez and De los Campos, 2014), can be found in our previous

publication (Islam et al., 2022a). Several evaluation criteria were

considered to assess prediction accuracy and model bias: prediction

accuracy (Pearson’s correlation coefficient r between predicted and

observed values), coincidence index (CI) (the proportion of

genotypes in the top 20% of observed values that were also in the

top 20% of predicted values), and the slope and intercept from a

regression of the predicted values on the observed values. For a

perfectly unbiased model, the slope and intercept values would be 1

and 0, respectively.

To test the effect of including highly significant GWAS hits as fixed

effects in prediction models, the scheme outlined above was repeated

for each trait with a slight modification: before fitting each prediction

model, a GWAS model testing only additive effects was performed

using just the training population from each iteration. GWAS was

otherwise performed using the same parameters as described above.

The most significant hit was extracted from the GWAS results and the

vector corresponding to that SNP from the genotypic marker matrix

was included as a fixed effect in the prediction model.

For each trait and model, evaluation metric results for all

iterations were summarized in box and whisker plots generated

using ggplot v3.3.4.
3 Results

3.1 Distribution, heritability, and correlation

The RA of sugarcane [RA (%)] for five traits, EI, SP, SW, TCH,

and TSH, was estimated. The distribution, mean values, ranges, and
Frontiers in Plant Science 05
variance components of these values are included in Figure 1 and

Table 1. The RA for SP appears to be highest over PC performance

(average 104.45%, range 23.8%–216.8%), followed by TCH (average

67.5%, range 5.4%–146.3%). Likewise, the genetic variance for SP

was highest (477.94) followed by TCH (224.14). The broad-sense

heritabilities (H2) calculated from variance components were

moderate to high (Table 1). Once again, the highest heritability

for the RA was observed in SP (0.71) followed by TSH (0.66), TCH

(0.65), EI (0.62), and SW (0.58).

Highly significant correlations were observed among the five

tested RA traits in sugarcane (Figure 2). As expected, the highest

positive correlation coefficient (0.99) was observed between EI and

TSH, while the lowest negative correlation coefficient (-0.13) was

associated between SP and SW. The RA of SP has a higher

correlation coefficient value than that of SW with the other three

tested traits (TCH, TSH, and EI).
3.2 Population structure

A principal component biplot was created using the SNP data to

examine the population structure among the tested clones

(Figure 3). Based on the pseudo-diploidized SNP data, we found

little evidence for population structure among the tested clones; the

first two principal components explained 1.44% and 1.19% of the

total variation, respectively. The tested clones did separate into two

groups based on first principal components. One group fell in both

the third and fourth quadrants and the majority of the tested CP

clones and almost all of the Louisiana clones were placed in

this cluster.
3.3 Marker–trait association

The RA of the five traits (EI, SP, SW, TCH, and TSH) were

subjected to GWAS analysis and results of marker–trait associations

were included in Figure 4, Table 2, and Supplementary Table S2.
FIGURE 1

Box plot distribution of the ratooning ability (RA; %) of economic
profitability (EI), stalk population (SP), stalk weight (SW), cane yield
(TCH), and sucrose yield (TSH).
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Three GWAS models (additive, 1-dominant reference, and 1-

dominant alternative) were explored, and FDR-adjusted p-values

were determined for each SNP. Adjusted p-values greater than

0.001 are reported in Supplementary Table S2 with an indication of

whether they are statistically significant according to a genome-

wide FDR of 0.1.

Since many observed p-values deviated from the uniform

distribution of expected and observed probability of obtaining an

association with the respective traits, the quantile-quantile (Q-Q)

plots demonstrated a potential for false-positive associations.

Results revealed that most of the observed p-values follow a

uniform distribution, but the few in linkage disequilibrium (LD)

with a causal polymorphism have significant p-values in the tail

(Supplementary Figure S1). A total of 14 significant marker–trait

associations were detected for the RA of the five tested traits

(Table 2). Of the 14 associations, two, four, five, and three were

linked with traits EI, SW, TCH, and TSH, respectively. No
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significant marker–trait association was found for SP. There were

eight nonredundant SNPs associated with all tested traits. One SNP

(S10_53811870), located on sorghum chromosome 10, was

commonly associated with three traits, EI, TCH, and TSH. Two

SNPs located on sorghum chromosomes 5 and 7 (S05_10359269

and S07_59440142) were significantly associated with two traits:

TCH, TSH and EI, TSH, respectively. One SNP, S03_8476715,

located on sorghum chromosome 3, was significantly associated

with SW for all three models tested.

A single putative QTL was considered when multiple loci

associated with a trait were within a 5-Mb interval. The QTL

nomenclature was according to McCouch et al. (1997). A total of

six QTLs associated with the RA of the four tested traits (EI, SW,

TCH, and TSH) were identified (Table 2; Supplementary Table S3).

The highest number (three) of QTL was associated with the RA of

TCH and located on three different chromosomes. The extremely

significant (p value ≤ 0.000001) loci (qRATCH-cS10) associated
FIGURE 2

Correlation coefficient heat map among the tested traits [ratooning ability (RA; %) of stalk weight (SW), stalk population (SP), cane yield (TCH), sucrose
yield (TSH), and economic profitability (EI)]. The three asterisks (***) denote the correlation coefficient (R) significant at p ≤ 0.001.
TABLE 1 The mean, range, variance components, and broad-sense heritability (H2) of the ratooning ability (RA; %) of stalk weight (SW), stalk
population (SP), cane yield (TCH), sucrose yield (TSH), and economic profitability (EI).

Traits BLUPs mean Mean Max Min Genetic variance (ŝ 2
g) Residual (ŝ 2

e ) Heritability (H2)

EI 55.48 55.38 99.50 9.83 172.69 210.40 0.62

SP 104.47 104.48 216.84 23.82 477.94 396.11 0.71

SW 65.25 65.13 131.14 28.44 78.04 113.99 0.58

TCH 67.67 67.49 146.32 15.38 224.14 242.30 0.65

TSH 60.67 60.47 105.64 14.90 168.40 176.49 0.66
A mixed linear model estimated the best linear unbiased prediction (BLUP), variance components, and heritability (entry mean basis).
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with the RA of TCH comprises three SNPs (S10_51068605,

S10_53811870 , and S10_55391413) covering 4.3 Mb on

chromosome 10. The SNP (S10_53811870) with the strongest

association with the RA of TCH (p value = 8.55E-6) is located at

position 53,811,870 bp on chromosome 10.
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3.4 Candidate genes

SNPs significantly associated with the RA of sugarcane were

aligned with the sorghum genome, and those SNPs (7) with closely

located genes (<20 kb from the SNP) were included in Table 3 and
FIGURE 3

Principle component analysis of 432 tested sugarcane clones. The black and red dots represent clones belonging to the sugarcane breeding programs
at Canal Point, Florida, and Houma, Louisiana, USA, respectively.
D

A B

E

C

FIGURE 4

Manhattan plots for the sugarcane ratooning ability (RA; %) of economic profitability (EI), stalk population (SP), stalk weight (SW), cane yield (TCH),
and sucrose yield (TSH) using two models (additive and 1-dominant). The negative log10 converted p-values were plotted against the marker
positions on the 10 chromosomes of the sorghum reference genome.
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Supplementary Table S4.We also BLASTed the tag sequences of those

seven SNPs against the monoploid sugarcane “R570” genome

(Garsmeur et al., 2018) using an e-value cutoff of 1e-10, and

associated homologous genes were listed in Supplementary Table

S4. Gene annotation of the sorghum genome suggested that seven

putative genes were colocated with those significant SNPs associated

with the five RA traits in sugarcane. The high proportion of genes

located 0.0 kb from significant SNPs indicates that many SNPs

occurred within the coding sequence of genes. Out of seven genes,

the annotation of five genes were found to have homologs among

Arabidopsis, rice, and “R570” (sugarcane monoploid genome) gene

families and function. The LD contour plot near the most significant

SNP (S03_8476715) associated with the RA of SW showed that there

are several small LD blocks within a large one, indicated by red color

in the plot and most of the SNPs have linked each other as indicated

by the strong LD (Figure 5). This SNP is colocated with gene

Sobic003G096000 in the sorghum reference genome, which is

functionally annotated as aldolase superfamily protein. The LD

contour plots for the other 14 significant SNPs also exhibited

similar results (Supplementary Figure S2).
TABLE 3 Candidate genes associated with significant single-nucleotide polym
economic index (EI), stalk population (SP), stalk weight (SW), cane yield (TCH
reference genome.

SNP Chr. Candidate gene (Sobic.
#)

Distance from SN
(kb)

S03_64270241 3 003G314700 0.0

S03_8476715 3 003G096000 0.0

S04_51880407 4 004G168200 0.0

S05_10359269 5 005G079201 4.8

S07_56501497 7 007G137300 3.7

S07_59440142 7 007G160050 0.0

S10_53811870 10 010G195000 0.0

TABLE 2 Summary of marker–trait associations and quantitative trait loci (Q
ability of five traits in sugarcane.

Traita
Marker–trait association

p ≤ 0.001 p ≤ 0.0001 Total # C

EI 17 5 22

SP 15 3 18

SW 14 4 18

TCH 24 11 35

TSH 17 5 22

Total 87c 28c 115c

a Traits are economic index (EI), stalk population (SP), stalk weight (SW), cane yield (TCH), an
b Marker loci mapped within 5-Mb intervals in the same chromosome were considered as a puta
c Some marker loci were associated with more than one trait.
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3.5 Genomic selection prediction

The prediction accuracy for the five RA traits was evaluated

using four GS methods with and without highly significant SNPs as

fixed effects (total eight models), and four metrics were used to

evaluate the GS models (prediction accuracy, CI, slope, and

intercept). Results of genomic prediction and CI for the RA of EI,

SP, SW, TCH, and TSH are presented in Figure 6. The overall

prediction accuracies attained for EI were greater than that of the

other tested traits for the RA. The highest and lowest accuracies

(0.36 and 0.21) were observed for EI with the ADE model without

fixed effects and SW with RR-BLUP model with fixed effect,

respectively. In general, the standard genomic prediction models

that did not include significant markers as fixed-effect covariates

yielded the highest prediction accuracies; however, the differences

in prediction accuracies between models were slight and not

statistically significant in any case. Slope and intercept of the

regression lines were used to measure the prediction bias of the

models. By comparing between the slope and intercept distribution

for standard models and models, the results showed that models
orphisms (SNPs; p ≤ 0.0001) linked with the ratooning ability (RA; %) of
), and sugar yield (TSH) along with their annotation from the sorghum

P Gene annotation Trait

Vps51/Vps67 family (components of vesicular transport)
protein

EI, TCH,
TSH

Aldolase superfamily protein SW

heat shock protein 101 TCH, TSH

F-box/RNI-like superfamily protein
EI, TCH,
TSH

Homeodomain-like superfamily protein SW

dicarboxylate carrier 2
EI, TCH,
TSH

SEC7-like guanine nucleotide exchange family protein
EI, TCH,
TSH

TLs) detected at different threshold levels of p-values for the ratooning

QTLb

hr. p ≤ 0.001 p ≤ 0.0001 Total # Chr.

8 3 0 3 3

5 2 0 2 2

6 1 0 1 1

9 5 1 5 5

9 2 0 2 2

9c 13 1 13 5c

d sugar yield (TSH).
tive QTL.
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with fixed effects were severely deviated from the expected values of

1 and 0, respectively (Supplementary Figure S3).

The name and frequency of SNPs utilized as fixed effect in the

four GS models for the five RA traits were included in Figure 7. The

SNP S03_8476715 located on sorghum chromosome 3 was used

most frequent 60 times as fixed effect during predicting the RA of

SW followed by S10_53811870 SNP located on chromosome 10 was

used as fixed effect for predicting the GEBV of three (EI, TCH, and

TSH) RA traits. Both the SNPs showed significant association

during the GWAS analysis using GWASpoly in this study.
4 Discussion

The profitability of sugarcane production is highly dependent

on the RA of sugarcane cultivation. A genomic analysis of the

sugarcane RA for the five traits was conducted through a combined

GWAS and GS approach. GWAS results discovered a total of 14

significant marker–trait associations. A total of seven putative

candidate genes associated with the RA in sugarcane were

identified. Thus, the findings of the genomic analysis conducted

in this study provide new information and a potential avenue for

improving the RA traits in sugarcane through molecular breeding.

Worldwide, the sugarcane industry is facing increased planting

costs and shortages of laborers. Thus, improvement of the RA is one

of the most important target traits in breeding because replanting

costs can be reduced by planting varieties that have a high RA,

thereby increasing profitability. There are three main methods that

have been reported to calculate the RA in sugarcane (Dunckelman,

1982; Milligan et al., 1996; Zhou and Shoko, 2012). Although those

methods have some differences and performed differently, we

measured the RA following the methods described by Milligan

et al. (1996) and Coto Arbelo et al. (2021), since it is easiest to
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calculate. The box plot distribution of phenotypic data of all five RA

traits was continuous (Figure 1) and normal, signifying that several

QTLs likely control the inheritance of those complex traits.

Although the traits that contribute to the RA are very complex,

broad-sense heritability estimates were moderate to high for each

trait studied, which is congruent with previous studies (Todd et al.,

2017; Abu-Ellail et al., 2019). As expected, the RA for SW was

negatively correlated with the SP. This is because clones with

heavier stalks tend to produce fewer tillers in the ratoon crop.

The correlation coefficients SP with TCH, TSH, and EI were higher

than that of SW. This implies that SP is the greatest contributor to

the RA of sugar and yield traits in sugarcane. These results are

consistent with few previous studies (Zhou and Shoko, 2012; Coto

Arbelo et al., 2021).

The molecular and genetic basis of the RA variation has

received little attention in scientific literature. Thus, it has been

unknown what molecular mechanism accounts for sugarcane’s

ability to ratoon. To break through this impasse, we have

conducted GWAS analysis for the five RA traits, detected putative

candidate genes, and explored GS for the first time. In GWAS,

mutations and potential functional markers statistically associated

with complex quantitative traits are identified as underlying causal

genes, mutations, and genetic variants (Islam et al., 2016). However,

our efforts were not easy and further complicated for several

reasons. At first, estimating the RA is complicated by difficulty in

accounting for genotype by year interactions. Using multivariate

mixed modeling in conjunction with the methods described by

Milligan et al. (1996) and including data from two ratoon cycles, we

estimated the RA of five traits while accounting for covariance

between ratoon crops. Like all other genomic studies in sugarcane,

our study faced numerous challenges such as a large genome size

(10 Gb), complex genome architecture, types and level of ploidy,

method of propagation, highly heterozygous genetic makeup, and
FIGURE 5

Linkage disequilibrium (LD) observed in the genomic region of the most significant SNP (p ≤ 0.00001) associated with ratooning ability of stalk
weight (SW) in sugarcane. The LD contour plot is physically located in the sorghum genomic region of 8.2–8.8 Mb on chromosome 03. The LD
contour was created from genotypic data of the 432 clones of the sugarcane population using JMP genomics 10.0 software. The X axis is physical
distance in Mb and r2 (CorrCoeff) between marker pairs is shown in different color blocks as per legend. The most significant SNP (S03_8476715) is
indicated inside the orange box.
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FIGURE 7

The single-nucleotide polymorphism (SNP) markers associated with the most significant QTL linked to tested ratooning ability traits [(A) EI, (B) SP,
(C) SW, (D) TCH, and (E) TSH] and their frequency were used as a fixed effect in the prediction models.
FIGURE 6

Prediction accuracy (PA) and coincidence index (CI) of the genomic estimated breeding value (GEBV) of sugarcane ratooning ability (%) of economic
profitability (EI), stalk population (SP), stalk weight (SW), cane yield (TCH), and sucrose yield (TSH) for 5-fold cross-validation (5-fold CV) of four
genomic selection (GS) methods with and without most significant peak marker from genome-wide association analysis as a fixed covariate for the
respective traits. The 5-fold CV was completed by randomly selecting four-fifths of the individuals for the training and the remaining fifth as the
validation population.
Frontiers in Plant Science frontiersin.org10

https://doi.org/10.3389/fpls.2023.1205999
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Islam et al. 10.3389/fpls.2023.1205999
nonadditive genetic variation. When we began this study, a

sugarcane genome reference was not openly available. Therefore,

we aligned our sequence data to the sorghum genome, likely

missing genomic regions unique to the sugarcane genome.

Furthermore, while software packages such as GWASpoly are

designed to model the effect of allelic dosage in polyploids, doing

so requires sufficient sequence read depth to estimate ploidy. Given

the read depth of our sequence data, we modeled sugarcane as a

pseudo-diploid. We used GWASpoly, an R package, to quantify

three different types of polyploid gene action, including additive,

simplex dominant, and duplex dominant (Rosyara et al., 2016; Yang

et al., 2019b). By using three models (additive, 1-dom-alternate, and

1-dom-reference), eight nonredundant SNPs were found

significantly associated with four RA traits (EI, SW, TCH, and

ISH) (Figure 4, Table 2; Supplementary Table S2). Out of six

putative unique QTLs associated with the RA of the five tested

traits, one QTL located on 10 was associated with three traits (EI,

TCH, and TSH). This is not surprising, since EI and TSH were

estimated from TCH data as well as highly correlated with each

other (Figure 2). Thus, these three traits are interdependent and

closely related genetically, suggesting that the improvement of one

trait will improve the others, since they share common QTLs. The

outcome of these results could not be compared, since no other

study has been reported. Thus, all of the marker–trait associations

and QTLs related to the RA identified in this study are believed to

be novel.

The probe sequences of the significant seven associated markers

with the RA of the five traits were utilized to pinpoint the putative

candidate genes possibly regulating the RA in sugarcane. Sugarcane

stubble morphology studies have found that deep (long) roots, a

large number of buds, a large number of live buds, and a large

number of permanent roots (Chumphu et al., 2019), along with a

reasonable leaf size and a reasonable tillering ability (Gomathi et al.,

2013), are associated with a strong RA. Photosynthetic parameters

such as chlorophyll fluorescence and stomatal conductance

associated with ratoon sugarcane yield are significantly correlated

with these variables (Chumphu et al., 2019). A C4 plant, such as

sugarcane, has superior photosynthesis over a C3 plant because it

concentrates CO2 around Rubisco and uses the NADP malic

enzyme to increase the sugar yield (Faralli and Lawson, 2020).

The most significant associated SNP (S03_8476715) with the RA of

SW is physically colocated with the gene Sobic.003G096000 in the

sorghum reference genome, which was annotated as an aldolase

superfamily protein (Table 3; Supplementary Table S4).

Surprisingly, this SNP was also most frequently picked up as a

fixed-effect covariate during genomic prediction analysis. When the

probe sequence of this SNP was compared with the sugarcane

monoploid genome “R570” using BLAST, it was aligned with a

similar homologous gene (Supplementary Table S4). This nuclear

encoded chloroplast gene regulates several pathways that produce

energy through photosynthesis, glycolysis, gluconeogenesis, and the

Calvin cycle in the plant (Lu et al., 2012; Mininno et al., 2012;

Carrera et al., 2021). It also reported that this gene governs root

growth through helping the transportation of metabolites into the

root (Mininno et al., 2012). An additional critical SNP associated

with several target traits (S07_59440142) with the RA of EI, TCA,
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and TSH was linked with gene Sobic.007G160050 and Sh07_t012030

in the sorghum and sugarcane monoploid “R570” reference

genome, respectively. These genes are functionally annotated as

dicarboxylate carrier 2 and regulate the transportation of

metabolites such as malic acid and abscisic acid (ABA) in the cell

for controlling several energy-related pathways glycolysis,

gluconeogenesis, and the TCA cycle in the plant (Narsai et al.,

2011; Shingaki-Wells et al., 2014; Barreto et al., 2022). It has been

found that ABA regulates the withering of ineffective tillers through

molecular signals in the form of hormonal interactions in sugarcane

(Qiu et al., 2018). Another significant SNP (S10_53811870)

associated with three RA traits (EI, TCH, and TSH) and picked

up most frequently as a fixed-effect covariate during genomic

prediction was linked with sorghum gene Sobic.010G195000. This

gene is actively participating in plant development and growth. It

has been shown that a double mutant of this type of gene reduced

plant growth specially root length (Suo et al., 2021). It may be

possible to gain greater insights into the mechanisms that underlie

genetic control of the RA in sugarcane by further investigating these

genomic locations and genes.

GS was experimentally evaluated in this study using four

different GS methods in conjunction with the GWAS results

incorporated as fixed effects to determine the prospect for future

sugarcane hybrid breeding. The RA of five yield and sugar traits

(EI, SP, SW, TCH, and TSH) were evaluated, and 5-fold cross-

validated prediction accuracy differed by traits and models. The

overall prediction accuracies were moderate (0.21–0.36). We are

unable to compare our results, since there are no GS reports

published on the RA traits. However, prediction accuracies on

other yield, sugar, and disease traits in sugarcane were found to be

low to moderate in several previous reports (Gouy et al., 2013;

Hayes et al., 2021; Islam et al., 2021; Yadav et al., 2021; Islam et al.,

2022a). The nonparametric model ADE performed slightly better

than other models for some traits. Studies have found that

nonparametric models performed better in the presence of

dominant and epistatic effects, reducing prediction error and

increasing prediction accuracy while detecting SNP–SNP and

SNP–covariate interactions (Lubke et al., 2013; Waldmann,

2016). Hence, our results suggest that the genetic makeup of the

complex RA traits in sugarcane contains nonadditive effects in this

testing population (Howard et al., 2014; Li et al., 2018). Another

study in sugarcane also advised that additive and nonadditive gene

effects play a big role during predicting the GEBV in the GS study

(Hayes et al., 2021). Overall, the models fitting fixed effects for the

most significant associated markers for each respective trait

performed poorer than the standard models without fixed effect,

although this difference was not statistically significant. The

genetic architecture of the tested traits has a greater effect on

the performance of a fixed-effect model during genomic

prediction (Bernardo, 2014; Rice and Lipka, 2019). Models that

include QTL with large effects, such as those for disease resistance,

tend to improve the prediction accuracy (Poland and Rutkoski,

2016) while including fixed marker effects for complex traits

controlled by many small effect QTL reduces the performance of

genomic prediction and increases model bias. A fixed-effect

covariate included in the validation set may offer little or no
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advantage over a standard model in terms of prediction accuracy,

as it may have a substantially weaker association in the validation

set (Rice and Lipka, 2019).

This is the first study of its kind for the RA, and while prediction

accuracies are low to moderate, these are likely good enough to

begin testing GS practically for the RA. There is promise on the

ability to increase prediction accuracies by addressing some of the

known issues in marker development and genome complexities as

mentioned above, as the heritability of the five RA traits is quite

high. The findings of this study lay the groundwork for opening a

new avenue for improving RA of sugar- and yield-related traits in

sugarcane through breeding.
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