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Weeds remain one of the most important factors affecting the yield and quality of

corn in modern agricultural production. To use deep convolutional neural

networks to accurately, efficiently, and losslessly identify weeds in corn fields,

a new corn weed identification model, SE-VGG16, is proposed. The SE-VGG16

model uses VGG16 as the basis and adds the SE attention mechanism to realize

that the network automatically focuses on useful parts and allocates limited

information processing resources to important parts. Then the 3 × 3

convolutional kernels in the first block are reduced to 1 × 1 convolutional

kernels, and the ReLU activation function is replaced by Leaky ReLU to

perform feature extraction while dimensionality reduction. Finally, it is replaced

by a global average pooling layer for the fully connected layer of VGG16, and the

output is performed by softmax. The experimental results verify that the SE-

VGG16 model classifies corn weeds superiorly to other classical and advanced

multiscale models with an average accuracy of 99.67%, which is more than the

97.75% of the original VGG16 model. Based on the three evaluation indices of

precision rate, recall rate, and F1, it was concluded that SE-VGG16 has good

robustness, high stability, and a high recognition rate, and the network model can

be used to accurately identify weeds in corn fields, which can provide an effective

solution for weed control in corn fields in practical applications.

KEYWORDS

attention mechanism, corn weed, deep convolutional neural network, global average
pooling, Leaky ReLU
1 Introduction

China is a large agricultural country with a population of 1.4 billion, and the

development of agriculture affects all aspects of life. Weeds can significantly affect crop

yield and quality, and weed control is a laborious and tedious task. Herbicide spraying and

manual weeding are the most common methods of weed control; however, they are not

desirable from an economic or environmental point of view, and manual weeding is more

costly and less efficient. With the modernization of our countryside, combining computers
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with agricultural production has become an inevitable trend

(Sujaritha et al., 2017; Jin et al., 2021; Rong et al., 2022). Weed

identification using deep learning (Jin et al., 2012; Xu et al., 2021)

can not only improve the weed identification rate and rationalize

the use of weed control methods; but also make efficient use of

herbicides to protect the environment. As innovations in deep

learning theory and hardware conditions continue to develop,

people can construct deeper network models to extract more

features (Ye et al., 2019; Wagle and Harikrishnan, 2021), and an

increasing number of network models are being constructed for use

in various aspects of agricultural production (Chakraborty et al.,

2021). Deep learning has been widely applied in recent years,

especially in smart agriculture fields, such as pest and disease

detection (Mique and Palaoag, 2018; Liu et al., 2022; Wu et al.,

2022), plant and fruit recognition (Jaiganesh et al., 2020; Bongulwar

Deepali, 2021), and crop and weed detection and classification

(Pando et al., 2018; Jin et al., 2021). Image recognition technology

has long been used for weed recognition applications (Jiang et al.,

2020). In 2019, Jiang et al. (Jiang, 2019) proposed a new model to

identify field weeds by adding transfer learning to VGG16. The final

model achieved good results on 12 weed images with 91.08%

accuracy in the validation set. Liang et al. (Liang, 2019)

subsequently constructed a new network model for weed

identification by adding transfer learning to Inceptionv3 network,

and the final training accuracy was over 99%. Subsequently,

Barbedo (2019) proposed a method to increase the image dataset.

Multiple diseases in different plants were considered in this

experiment. Using the proposed method, the accuracy increased

by 12%. In 2020, Fu et al. (2020) proposed a new model based on a

VGG network to identify weeds in fields. Using the Kaggle image

dataset, the detection accuracy of field weeds reached over 98%, and

in real fields, the accuracy reached 80%. In 2022, Shundong et al

(Fang et al., 2022). proposed the HCA-MFFNet for maize leaf

disease identification. To validate the feasibility and effectiveness of

the model in complex environments, it was compared with existing

methods and the average detection accuracy of the model was

97.75%. In 2022, Subeesh et al. (2022) constructed a deep learning

method to detect pepper weeds and achieved 98.5% accuracy. Later,

Najmeh et al. (Razfar et al., 2022) proposed a weed identification

model to improve the efficiency of weed detection in soybean

plantation forests using several network models and three custom

network models for comparison. The custom CNN architecture

exhibited a detection accuracy of 97.7%. In 2023, Zhang et al. (2023)

proposed a new model for tomato leaf disease detection by

introducing an asymptotic non-local mean algorithm (ANLM)

and a multi-channel Automated Oriented Recursive Attention

Network (M-AORANet) to extract rich disease features.

Experimental results on 7,493 images showed that the recognition

accuracy of M-AORANet reached 96.47%.

The LeakyReLU activation function is currently used in a wide

range of fields and has been shown to be effective in improving the

accuracy of the models. In 2022, Yang et al. (2023) proposed a RE-

GoogLeNet network model to identify rice leaf diseases. By

replacing the ReLU activation function with the LeakyReLU

activation function, RE-GoogLeNet exhibited better classification

performance for rice leaf diseases than the other models, with an
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average accuracy of 99.58%. The SE attention mechanism is also

widely used in various networks and has been shown to help models

extract image features and improve the network performance. In

2013, an improved network for rock recognition based on the SE

attention mechanism was proposed (Huang et al., 2023), yielding an

accuracy of 93.2%. Owing to the redundancy of parameters in the

fully connected layer, some recent high-performance network

models use global averaging pools rather than FCs to fuse learned

depth features (Zhao, 2017). In view of these advantages, these

methods are used in the proposed model. Starting from the theme

of accurate weed control in the field, this study used common weeds

in corn fields as the main research objects. Through several groups

of controlled experiments, an efficient and stable detection model

SE-VGG16 with high detection accuracy was constructed, and the

SE-VGG16 model was applied to weed detection of other species

with the aim of constructing a weed detection model with the ability

to generalize weed control in the agricultural production process.

The SE-VGG16 model proposed in this study makes the following

five major contributions to existing models:
1. A new model, SE-VGG16, was proposed for identifying

weeds in agricultural crops.

2. The number of parameters in the model is reduced from 70M

to 15M by replacing the 3 × 3 convolutional kernel in the first

block of VGG16 with a 1 × 1 sized convolutional kernel.

3. The SE attention mechanism is added to the VGG16 model

to obtain more important feature information using a

weight matrix that gives different weights to different

positions of the image from the perspective of the

channel domain.

4. ReLU is replaced by Leaky ReLU to obtain more image

features and reduce the sparsity of ReLU.

5. Using a global average pooling layer to replace two fully

connected layers can better unify the global spatial

information corresponding to the last convolutional layer of

the category and feature map, thereby integrating the global

spatial informationand improving the robustness of themodel.
2 Materials and methods

2.1 Image collection

Images of corn seedlings and weeds were collected from Gitee

(https://gitee.com/Monster7/weed-datase/tree/master/) via the

Internet, and the corn weed dataset was taken from fields of corn

seedlings in their natural environment. A Canon PowerShot SX600

HS camera was used, with the camera pointing vertically towards

the ground to reduce the effect of sunlight reflections. After expert

identification and manual screening, a total of 6,000 images were

obtained, including images of one corn seedling and four corn weed

species, with the weed categories of Bluegrass, Chenopodium

album, Cirsium setosum, and Sedge. Some examples of images

are shown in Figure 1, and the data for different image categories in

the dataset are shown in Table 1.
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2.2 Model building

2.2.1 VGG16
VGGNet (Simonyan and Zisserman, 2014) achieved the second

place in ImageNet image classification in 2014, with VGG16 being a

particularly high-performance network in VGGNet. VGG16 means

that there are 16 layers containing parameters in the model, here

they are divided into five blocks and a section of fully connected

layers, the structure of the model is shown in Figure 2, there are two

convolutional layers in block1 and block2, three convolutional

layers in block3, block4, and block5, the size is 3 × 3 for the

convolution kernel, and the ReLU activation function is used after

each convolution, each block has a maximum pooling layer at the

end of the block, and the size is 2 × 2 for the pooling kernel. The

final segment of the VGG16 network consisted of three fully

connected layers, and the final output was obtained using the

softmax function. The mathematical expression for the softmax

function is given by Equation 1. The implication of softmax is that

instead of uniquely determining a maximum value, each output

classification is assigned a probability value, indicating the
Frontiers in Plant Science 03
likelihood of belonging to each category, where Zi is the output

value of the ith node and C is the number of output nodes, that is,

the number of categories in the classification. The Softmax function

transforms the output of multiple categories into a probability

distribution ranging from [0, 1].

Softmax(zi) =
ezi

oC
c=1e

zc
    (1)

2.2.2 SENet
Attention mechanisms (Bahdanau et al., 2014; Vaswani et al.,

2017) aim to achieve a network that automatically focuses on useful

parts and allocates limited information processing resources to

important parts. Attention mechanisms include soft and hard,

and soft attention mechanisms include spatial (Jaderberg et al.,

2015), channel (Hu et al., 2019), and mixed domain (Fe et al., 2017)

attention mechanisms.

SENet (Hu et al., 2019) was proposed in 2017 and won the

image classification task in the ImageNet 2017 competition, with

the structure shown in Figure 3. It comprises two main

components, squeezing and excitation. In the Squeeze operation,

the global average pooling of C feature maps of size H × W is

performed, and the feature maps of C × H ×W are compressed into

one-dimensional feature maps of size 1 × 1 × C, i.e., the global

information of one-dimensional H × W is obtained with a global

perceptual field. In the excitation operation, 1 × 1 × C one-

dimensional features obtained from the squeeze operation are

added to the fully connected layer, and the significance for each

channel is obtained by the parameter W, which generates weights

for each feature channel to show the correlation between each

channel. Finally, the weights of the excitation output are multiplied
D

A

B

E

C

FIGURE 1

Images of some samples, (A–E) of Bluegrass, Chenopodium album, Cirsium setosum, Sedge and corn seedling, respectively.
TABLE 1 Corn seedling and weed data set.

Type Number

bluegrass 1,200

chenopodium album 1,200

cirsium setosum 1,200

sedge 1,200

corn seedling 1,200
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with the previous features by channel-by-channel multiplication to

achieve recalibration of the original features.

2.2.3 Global average pooling
The global average pooling layer (Lin et al., 2013) was first

proposed in Network in Network in 2013 and is widely used in large

convolutional neural networks. Traditional neural networks often

have one or two fully connected layers; however, the number of

parameters used is very large, which tends to cause overfitting.

Global average pooling is an important component of the network,

and the specific implementation is to calculate an average value for

all pixels of the feature map of each channel of the output, to obtain

a feature vector with a dimension equal to the number of categories,

and then directly input to the softmax layer, which can achieve the

effect of dimensionality reduction, thus reducing overfitting and

improving the recognition accuracy of the network. In addition, by

adding global averaging pooling, the model can have a global

perceptual field so that the underlying network can also use

global information to achieve better results. A comparative

diagram of these results is shown in Figure 4.

2.2.4 Leaky ReLU activation function
The ReLU activation function (Liang and Xu, 2021) is a

modified linear unit with a mathematical expression, as shown in

Equation 2, and input x. If x >0, its gradient is positive and can be

used for weight updating, defined as the active state; if x<0, its

gradient is 0, the weights cannot be updated and the neuron is in a

non-learning state, defined as the inactive state. To solve this

problem, a linear unit function with leakage correction, that is,
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the Leaky ReLU function, is introduced. Compared with the ReLU

function, the Leaky ReLU function retains a very small constant a in

the negative axis; therefore when the input information is less than

0, the information is not completely lost and is retained accordingly,

solving the problem that the neurons are not activated in the

negative interval of the ReLU activation function. The

mathematical expression of the Leaky ReLU function is shown in

Equation 3, and Figure 5 shows the plots of the ReLU and Leaky

ReLU activation functions.

ReLU(x) = max(0, x) =
0,   if   x ≤ 0     (Inactive   state)

x,   if   x > 0     (Active   state)

(
(2)

LeakyReLU(x) = max(ax, x) =
ax,           if   x < 0

x,             if   x ≥ 0

(
(3)
2.2.5 SE-VGG16
In this study, based on VGG16, the SE attention mechanism

was added after the first and second blocks, respectively, to enable

the network to automatically focus on the useful parts and allocate

the limited information processing resources to the important parts;

then the 3 × 3 convolutional kernels in the first block were reduced

to 1 × 1 convolutional kernels, and 1 × 1 convolution was used to

reduce the number of channels in the deep neural network to reduce

the number of channels without reducing the computational

complexity without degrading the model performance, replacing

ReLU with the Leaky ReLU activation function. Leaky ReLU can

improve the accuracy of the model in some cases, as it allows some
FIGURE 2

VGG16 structure diagram.
FIGURE 3

SENet structure diagram.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1205151
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Yang et al. 10.3389/fpls.2023.1205151
negative outputs that may contain useful information, replacing the

fully connected layer in VGG16 with global average pooling to

reduce the risk of overfitting the model and speed up the training

speed, and finally outputting with softmax, whose structure is

shown in Figure 6.
3 Experimental results

The experiments were conducted on a Alienware computer

(Dell, Inc, Round Rock, USA) configured with AMD Ryzen 7

5800H; 3.20 GHz, 24.0 GB RAM; NVIDIA GeForce RTX 3060

graphics; Windows 10 64-bit operating system. CUDA version 11.2,

Cudnn version 8.1, Tensorflow 2.5.0, Python 3.7. The software used

mainly included OpenCV image-processing software, with the

parameters listed in Table 2.
3.1 Experimental results and design

For this experiment, the dataset was divided into a training set,

validation set, and test set in a ratio of 6:2:2, and then the images

were input to a uniform size of 224 × 224. Figure 7 shows the
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accuracy curve and Figure 8 shows the loss rate curve of SE-VGG16

training. The figure shows that the model started to converge after

25 iterations. As the number of iterations increases, the two curves

gradually fit together, and the difference between the two accuracies

is close to 0, indicating that the model has reached the fit state and

achieves a good training effect.

To further validate the generalization ability of SE-VGG16,

other experiments were conducted in this study, namely, different

activation function comparison experiments, different attention

mechanism result comparison experiments, comparison tests of

multiple SE modules added to the model, ablation experiments,

model validation experiments in other datasets, and comparison of

results with other models.
3.2 Evaluation metrics

In this study, the Precision, Recall, Accuracy, and F1 were used

to measure the performance of SE-VGG16 in identifying corn

weeds, calculated as follows:

Precision =
TP

TP   +   FP
(4)
FIGURE 4

Comparison of fully connected layer and global average pooling layer.
A B

FIGURE 5

Plot of ReLU and Leaky ReLU activation functions. In the figure, (A) shows the linear representation of the ReLU activation function and (B) shows
the linear representation of the Leaky ReLU activation function.
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 Recall =
TP

TP   +   FN
  (5)

Accuracy =
TP   +  TN

TP   +   FN   +   FP   +  TN
  (6)

F1 =  
2TF

2TP   +   FP   +   FN
(7)

TP denotes predicting a positive sample that is positive, i.e., a

correct prediction; FP denotes predicting a negative sample that is

positive, i.e., an incorrect prediction; FN denotes predicting a positive

sample that is negative, i.e., an incorrect prediction; and TN denotes

predicting a negative sample that is negative, i.e., a correct prediction.
3.3 Comparison of the results of different
activation functions

The original VGG16 model uses the ReLU activation function,

but the ReLU activation function can lead to “necrosis” in some

neurons (Xu et al., 2020). This means that the neuron stops

responding to any input during training and permanently outputs
Frontiers in Plant Science 06
a 0. This is because, if the value of the input is less than 0, the gradient

is 0, and the neuron does not update its weights during

backpropagation and continues to output 0 without learning any

useful features from the data. To avoid the above problem, this study

additionally selected four common activation functions to investigate

their effects on network performance: Leaky ReLU, Swish, Elu, and

Selu; the results are shown in Table 3. By comparing the evaluated

values of the four activation functions, it was found that the accuracy

of the model using the other three activation functions was higher

than that of the model using ReLU, while Leaky ReLU worked best

with an accuracy of 99.33%. Finally, we visualize the feature layers of

ReLU and Leaky ReLU separately, as shown in Figure 9, which shows

that Leaky ReLU has better performance for images. Figure 10 shows

the confusion matrix for each experimental group.
3.4 Comparison of the results of different
attention mechanisms

The three commonly used attention mechanisms are CBAM,

ECA, and SE. In this study, the three attention mechanisms are

added to the VGG16 network separately, keeping each parameter

the same and using Leaky ReLU for the activation function, and the

values are displayed in Table 4. Experiments showed that the SE

attention mechanism performed well in this network and was best

for classifying corn seed-lings with weeds.
3.5 Comparison test of multiple SE
modules added to the model

To further verify the effect of the attention mechanism in the

model, we added one to five SE modules to the model, and the results

are presented in Table 5. The best results were achieved when the SE
FIGURE 6

SE-VGG16 construction diagram.
TABLE 2 Parameter settings.

Parameter Value

Batch size 16

Optimizier Adam

Learning rate 0.0001

Epochs 200

Activation Leaky ReLU

Dropout rate 0.5
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module was added to the first and second blocks of the model, with an

accuracy of 99.67% and almost no change in the size of the model.
3.6 Ablation experiment

To verify the improved effect of the model, this study trains each

classification network under the same condition, which is the network

with only SE added, the network with only global average pooling

added, the network with SE and global average pooling added, and the

VGG16 network. The obtained results are shown in Table 6. These

data also revealed that the network using SE with global average

pooling was the best for classifying corn seedlings and weeds with an

accuracy of 99.67%. Figure 11 displays the confusion matrix plots for

the above four networks, which show that SE-VGG16 successfully

recognized most of the sample images for each type, and the

superiority of SE-VGG16 is again certified in terms of performance.
Frontiers in Plant Science 07
3.7 Model validation experiments on
other datasets

To validate the generalization ability of SE-VGG16, we obtained

datasets of soybean seedlings and weeds from the internet.

Typically, convolutional neural networks require many images for

learning, and given the existing conditions, a larger number of

images cannot be collected. The existing dataset is small and has a

large gap with ImageNet. To prevent overfitting, the original dataset

was expanded in this study, and the expanded dataset included

1,000 images of soybean seedlings and 1,000 images of each of the

two types of soybean weeds: broadleaf and grass, respectively. As in

the previous experiments, the dataset was split into a training set,

validation set, and test set with a ratio of 6:2:2, and the same

parameters as in the previous experiments were kept, and the

training was performed for VGG16 and SE-VGG16, respectively;

the results are presented in Table 7. The results indicated that the
FIGURE 7

SE-VGG16 training set and validation set accuracy curves.
FIGURE 8

SE-VGG16 training set and validation set loss rate curves.
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TABLE 3 Comparison of different activation functions.

Type ReLU Elu Swish Selu Leaky ReLU

Batch size 16 16 16 16 16

Epochs 200 200 200 200 200

Acc% 97.75 98.83 98.75 98.25 99.33

Pre% 97.78 98.88 98.78 98.26 99.36

Rec% 97.76 98.84 98.76 98.26 99.34

F1% 97.77 98.86 98.77 98.26 99.35
F
rontiers in Plant Science
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A B

FIGURE 9

Partial convolutional layer visualization. In the figure, (A) is the feature layer visualization of the ReLU activation function, and (B) is the feature layer
visualization of the Leaky ReLU activation function.
D

A B

E

C

FIGURE 10

(A–E) show the confusion matrix for the ReLU, Elu, Swish, Selu, and LeakyReLU activation functions, in that order.
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accuracy of the SE-VGG16 model reached 99.83% in the soybean

dataset, which was higher than the accuracy of the VGG16 model

(98.00%), indicating that SE-VGG16 was also applicable to other

crops, proving that the model has good generalization ability.
3.8 Comparison with other model results

To further validate the performance of SE-VGG16, the SE-

VGG16 model was compared with other convolutional neural

network models , including AlexNet, VGG13, VGG19,

EfficientNet, and MobileNetV3, and the results are shown in

Table 8. Compared with AlexNet, VGG13 and VGG19, SE-

VGG16 has a slightly higher accuracy, but the number of

parameters is significantly lower, which makes training easier.

Compared with lightweight models, such as MobileNetV3, the

number of parameters still needs to be further reduced, but the

accuracy of SE-VGG16 is 2.59% higher than that of MobileNetV3,

further demonstrating the good performance of the SE-

VGG16 network.
4 Conclusion

To address the low accuracy of the original VGG16 model, the

SE attention mechanism is added, which allows the model to focus
Frontiers in Plant Science 09
more on features that are more critical to the classification task

while reducing interference from noisy features, thus improving the

accuracy and generalization ability of the model. The 3 × 3

convolutional kernels in the first block of VGG16 are then

reduced to 1 × 1 convolutional kernels to reduce computation

and increase nonlinearity, thereby reducing the number of

parameters to 20% and speeding up the computation. The Leaky

ReLU activation function was used instead of the ReLU activation

function, and feature extraction was performed with reduced

dimensionality to achieve a 99.67% accuracy. Compared with the

models proposed by other researchers in the literature cited in this

paper, our proposed model performs better. However, the number

of SE-VGG16 parameters remains high and cannot be easily applied

to portable devices. The next step in this research will be to reduce

the number of senators in portable devices to automatically track

and identify plant seedlings with extensive weed-related knowledge.

Combining deep learning methods with weed control in the field

improves the efficiency of weed control, saving labor and time costs,

while accurate control can also help protect the soil and

environment. The research in this paper provides theoretical

support for the precise application of herbicides in modern

agriculture, as well as for the informatization and intelligence of

agriculture. In the future, deep learning combined with agricultural

production will be applied to other areas to support the entire

process of agricultural production and improve the efficiency of

agricultural production.
TABLE 4 Comparison of different attention mechanisms.

Eps Acc% Pre% Rec% F1%

Add CBAM 200 98.67 98.68 98.66 98.67

Add ECA 200 99.17 99.16 99.18 99.17

Add SE 200 99.33 99.36 99.34 99.35
frontier
TABLE 5 Comparison test of multiple SE modules added to the model.

Eps Acc% Pre% Rec% F1%

1 SE module 200 99.33 99.36 99.34 99.35

2 SE module 200 99.67 99.68 99.68 99.68

3 SE module 200 99.58 99.60 99.60 99.60

4 SE module 200 99.41 99.44 99.44 99.44

5 SE module 200 99.25 99.26 99.28 99.27
TABLE 6 Comparison of results of ablation experiments.

VGG16 Add SE only Add GAP only SE-VGG16

Accuracy% 97.75 97.75 99.25 99.67

Precision% 97.78 97.76 99.28 99.68

Recall% 97.76 97.74 99.26 99.68

F1% 97.77 97.75 99.27 99.68
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FIGURE 11

Confusion matrix comparison chart. The figure shows (A) the confusion matrix of the VGG16 recognition results, (B) the confusion matrix of the
model recognition results when only the SE module is added, (C) the confusion matrix of the recognition results when only the global average
pooling layer model is added, and (D) the confusion matrix of the SE-VGG16 model recognition results.
TABLE 7 Table of results for soybean data set.

Models Type Pre% Rec% F1% Acc%

VGG16

broadleaf 100 96.50 98.22

98.00grass 98.50 98.00 98.25

Soybean 95.70 99.50 97.56

SE-VGG16

broadleaf 100.00 100.00 100.00

99.83grass 100.00 99.50 99.75

soybean 99.50 100.00 99.75
TABLE 8 Comparison results with other models.

No. Models Acc% Pre% Rec% F1%

1 AlexNet 97.17 97.18 97.14 97.16

2 VGG13 97.92 97.90 97.92 97.91

3 VGG19 98.67 98.68 98.68 98.68

4 MobileNetV3 97.08 97.10 97.08 97.07

5 EfficientNet 98.00 98.02 97.98 98.00

6 SE-VGG16 99.67 99.68 99.68 99.68
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