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Introduction: Chilling injury is one of the most common meteorological

disasters affecting cucumber production. For implementing remedial measures

as soon as possible to minimize production loss, a timely and precise assessment

of chilling injury is crucial.

Methods: To evaluate the possibility of detecting cucumber chilling injury using

chlorophyll fluorescence (ChlF) technology, we investigated the continuous

changes in ChlF parameters under various low-temperature conditions and

created the criteria for evaluating chilling injury. The ChlF induction curves

were first collected before low-temperature as unstressed samples and daily 1

to 5 days after low-temperature as chilling injury samples. Principal component

analysis was employed to investigate the public information on ChlF parameters

and evaluate the differences between samples with different degrees of chilling

injury. The parameters (Fv/Fm, Y(NO), qP, and Fo) accounted for a large proportion

in the principal components and could characterize chilling injury. Uniform

manifold approximation and projection method was employed to extract new

features (Feature 1, Feature 2, Feature 3, and Feature 4) from ChlF parameters for

subsequent classification model. Taking four features as input, a classification

model based on the Fuzzy C-means clustering algorithm was constructed in

order to identify the chilling injury classes of cucumber seedlings. The cucumber

seedlings with different chilling injury classes were analyzed for ChlF images,

rapid light curves, and malondialdehyde content.

Results and discussion: The results demonstrated that the variations in these

indicators among the different chilling injury classes supported the validity of the

classificationmodel. Our findings provide a better understanding of the relationship

between ChlF parameters and the impact of low-temperature treatment on

cucumber seedlings. This finding offers an additional perspective that can be

used to evaluate the responses and damage that plants experience under stress.

KEYWORDS

low temperature, chlorophyll fluorescence parameters, PSI, Fuzzy C-means clustering
algorithm, uniform manifold approximation and projection
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1 Introduction

The frequency and severity of extremely low temperatures have

gradually increased because of climate change (Xiao et al., 2021).

Cucumber, as a typical cold-sensitive crop, is prone to low-

temperature stress (Shibaeva et al., 2019). As one of the natural

disasters that have the greatest impact on agriculture, low

temperature limits the productivity and geographic distribution of

cucumbers and has a serious impact on the world’s cucumber

production and economic development (An et al., 2017). To

minimize the output loss, a timely and accurate assessment of

chilling injury is crucial for implementing remedial measures.

Low temperatures disrupt cellular structures and impair

numerous vital physiological processes in plants, including the

phase change of the chloroplast thylakoid membrane, by

inactivating biological enzymes and causing the accretion of

deleterious lipid peroxides (Barber and Andersson, 1992; Miura

and Furumoto, 2013). However, due to the onerous and time-

consuming operation steps, the aforementioned physiological and

biochemical parameters might not be appropriate for non-

destructive evaluation indicators of chilling injury in actual

agricultural production settings. Photosynthesis is one of the core

processes in plant life activities (Li et al., 2020). Nearly all aspects of

photosynthetic activity are impacted by low temperatures, including

photosystem II (PSII), photosystem I (PSI), cycle electron flow

(CEF), and carbon fixation (Lu et al., 2020). PSI and PSII

photoinhibition in cucumber leaves typically occur in

environments with low temperature and normal light. Chilling

stress tends to impede photosynthesis in the leaves, and excess

light energy acquired by leaves will cause the formation of oxygen

free radicals in the cells. The cell structure of the leaves would be

damaged, resulting in yellowing of leaves, leaf curling, and even

death, if the oxygen free radicals are not rapidly and effectively

eliminated (Meng et al., 2008). The parameters related to

photosynthesis could offer an excellent opportunity for the

investigation of chilling injury.

Chlorophyll fluorescence (ChlF) technology, rapid and non-

destructive, has been mentioned in previous studies as a method to

assess plant damage caused by stress conditions and provide

immediate feedback on the primary photochemistry processes

(Moya et al., 2019). The ChlF induction curve could be used to

evaluate the physiological state of PSII and other components of the

photosynthetic electron transport chain. In a broader sense, ChlF

parameters derived from induction curves are, directly or indirectly,

related to all stages of photosynthetic reactions (Kalaji et al., 2016).

Most studies examined the variations of ChlF parameters under

low-temperature stress and chose one or more ChlF parameters

susceptible to chilling injury for variety selection and analysis. The

maximum photochemistry quantum yield of PSII (Fv/Fm),

decreasing with increasing stress, could be a valuable and general

indicator to characterize stress damage (Kumari et al., 2017; Aazami

et al., 2021). Non-photochemical quenching (NPQ) mechanism,

dissipating excessive excitation pressure accumulated in PSII

reaction centers without causing adverse effects, could be used to

analyze the plant photoprotection process (Kanazawa and Kramer,

2002). Additional ChlF parameters, such as effective quantum yield
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of PSII [Y(II)], photochemical quenching (qP), non-regulatory

quantum yield of energy dissipation [Y(NO)], light-adapted

steady-state fluorescence (F), and photochemical quenching

coefficient (qL) were applied to explain and evaluate stress

damage (Zhang et al., 2014). According to these findings, the

parameters of the ChlF induction curve could be used to

characterize chilling injury. However, utilizing a single or a

combination of parameters to assess chilling injury has

limitations because the parameters involve a number of intricate

physiological and biochemical reaction processes in plants. It might

be appropriate to employ a multi-index comprehensive

evaluation method.

Most studies analyzed the degree of plant chilling injury in a

supervised learning manner using ChlF technology, and the

evaluation criteria relied heavily on the prior knowledge of

human specialists (Dong et al., 2019). Prior knowledge refers to

the reduction of temperature and the extension of duration, but it is

often subjective. A promising solution to address the dearth of

expertise in this sector is using unsupervised learning to classify

plant stress injuries (Cao et al., 2015). Unsupervised learning, easy

operation and strong applicability, do not require prior knowledge

(Pu et al., 2021). But prior researches mainly employed this method

to evaluate plant germplasm resources or annotate large-scale omics

data sets for model plants (Henao-Rojas et al., 2021; Yan andWang,

2022), and it was rarely used to evaluate the degree of plant damage

under stress conditions.

Considering that the precise classification of chilling injury is

useful for subsequent disaster prevention and mitigation work, this

study aimed to evaluate the potential of ChlF techniques in

diagnosing plant chilling injury based on unsupervised learning

methods. To this end, the specific objectives were to (1) analyze the

changes in ChlF induction curve parameters under low-

temperature treatment and identify available variables using the

dimension reduction method; (2) create an unsupervised

classification model using extracted variables as input; (3) validate

the classification model and discuss the distinctions between

samples of different chilling injury classes. The flowchart of

typical steps for analyzing and detecting chilling injury proposed

in this paper is illustrated in Figure 1.
2 Materials and methods

2.1 Experimental materials and methods

2.1.1 Experimental materials and
growth conditions

This experiment was carried out at the Key Laboratory of

Agricultural Internet of Things, Ministry of Agriculture and Rural

Affairs, Northwest A&F University, from December 2020 to

January 2021. Cucumber (Cucumis sativus L. cv Bonai 14-3) was

germinated and grown in 72-hole seed trays. The seedlings were

transferred to plastic nutrition cups (10×10×9 cm3) with the

Danish substrates (Pindstrup, Denmark) when they had two

leaves and one heart. An artificial climatic chamber (RGL-

P500D, Hefei) with three vertical full spectrum LEDs and an
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external ultrasonic humidifier provided a growing environment

for the seedlings. The environmental settings in the chamber were

as follows: the light intensity was 140 mmol·m-2·s-1 and the period

was 14 h/10 h (light/dark). The air temperature during the light

and dark were 25°C and 16°C, respectively. The relative humidity

during the light and dark were 60% and 50%, respectively. The

vapor pressure deficit during the light and dark were 1.1~1.5 kPa

and 0.4~0.5 kPa, respectively. After seven days of acclimatization,

the cucumber seedlings were separated into four groups with 24

cups each. Different groups of cucumber seedlings were placed in

four different climate chambers. The air temperature of the four

different climate chambers were 8°C, 10°C, 12°C, and 14°C,

respectively. Other environmental parameters were consistent

with the acclimatization period.

All plants were exposed to a low-temperature environment for

five days. Subsequently, to evaluate their recovery, the two groups of

cucumber seedlings at 8°C and 14°C were transferred to their

previous temperature treatment (light/dark: 25°C/16°C) for 5 days.

Eight plants were randomly chosen as samples from each group

to measure the ChlF induction curve. Four plants were randomly

chosen as samples to measure the ChlF image and the activity and

energy conversion of PSI and PSII. Twelve plants were selected for

malondialdehyde (MDA) content measurement after each day of

low-temperature light exposure.

2.1.2 Measurement of the ChlF parameters
The measurements were performed between 3 h and 6 h after

the beginning of the photoperiod (10:00 h) every day. Eight plants

were randomly selected as the samples from each group to measure

the ChlF induction curve, and the second fully unfolded leaf from

the growth point down was taken as the leaf to be tested. Cucumber

seedlings were dark-adapted for over 20 mins prior to

measurement. MINI-PAM-II measuring systems (Heinz Walz,

Effeltrich, Germany) were utilized to measure the ChlF induction

curve. Fo and Fm were determined with a very weak light

(470nm,<0.1 mmol·m-2·s-1) and a transient saturated light pulse
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(470nm, >3000 mmol·m-2·s-1), respectively (Chen et al., 2021). The

samples were then illuminated for 300 s with a continuous actinic

light (900 mmol·m−2·s−1) to obtain a steady-state fluorescence yield

(F). Subsequently, saturating light pulses were applied to achieve

Fm
,. Actinic light was then turned off and a far-red illumination was

turned on to measure Fo
, (Lima et al., 2002). Other ChlF parameters

in the induction curve are displayed in Table 1. Four plants were

randomly chosen as samples to measure the ChlF false-color image

and the activity and energy conversion of PSI and PSII, and the

second fully unfolded leaf from the growth point down was taken as

the leaf to be tested. A blue version of IMAGING-PAM-MAX/B

measuring systems (Heinz Walz, Effeltrich, Germany) was utilized

to collect the images. The false-color images (Fv/Fo, Fo, and Fm) were

measured using the standard measurement procedure of the

ImagingWin software (Dong et al., 2019) and created by mapping

the one-dimensional value to the three-dimensional RGB value

using a false-color system. DUAL-PAM-100 measuring systems

(Heinz Walz, Effeltrich, Germany) were utilized to measure the

rapid light response curves (RLCs) using the standard measurement

procedure of the Dual-PAM-100 software (Yang et al., 2020). A

saturation pulse after illumination with far-red light for 10 s was

used to measure the Pm after dark-adaption. The gradients of light

intensity were: 0, 8, 34, 92, 170, 270, 419, 609, 921, 1453, and 2256

mmol·m-2·s-1. The parameters used in this paper are displayed

in Table 1.

2.1.3 Measurement of Malondialdehyde content
Twelve plants were selected for malondialdehyde (MDA)

content measurement after each day of low-temperature light

exposure. The thiobarbituric acid (TBA) colorimetry method was

employed (Xu et al., 1993; Ruan et al., 2002). For each plant, 0.5 g

fresh leaf material was homogenized with 5 ml of 10%

trichloroacetic acid (TCA). 2 ml of extract solution was combined

with 2 ml of 0.6% TBA solution and heated in a boiling water bath

for 15 mins and then cooled and centrifuged for 10 mins. A UV

spectrophotometer (LAMBDA 365, America) was used to measure
FIGURE 1

Flowchart of analysis and detection of chilling injury in cucumber seedlings leaves.
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the absorbance of the reaction mixture at 450 nm, 510 nm, 532 nm,

and 560 nm, respectively. The MDA content was calculated

according to the following formula.

C = 6:45
h
D532 −

�
D510 − D560

n �
=2

i
−0:56D450g �

N
W

(1)

Where C represents the MDA content, in nmol·g-1. D450, D510,

D532, D560 represent the absorbance values at wavelengths of 450

nm, 510 nm, 532 nm, and 560 nm, respectively. N represents the

volume of extraction liquid. W represents the fresh plant

tissue weight.
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2.2 Modeling approaches

The dataset comprised 15 ChlF parameters obtained from the

induction curve (Fo, Fm, Fv, F, Fm
,, Fo

,, Fv/Fm, Fv/Fo, Y(II), Y(NPQ),

Y(NO), NPQ, qN, qP, qL). Pearson correlation analysis was used to

explain the association between different parameters. Principal

component analysis (PCA) and uniform manifold approximation

and projection (UMAP) were used to extract critical information

from the dataset. The fuzzy C-means clustering algorithm (FCM)

and genetic algorithm (GA) were used to build a classification

model. All calculations were performed with at least three

independent biological replicates.
2.2.1 Data normalization
To facilitate subsequent data analysis, the data set was

normalized in the range [0,1] using a linear normalization

function defined by:

Y =
X − Xmin

Xmax − Xmin
(2)

Where X, Y represents the data to be normalized and

normalized, and Xmin, Xmax represent the minimum and

maximum in the data sequence. Meanwhile, we apply the 3s rule

to filter the data for outliers (Lehmann, 2013).

2.2.2 Data analysis
Pearson correlation coefficient is an index that accurately

measures the correlation between two variables. In this study, it

could be used to examine the relationship between different ChlF

parameters. For two different ChlF variables A = ½a1, a2,…, an� and
B = ½b1, b2,…, bn�, the formula was given by (Wiedermann and

Hagmann, 2016):

PA,B =
noAB −oAoBffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

noA2 −
�
oB

�2
r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

noB2 −
�
oB

�2
r (3)

The value range of PA,B is [-1,1], that is jPA,Bj = ½0, 1�. The
correlation between A and B is judged by the following range of

values: jPA,Bj is extremely strong at 0.8 and 1.0, strong at 0.6 and 0.8,

moderate at 0.4 and 0.6, weak at 0.2 and 0.4, and uncorrelated at 0.0

and 0.2.

Statistical analyses of the ChlF parameters were conducted

using Levene’s test and the one-way ANOVA test in SPSS (SPSS

Inc., Chicago, IL). The Levene’s test can be employed for variance

homogeneity. If its p-value is less than 0.05, then we can reject the

null hypothesis of variance homogeneity and conclude that there is

significant heterogeneity among the groups. The one-way ANOVA

test was performed to examine the differences in means among the

groups. The F-value obtained from the ANOVA test represents the

ratio of between-group variability to within-group variability. A

larger F-value suggests a greater difference in means among the

groups, indicating a significant effect. Conversely, a smaller F-value

indicates a smaller difference in means, suggesting a non-

significant effect.
TABLE 1 the definition and description of the parameters.

Parameter Definition Description

F /
the light-adapted steady-state

fluorescence

Fo / minimum ChlF

Fm / maximum ChlF

Fo
, / minimum ChlF after light adaptation

Fm
, / maximum ChlF after light adaptation

Fv Fm−Fo variable ChlF

Fv/Fm (Fm−Fo)/Fm
maximum photochemistry quantum

yield of PSII

Fv/Fo (Fm−Fo)/Fo the potential activity of PSII

Y(II) (Fm
,−F)/Fm

, practical photochemistry quantum yield
of PSII

Y(NO) F/Fm
unregulated heat dissipation and

quantum yield of fluorescence emission

Y(NPQ) 1−Y(II)−Y(NO)
non-photochemical fluorescence

quenching quantum yield under light
induction

NPQ (Fm−Fm
,)/Fm

, non-photochemical fluorescence
quenching

qL qP� Fo
,=F photochemical quenching coefficient

qP (Fm
,−F)/(Fm

, − Fo
,) photochemical quenching coefficient

qN
1−(Fm

, − Fo
,)/(Fm

−Fo)
non-photochemical quenching

coefficient

P / P700 real-time signal under actinic light

Pm / Maximum P700+ signal

Pm
, /

Maximum P700+ signal after light
adaptation

Y(I) (Pm
,−P)/Pm the quantum yield of PSI

Y(ND) P/Pm
the P700 oxidation ratio in a given

actinic light

ETR(I) Y(I)×PAR×0.84×0.5 the electron transfer rate of PSI

ETR(II)
Y

(II)×PAR×0.84×0.5
the electron transfer rate of PSII

Y(CEF) ETR(I)−ETR(II)
the cyclic electron flow value between

PSI and PSII
/, indicates that there are no definition for these parameters.
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2.2.3 Dimension reduction
The PCA method is primarily used to decrease the number of

variables and discover the relationship structure between similarly

classified variables. In doing so, the main input is transformed into

principal components (PCs) that are non-correlated. Most of the

variations in the original data may be explained by fewer indicators

(Dittrich et al., 2021). The percentage of variance in the data that the

PCs could explain was set at 95% (Sun et al., 2021).

Uniform manifold approximation and projection (UMAP) was

proposed in 2018 to reduce dimensionality and improve

visualization (Mcinnes and Healy, 2018). Based on Riemannian

geometry and algebraic topology, UMAP not only has the speed

advantages of PCA but also retains the local and global structure.

The hyper-parameters of UMAP were set as follows: The

dimensionality of the target embedding, n = 4; the number of

neighbors, k = 5; the minimum allowed distance between points in

the embedding space, d = 0. In this study, PCA and UMAP were

applied to process ChlF parameters and select the most important

variables to assess chilling injury in cucumber seedlings.

2.2.4 Clustering algorithm
The fuzzy C-means clustering algorithm (FCM) is an

improvement of the conventional K-means algorithm. When used in

conjunction with fuzzy theory, FCM calculates the similarity between

the samples and the cluster centers and estimates the probability that a

sample fits into a particular category according to the membership

(Kamolov and Park, 2021). The FCM algorithm iteratively optimizes

the objective function J by updating the membership uij and the cluster

center V. The objective function J could be expressed as:

J =o
N

i=1
o
C

j=1
umij d

2
ij (4)

Wherem represents the fuzzy coefficient,m>1. N represents the

sample size. dij represents the Euclidean distance from the sample to

cluster center.

The traditional FCM randomly selects a sample as the initial

centroid, however, this may cause the model to fall into a local

optimum. Genetic algorithm (GA) is a popular optimization

algorithm inspired by the idea of biological evolution that

generates high-quality optimal solutions based on selection,

crossover, and mutation processes (Reddy et al., 2020). Thus, the

initial centroid of FCM was optimized by GA in the proposed

chilling injury classification model. In the optimization process,

genetic parameters were set as follows: population 100, crossover

probability 0.8, mutation probability 0.2. Taking selection into

account, individuals were chosen based on the Euclidean distance

between the sample set and the chromosome of the population.
3 Results and discussions

3.1 Changes of ChlF parameters under
experimental conditions

Fifteen ChlF parameters were obtained from the induction

curve measured using the MINI-PAM-II measurement system.
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Changes in ChlF parameters at four low-temperature treatments

over a period of 0~5 days are shown in Figure 2; Table 2. Under

different temperature treatments, the ChlF parameters had large

intergroup differences and exhibited heteroscedasticity. Some ChlF

parameters, such as Fm, Fv, F, Fv/Fm, Fv/Fo, Fm
,, and Y(NPQ),

changed in the same order as the experimental conditions.

Additionally, Fo, Y(NO), and Fo
, negatively correlated, while

other ChlF parameters were positively correlated, with the

experimental temperature. The distribution of ChlF parameters at

12°C and 14°C treatment was comparable, and both showed more

minor distribution disparities, whereas more significant distribution

changes were observed at 8°C and 10°C treatments. Particularly

during the 8°C treatment, there were more extreme ChlF parameter

values. The possible causation was that 8°C is past the threshold

temperature that cucumber seedlings could withstand, and the PSII

of cucumber leaves was irreversibly damaged (Anwar et al., 2018).

The different and regular variations in the trends of the ChlF

parameters during low-temperature treatment indicated using

them as model input could be appropriate for evaluating

chilling injury.

The evaluation of chilling injury in cucumber seedling was

related to their response to low temperatures and subsequent

recovery at the appropriate temperature. Fv/Fm, as a general

indicator to determine the condition of the photosynthetic

apparatus and estimate stress damage in plants (Lin et al., 2021),

changes regularly with the degree of chilling injury. We further

evaluated the variations of cucumber leaves Fv/Fm each day at 8°C

and 14°C treatments and subsequent recovery (Figure 3). The

values of Fv/Fm decreased gradually with decreasing temperature

and increasing duration. When cucumber seedlings were not

exposed to low temperatures, the Fv/Fm values remained stable at

around 0.84. The Fv/Fm values at 8°C were more rapidly decreased

than those at 14°C in cucumber leaves. The Fv/Fm values at 8°C

decreased to approximately 0.1 in cucumber leaves treated for 5

days, whereas in those treated at 14°C, the Fv/Fm value remained at

about 0.6. There were significant differences between them,

demonstrating that the photosynthetic apparatus suffered more

severe damage at 8°C compared to 14°C and PSII is relatively

stable at 14°C. Subsequently, when the cucumber seedlings were

transferred to their previous temperature environment, the recovery

rates of cucumber leaves’ Fv/Fm values at 8°C were higher than those

at 14°C. The 8°C and 14°C-treated cucumber seedlings Fv/Fm
reached 82.5% and 91.8% of their pre-low temperature treatment

levels after 5 days of recovery. It has been suggested that PSII

recovery system in the plants was not damaged and chilling injury

had little effect on it when Fv/Fm reached above 0.8 or 95% of their

pre-low temperature treatment level (Rıós-Meléndez et al., 2021;

Takeuchi et al., 2022). Thus, the chilling injury was reversible in this

case and could be regarded as slight. Our results did not meet the

above conditions, indicating that the effects of chilling injury were

still present. Meanwhile, the samples’ response to different low-

temperatures and subsequent recovery were different. On this

account, such chilling injury could be regarded as moderate and

severe. Therefore, the subsequent model could be configured with 4

centroids, each corresponding to an unstressed state, slight chilling

injury, moderate chilling injury, and severe chilling injury,
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TABLE 2 Changes of ChlF parameters with 0 to 5 days of four low-temperature treatments.

ChlF parameters

Temperature (°C)

p F8 10 12 14

Mean Std Mean Std Mean Std Mean Std

F 528.6 206.5 583.6 145.4 668.7 166.3 723.2 169.4 0.183 12.008

Fm
, 554.6 237.0 622.3 167.9 739.8 195.3 796.8 201.1 0.188 14.200

Y(II) 0.033 0.060 0.058 0.023 0.093 0.025 0.089 0.026 0.186 28.736

Fo
, 361.9 49.0 327.0 14.8 349.1 28.9 337.2 38.3 0.000 8.599

qP 0.087 0.098 0.129 0.031 0.185 0.045 0.159 0.039 0.000 19.143

qN 0.386 0.211 0.446 0.124 0.455 0.102 0.446 0.066 0.000 2.846

qL 0.059 0.060 0.076 0.024 0.101 0.034 0.078 0.027 0.000 6.001

NPQ 0.338 0.531 0.457 0.381 0.475 0.270 0.466 0.174 0.056 1.611

Y(NO) 0.806 0.223 0.686 0.156 0.634 0.113 0.631 0.082 0.002 14.013

Y(NPQ) 0.161 0.173 0.256 0.137 0.272 0.099 0.281 0.068 0.000 9.604

Fo 347.7 45.0 322.5 16.4 345.3 24.8 329.4 36.6 0.000 6.604

Fm 805.9 581.6 960.1 518.4 1115.9 455.6 1183.5 386.3 0.372 5.727

Fv/Fm 0.361 0.316 0.584 0.161 0.652 0.102 0.694 0.097 0.000 29.719

(Continued)
F
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FIGURE 2

Changes of ChlF parameters with 0 to 5 days of four low-temperature treatments. The parameters were F, Fm
,, Y(II), Fo

,, qP, qN, qL, NPQ, Y(NO), Y
(NPQ), Fo, Fm, Fv/Fm, Fv/Fo, and Fv, respectively. Each subplot represented a ChlF parameter. Each column in the subplot represents the distribution of the
ChlF parameter with 0 to 5 days at one temperature, n=48. Each point was the average value obtained from three repetitions of the experiment.
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respectively. This scheme also referred to previous literature (Ali

et al., 2014).
3.2 Classification model of chilling injury

3.2.1 Pearson correlation analysis for the
ChlF parameters

Analyzing the correlations among ChlF parameters provides a

preliminary understanding of their mathematical relationships.

Figure 4 depicts the correlation coefficient between ChlF

parameters under experimental conditions. Only data from the

lower triangle was displayed, as the matrix is symmetric. Fv/Fm is

strongly positively correlated with Fv/Fo, Fv, Y(II), Fm
,, Y(NPQ),

qN, NPQ, Fm, F, but not with Fo
, and qL. Fo was only strongly

correlated with Fo
,, but weakly or not correlated with other

parameters. Y(NO) was extremely strongly correlated with many

parameters, particularly Y(NPQ) and NPQ. There were large or

small correlations between all the ChlF parameters, and each

parameter had at least a significant or extremely significant

correlation with another parameter. It may not be reasonable to

manually select one or multiple parameters to characterize the

chilling injury. If all ChlF parameters were employed for subsequent

data analysis, data redundancy would occur, resulting in intensive

calculation and strong data fluctuation. It is necessary to extract the

effective components of ChlF parameters.
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3.2.2 Dimension reduction for the
ChlF parameters

All the clustering algorithms have limitations of dimensionality

because high dimensional data requires more observed samples to

produce much density (Allaoui et al., 2020). Methods of dimension

reduction (PCA and UMAP) make it easier for these algorithms to

cluster the data. Public information on ChlF parameters was

extracted using the PCA method, and several comprehensive and

independent indicators containing most of the original information

were constructed (Figure 5).

The first four PCs accounted for 95.639% of the original

information. The first axis (PC1) explained 72.413% of the

variance and was dominated by the damage of PSII in cucumber

leaves at low temperature. The parameters with a high positive

contribution in PC1 are Fv/Fm, Fv, Fv/Fo, and Fm. These parameters

were obtained before continuous actinic light. The damage of low

temperature to photosynthetic organs can lead to significant

changes in these parameters. The reduced photosynthesis in low

temperature conditions can lead to the accumulation of excessive

energy. Excessive excitation energy reached the reaction center and

dissipated through the antenna chlorophyll, which caused a sharp

decline in PSII activity, and caused extensive damage to the PSII

complex (Zhang et al., 2020). Then, the second axis (PC2), which

was related to the PSII activity in cucumber leaves as shown by the

loadings of qP, qL, F, and Fo
,, explained 12.297% of the variance. F

and Fo
, were negatively distributed on the PC2, while qP and qL
TABLE 2 Continued

ChlF parameters

Temperature (°C)

p F8 10 12 14

Mean Std Mean Std Mean Std Mean Std

Fv/Fo 1.433 1.971 2.015 1.721 2.262 1.414 2.673 1.381 0.507 4.879

Fv 458.1 599.3 637.5 524.5 770.6 460.0 854.1 398.6 0.398 5.783
frontie
n = 48, p<0.05. Mean represents the average value of the ChlF parameter, std represents the standard deviation of the ChlF parameter.
FIGURE 3

Changes of cucumber leaves Fv/Fm under low temperature and subsequent recovery. The 0 d ~ 5 d in the abscissa represent low-temperature
treatment, and the 6 d ~ 10 d represent suitable-temperature treatment.
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were positively distributed. Low temperature treatment reduces the

PSII activity and increases the risk of photoinhibition, resulting in a

decrease in qP (the approximate fraction of open PSII reaction

center) and an increase in NPQ. Thermal energy dissipation might

not be sufficient to prevent a decline in qP at low temperatures,

hence the negative correlation between qP and NPQ was manifested

in PC3 (Kitao et al., 2004). The third axis (PC3) accounted for

6.389% of the variance and included the photoprotection ability of

PSII in cucumber leaves. PC3 was dominated by Fo and Y(NPQ). Y

(NPQ) indicates the degree of PSII photoprotection (Dias et al.,

2018). Plants reduced the impact of low temperature stress by

increasing the ratio of energy dissipation [Y(NPQ) and Y(NO)].

The fourth axis (PC4) accounted for 4.54% of the variance and was

dominated by the efficiency of PSII in cucumber leaves, as it mainly

integrated the information of Y(NO) and Fo. In PC3 and PC4, Fo
had the largest positive contribution. In PC1 and PC4, Y(NO) had

the largest negative contribution. Fo is related to the chlorophyll

concentration and the transfer efficiency of excitation energy

(Georgieva and Lichtenthaler, 1999). Low temperature treatment

reduces the energy transfer efficiency of antenna chlorophyll a to

the PSII reaction center (inactive), which could explain the rise of

Fo. Considering the result of correlation analysis, Fv/Fm, qP, Y(NO),

and Fo were selected as key ChlF parameters sensitive to chilling

injury of cucumber seedlings. This finding is supported by the

research conducted by Dong et al. (2019) and Aazami et al. (2021).

The aforementioned analysis showed the distribution of different

ChlF parameters in the PCA-extracted general information and

indicated several fluorescence parameters that could better

characterize chilling injury.
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The four PCs and sensitive ChlF parameters were extracted

by PCA, which may be important for early diagnosis of

cucumber chilling injury. However, the loose distribution of data

transformed by PCA may compromise the precision of subsequent

clustering models (Figure 5). Similarly, we analyzed the distribution

of ChlF parameters [Fv/Fm, Y(NO), and qP] that contributed

significantly to the PCs, but it has the same shortcomings as PCA

(Figure 6A). UMAP seemed more appropriate for dimension

reduction. Compared with PCA, the visualization result was

superior when we applied the UMAP (Figure 6B). All samples

were reduced to four dimensions using UMAP, and the new

features of the samples were Feature 1, Feature 2, Feature 3, and

Feature 4, respectively. It should be highlighted that UMAP

successfully reflects much of the large-scale global structure that

is well represented by PCA while also preserving the local fine

structure. However, UMAP lacks the robust interpretability of PCA.

As a result, we applied PCA to explain the significance of various

ChlF parameters in chilling injury and used UMAP to reduce the

sample dimensionality.

3.2.3 Classification model for cucumber
seedlings chilling injury

Different models, including FCM (15 ChlF parameters as

input), ChlF-FCM (Fv/Fm, Fo, Y(NO), and qP as input), PCA-

FCM (4 PCs as input), and UMAP-GA-FCM (Feature 1, Feature 2,

Feature 3, and Feature 4 as input), were constructed for comparison

and selection (Figure 7). Using the GA algorithm to optimize the

first centroid can reduce the initial movement error and the

iterations to a certain extent. Significant differences were observed
FIGURE 4

Correlation coefficients between ChlF parameters.
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in the initial movement error of ChlF-FCM and FCM, but they did

not require a lot of iterations. The PCA, as a linear method, has the

tendency to neglect some important local information. If all ChlF

parameters for the datasets in this paper were used, it would result

in a dimensional disaster. Correspondingly, the outcomes of models

that used them as inputs were not the best. All models can

ultimately reach the set error threshold, but the UMAP-GA-FCM

method has the smallest initial error and iteration steps. Therefore,
Frontiers in Plant Science 09
the UMAP-GA-FCMmethod was employed to evaluate the chilling

injury in this study.

Taking the four new features obtained by the UMAP method as

the input, an evaluation model of cucumber seedlings chilling injury

was constructed based on the UMAP-GA-FCM algorithm. The

corresponding relationship between the new features and centroids

is illustrated in Figure 8. The UMAP-GA-FCM algorithm was

successful at pulling together clusters corresponding to similar

samples. Samples from different classes exhibit distinct feature

values and centroids, while the centroids and the average values

of the features at different classes were generally consistent.

All the samples were categorized into four chilling injury classes

according to the classification model. Figure 9 illustrates the severity

of cucumber seedlings chilling injury under different low

temperatures and time periods. The chilling injury levels of

cucumber seedlings subjected to the same treatment may be

different. After 1 d of low-temperature treatment, all samples

were observed to have slight chilling injury. 25% of the samples

treated at 14°C showed signs of slight chilling injury for 1 d or more.

The samples treated at 8°C for 2 d and 37.5% of those treated at

10°C for 4 d were categorized as suffering from severe chilling

injury. Under the other environmental treatments, the samples were

categorized as having moderate chilling injury. Many studies have

broken down the extent of chilling injury by temperature and

duration, which may be applicable to the lengthening of time at a

temperature or the lowering of temperature at a time, but this

evaluation standard is constrained when both exist because of

individual differences and subjective judgment. The classification

model for evaluating cucumber chilling injury that uses a clustering

algorithm is more objective and effectively reduces the influence of

individual differences.
3.3 Cucumber seedlings under different
chilling injury classes

3.3.1 Changes in MDA content and ChlF images
MDA contents and Fv/Fm, Fm, and Fo false-color images of the

samples with different chilling injury classes were analyzed

(Figure 10). Low temperature stress causes changes in cell

membrane permeability, transforming the membrane from a

liquid crystalline state to a gel state, resulting in an increase in

MDA content (Amin et al., 2021). Compared to unstressed samples,

the average values of MDA contents with slight, moderate, and

severe chilling injury samples increased 19.07%, 28.14%, and

67.24%, respectively (Figure 10E). The variations were minor at

low chilling injury classes, indicating that the relationship between

the MDA content and the degree of low temperature stress was

nonlinear. Using MDA content to accurately evaluate the chilling

injury classes requires the classification model proposed in this

research. ChlF images are well suited to visualize spatio-temporal

heterogeneity in plants’ responses under stress conditions (Fathi-

Najafabadi et al., 2021). For Fm false-color images, they exhibited a

color progression from cyan to green and eventually to yellow as the

chilling injury intensified. With regard to the Fo false-color images,
B

C

A

FIGURE 5

Biplot resulting from PCA. (A) PC1 and PC2. (B) PC1 and PC3.
(C) PC1 and PC4.
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BA

FIGURE 6

Visualization result. (A) the 3D scatter plot with Fv/Fm, Y(NO), and qP. (A) the 3D scatter plot with Feature 1, Feature 2, and Feature 3.
BA

FIGURE 7

Comparison of results between different methods. (A) the initial movement errors. (B) the iterations to reach the set error threshold.
FIGURE 8

The corresponding relationship between the new features and centroids.
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their color changes were not obvious under different chilling injury

classes and different areas of cucumber leaves. The changes in Fv/Fm
were attributed to a decrease in Fm and an increase in Fo. For Fv/Fm
false-color image, it is uniformly blue for the unstressed sample

(Figure 10A); it appeared cyan when the cucumber seedling was

affected by low-temperature (Figure 10B); it gradually became

yellow-green, the main leaf veins appeared orange-red chilling

spots with the deepening of chilling injury (Figure 10C); it turned

to red, and some areas were identified as background areas because

the Fv/Fm values were less than 0.038 (Figure 10D). Spatial-

temporal heterogeneity in the three parameters clearly illustrated

the onset of cold sensitive symptoms in the vein and edge of leaves

that progressed toward the center of leaves. Further research could

be performed on the relationship between areas and classes of

chilling injury using ChlF images. According to the above results,

our model could be validated from MDA content and ChlF images.
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3.3.2 Changes in PSI and CEF
The effect of low temperature on the photosynthetic reaction

center of cucumber seedlings is not only reflected in PSII but also in

PSI, which may be more cold-sensitive and not easily rectified. CEF

is an important photoprotective mechanism that plays a crucial role

in regulating the distribution of light energy between photosystems,

balancing photoprotection, and facilitating the processes of

photochemical reactions. Consequently, it is essential to

investigate the changes in PSI and CEF under different chilling

injury classes based on the classification model. We further

analyzed the RLCs of Y(I), Y(ND), and Y(CEF). Figure 11 depicts

their distributions on different days at four low-temperature

treatments. The parameter values of cucumber leaves remained

stable at 0 d but changed rapidly when exposed to low temperatures.

Under low-temperature treatment, the photosynthetic assimilation

rate of cucumber seedlings decreased significantly and the
FIGURE 9

The relationship between the corresponding class of each sample and its environment.
B

C

D

EA

FIGURE 10

The MDA contents, Fv/Fm, Fm, and Fo false-color images of cucumber seedlings under different chilling injury classes. (A-D) represent the Fv/Fm, Fm,
and Fo false-color images and their values of cucumber seedling under chilling injury class 0, 1, 2, and 3, respectively. (E) represents the MDA
content of cucumber seedling under four chilling injury classes.
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photosynthetic electron transport chain became over-reduced, with

captured light energy exceeding the absorption capacity of the

electron transport chain. Excess light energy obstructed electron

transfer, resulting in severe photoinhibition in both PSII and PSI.

Thus, Y(I) and Y(CEF) decreased significantly. The high thermal

dissipation capacity on the donor side [Y(ND)] was maintained to

protect PSI from photoinhibition induced by strong light. Y(I) and

Y(ND) changed linearly at low light intensity and reached a

transition point at 420 to 610 mmol·m-2·s-1, and tended to

stabilize at 921 mmol·m-2·s-1, indicating that the photoinhibition

was deepened and Y(ND) was rapidly induced under strong light. Y

(ND) differed substantially under different light intensities due to

PSI ’s limitation on accepting additional electrons for

photosynthesis electron transfer on the donor side. Y(CEF) rose

steadily with increasing light intensity and reached the maximum at

2250 mmol·m-2·s-1. In light of this, four light intensities of the RLCs

(420, 610, 921, and 2250 mmol·m-2·s-1) were chosen to analyze the

changes in PSI and CEF of cucumber seedlings under different

chilling injury classes.

The distribution of Y(ND), Y(I), and Y(CEF) at each chilling

injury class under the four light intensities are shown in Figure 12.

The three parameters did vary between cucumber seedlings before

and after low-temperature treatment, albeit some of them were not

significant under different chilling injury classes. When the light

intensity of the RLCs was 420 mmol·m-2·s-1, compared to unstressed

samples, the Y(I) average values of slight, moderate, and severe

chilling injury samples decreased by 34.350%, 52.413%, 73.403%,

respectively; however, Y(ND) increased by 68.071%, 103.351%,

114.266%, respectively; and Y(CEF) decreased by 30.396%,

48.467%, 56.246%, respectively. When the light intensity of the

RLCs was 610 mmol·m-2·s-1, compared to unstressed samples, the Y

(I) average values of slight, moderate, and severe chilling injury

samples decreased by 43.890%, 56.033%, 74.053%, respectively; Y

(ND) increased by 61.601%, 84.931%, 91.302%, respectively; Y
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(CEF) decreased by 37.504%, 54.693%, 60.541%, respectively.

when the light intensity of the RLCs was 921 mmol·m-2·s-1,

compared to unstressed samples, the Y(I) average values of slight,

moderate, and severe chilling injury samples decreased by 49.223%,

59.058%, 73.935%, respectively; Y(ND) increased by 54.021%,

71.605%, 76.924%, respectively; Y(CEF) decreased by 32.881%,

56.478%, 60.590%, respectively. when the light intensity of the

RLCs was 2250 mmol·m-2·s-1, compared to unstressed samples, the

Y(I) average values of slight, moderate, and severe chilling injury

samples decreased by 45.708%, 61.155%, 75.435%, respectively; Y

(ND) increased by 34.094%, 46.387%, 51.869%, respectively; Y

(CEF) decreased by 31.599%, 59.590%, 67.052%, respectively. PSI

regulates low temperature effects through high heat dissipation,

thus, compared to unstressed samples, there is an obvious increase

in Y(ND) in samples with slight chilling injury. The distribution of

three parameters under different chilling injury classes indicated the

validity of our classification model.

Since Y(CEF) is calculated by Y(I), Y(II), and light intensity, a

positive correlation between Y(I) and Y(CEF) was consistently

observed, and the relatively smaller decrease in Y(CEF) suggested

that PSI is subjected to greater photoinhibition and damage

compared to PSII. Furthermore, with the increase in chilling

injury classes, the average value of Y(I) decreased by 43.293%,

57.165%, and 74.206%, respectively; the average value of Y(ND)

increased by 54.447%, 76.569%, and 83.590%, respectively; the

average value of Y(CEF) decreased by 33.094%, 54.807%, and

61.107%, respectively.

Low-temperature treatment could decrease the activity of PSI

and induce PSI non-photochemical energy dissipation because of

the donor-side limitation. When PSI is photo-inhibited, PSII is also

more susceptible to photoinhibition due to the reduction in CEF,

which aggravates the chilling injury and makes it difficult for plants

to recover. The PSI photoinhibition of cucumber seedlings would be

aggravated under strong light intensity or low-temperature
A B C

FIGURE 11

Changes of Y(I), Y(ND), and Y(CEF) under experimental conditions. (A) Y(I). (B) Y(ND). (C) Y(CEF).
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conditions (Huang et al., 2016). As a result, the Y(I) values of

cucumber seedlings with slight chilling injury and above were

generally small. The Y(ND) values remained at a high level after

low-temperature treatment, and there was no significant difference

between moderate and severe chilling injury, demonstrating the

donor side of PSI had a high thermal dissipation capacity (Lu et al.,

2020). The rates of CEF in cucumber seedlings with moderate and

severe chilling injury were largely inhibited, therefore, the Y(CEF)

values were not significant. Because of this, PSI is more fragile than

PSII and is more likely to be severely damaged when exposed to low

temperature. In addition, PSII has a more efficient and dynamic

recovery mechanism compared to PSI. Similarly, the PSI related

parameters and the MDA contents could distinguish whether

cucumber seedlings had been subjected to chilling injury to a

certain extent, but they were not reliable in categorizing the

chilling injury classes because their mechanisms of damage and

recovery involve complex physiological reactions. We recommend

that in future investigations, the PSII related parameters should be

used to evaluate the chilling injury, and the PSI related parameters

and biochemical parameters should be used to analyze the

chilling injury.
4 Conclusion

Our study presents a novel approach for detecting chilling stress

in cucumber seedlings by applying a classification model based on

ChlF technology and the UMAP-GA-FCM algorithm. We

investigated the relationship between ChlF parameters and the

low temperature conditions experienced by cucumber seedlings.

Through PCA, we identified some key ChlF parameters (Fv/Fm, Y

(NO), qP, and Fo) that were sensitive to chilling injury. Using the

UMAP method, we extracted four new features (Feature 1, Feature

2, Feature 3, and Feature 4) from 15 ChlF parameters, which were

then used as inputs for the classification model. Based on the

UMAP-GA-FCM algorithm, the samples were categorized into
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four chilling injury classes: unstressed state (level 0), slight

chilling injury (level 1), moderate chilling injury (level 2), and

severe chilling injury (level 3). The distinct differences observed in

ChlF images, PSI, CEF, and MDA contents among the different

classes of cucumber seedlings validated the rationality of our

proposed classification model. Our findings offer an expandable

and non-destructive method for assessing plant responses to stress

and the degree of damage incurred.

It should be noted that the experimental temperature range

used in this study was already the lowest temperature that

cucumbers could tolerate. Nonetheless, because there were a large

number of samples and time-consuming experiment steps, the

measurements were just once a day, making it impractical to

classify the severity of chilling injury in a more fine-grained

manner. In future research, we will consider enlarging the data

set and employing automatic measurement techniques to obtain the

chilling injury of cucumber seedlings at a more defined time node.

Meanwhile, we will also consider changes in enzymes such as SOD,

CAT, and POD under low temperature stress and the influence of

temperature recovery on these parameters. We aim to incorporate

more comprehensive data to enrich the classification model.
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