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Plant response to drought is an important yield-related trait under abiotic stress, but

the method for measuring and modeling plant responses in a time series has not

been fully established. The objective of this study was to develop a method to

measure and model plant response to irrigation changes using time-series

multispectral (MS) data. We evaluated 178 soybean (Glycine max (L.) Merr.)

accessions under three irrigation treatments at the Arid Land Research Center,

Tottori University, Japan in 2019, 2020 and 2021. The irrigation treatments included

W5: watering for 5 d followed by nowatering 5 d,W10: watering for 10 d followed by

no watering 10 d, D10: no watering for 10 d followed by watering 10 d, and D: no

watering. To capture the plant responses to irrigation changes, time-series MS data

were collected by unmanned aerial vehicle during the irrigation/non-irrigation

switch of each irrigation treatment. We built a random regression model (RRM) for

each of combination of treatment by year using the time-series MS data. To test the

accuracy of the information captured by RRM, we evaluated the coefficient of

variation (CV) of fresh shoot weight of all accessions under a total of nine different

drought conditions as an indicator of plant’s stability under drought stresses.We built

a genomic prediction model (MTRRM  model) using the genetic random regression

coefficients of RRM as secondary traits and evaluated the accuracy of each model

for predicting CV. In 2020 and 2021,the mean prediction accuracies of MTRRM  

models built in the changing irrigation treatments (r = 0.44 and 0.49, respectively)

were higher than that in the continuous drought treatment (r = 0.34 and 0.44,

respectively) in the same year. When the CV was predicted using the MTRRM  model

across 2020 and 2021 in the changing irrigation treatment, the mean prediction

accuracy (r = 0.46) was 42% higher than that of the simple genomic prediction

model (r =0.32). The results suggest that this RRMmethod using the time-series MS

data can effectively capture the genetic variation of plant response to drought.

KEYWORDS

plant response, irrigation change, drought stress, single environmental trial,
multispectral (MS), time-series, random regression model (RRM), Glycine max (L.) Merr.
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1 Introduction

Soybean (Glycine max (L.) Merr.) exhibits a 40% reduction in

yield due to drought (Specht et al., 1999), and genetic improvement

of drought tolerance in soybeans is needed. Plant responses to

drought stress are associated with drought tolerance (Pathan et al.,

2014; Ye et al., 2020), and phenotypic data can be collected non-

destructively from plants using high-throughput phenotyping

(HTP). The relationship between spectral reflectance collected by

hyperspectral (HS) and multispectral (MS) cameras and drought

stress has been reported in several studies (Winterhalter et al., 2011;

Bi et al., 2018; Wijewardana et al., 2019). Relationships between the

normalized difference vegetation index (NDVI), which is calculated

from the reflectance of near-infrared and red spectra, and the level

of wilting have been reported in soybeans (Zhou et al., 2020). In

soybeans, genotypes with slow-wilting traits exhibit high yield

under drought conditions (Du et al., 2009; Pathan et al., 2014).

Among several vegetation indices (VIs), normalized difference red-

edge (NDRE), calculated from the reflectance of red-edge and red

spectra, is reported to be the best vegetation index for detecting

drought stress (Zygielbaum et al., 2009). These plant responses to

irrigation changes are continuous, and time-series data can be

collected using HTP (Yang et al., 2017). New insights can be

obtained by capturing and analyzing time-series plant responses

to irrigation changes, which are collected using HTP (Moreira et al.,

2020). Chen et al. collected time-series changes in the digital volume

of barley calculated from plant images collected using HTP during

drought and recovery periods. The speed of recovery differs among

genotypes; the faster the speed of recovery, the larger the final

biomass (Chen et al., 2014).

Because the shape of time-series changes of biomass, leaf area

index, and plant height was an S-shaped curve, they were

commonly modeled using a logistic function (Setiyono et al.,

2008; Sun and Frelich, 2011; Paine et al., 2012). When the shape

of the curve or the function describing the curve is not obvious,

smooth functions, such as Legendre polynomials or spline

functions, can be used to model time series changes (Yang et al.,

2006; van Eeuwijk et al., 2019). The random regression model

(RRM) has been widely used for genetic analysis of time-series data

(Campbell et al., 2018; Oliveira et al., 2019; Freitas Moreira et al.,

2021). In the RRM, the covariance between each time point in a

multivariate mixed model is modeled using Legendre polynomials

and spline functions based on the assumption that time-series data

are changing continuously (Henderson, 1984). The RRM makes it

possible to describe time-series random genetic effects using a small

number of parameters, i.e., regression coefficients (Huisman et al.,

2002; Schaeffer, 2004). Estimated random regression coefficients

can be used in a genome-wide association study (GWAS) to search

for new genes (Campbell et al., 2019) or as secondary traits in a

multi-trait model (MTM) to increase the prediction accuracy of the

target trait (Sun et al., 2017).

With respect to drought tolerance, one of the important

breeding targets is “stability under drought stress”, which is a

phenotype that is stable under different drought levels (i.e., severe,
Frontiers in Plant Science 02
moderate, and mild) caused by different rainfall and water

availability in different years and locations (Pidgeon et al., 2006;

Kumar et al., 2012; Kumar et al., 2018; Torres and Henry, 2018;

Ayed et al., 2021). Coefficient of variation (CV) of phenotypes in a

target trait calculated frommulti-environmental trials has long been

used as an indicator for the stability over environments (Rao and

Willey, 1980; Mohammadi and Amri, 2008; Das et al., 2010;

Küchenmeister et al., 2012; Ray et al., 2015; Di Matteo et al.,

2016). ¨ CV is calculated by dividing the standard deviation of

phenotypes of the target trait by its mean, with smaller values

indicating greater stability (Francis and Kannenberg, 1978). To

evaluate the under-drought-stress stability with CV of the trait, field

trials must be conducted at various drought levels. Conducting

multi-environmental trials and evaluating the CVs for new

genotypes is, however, time-consuming and costly. Predicting CV

based on plant responses to irrigation changes may greatly reduce

the time and cost of the CV evaluation. Although the relationship

between the plant responses to irrigation changes and drought

tolerance has been reported (Chen et al., 2014; Marchetti et al.,

2019; Dodig et al., 2021), no studies have modeled plant response to

irrigation changes and, based on the model, evaluated its

relationship with plant’s stability under drought stress.

The objective of this study was to develop a method to measure

and model plant responses to changes in irrigation. The developed

method was applied to a single environmental trial with multiple

irrigation patterns, and its effectiveness was evaluated based on its

relationship to plant’s stability under drought stress. In this study,

we evaluated 178 soybean accessions under different irrigation

treatments in a 3-year trial. CV was calculated using fresh shoot

weights observed in nine combinations of treatments by years and

was used as an indicator of the plant’s stability under drought stress.

Time-series MS data for each year were modeled using RRMs, and

the calculated genetic random regression coefficients were used as

secondary traits for the genomic prediction of CV. If genomic

prediction models using the calculated genetic random regression

coefficients as secondary traits show higher prediction accuracy

than those of the simple genomic prediction model without

secondary traits, this suggests that time-series MS data are useful

in predicting CV. If the genomic prediction models using the time-

series MS data collected in the changing irrigation treatments show

higher prediction accuracy than those in the continuous drought

treatment, this suggests that time-series changes in MS data caused

by irrigation change are useful in evaluating plant’s stability under

drought stress. Additionally, we built three different prediction

models: (1) within each combination of treatments by years, (2)

using a small dataset of secondary traits, and (3) across years for the

same type of treatment. Prediction model 1 could be used to predict

the CV of novel genotypes within the same year. Prediction model 2

aimed to reduce the amount of data with secondary traits in the

training set and the cost of collecting secondary traits. Prediction

model 3 was intended to predict the CV of novel genotypes over the

years using a previously prepared prediction model. Based on these

three cases, we evaluated the effectiveness of the method for

modeling time-series MS data using RRM.
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2 Materials and methods

2.1 Experimental data

In this study, the accessions and experimental fields were the

same as in the previous study (Sakurai et al., 2022). The diverse

panel of 178 soybean accessions used were obtained from the gene

bank of the National Institute of Agrobiological Sciences, Tsukuba,

Japan (Table S1). These 178 accessions mainly consisted of Japanese

and global soybean minicore collections (Kaga et al., 2011; Kajiya-

Kanegae et al., 2021). A total of 178 soybean accessions were grown

in three years 2019, 2020, and 2021 in the same experimental field at

the Arid Land Research Center, Tottori University, Japan (35°32’ N

lat, 134°12’ E long, 14 m above sea level). The experimental field soil

was sandy and retained high water permeability. We used four types

of drought treatments: no watering (drought, Treatment D),
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watering for 5 d followed by no watering for 5 d (Treatment

W5), watering for 10 d followed by no watering for 10 d

(Treatment W10), and no watering for 10 d followed by watering

for 10 d (Treatment D10). Treatments D, W5, and D10 were

implemented in 2019. Treatments D, W10, and D10 were

implemented in 2020 and 2021 (Figure 1). Each treatment

consisted of two ridges. Each ridge consisted of two rows and one

irrigation tube, and microplots were placed parallel to each other on

either side of the tubes. The ridge height and width were 30 and 136

cm, respectively. For each treatment, 178 accessions were randomly

assigned to microplots per year. As each accession was assigned one

microplot per treatment, there were no replicates per treatment.

The reason for not taking replications but prioritizing the number

of genotypes is that previous studies have shown that genomic

predictive modeling and QTL analysis are better with a higher

number of genotypes, even if the number of replications is set to one
FIGURE 1

Experimental field overview and treatments in each year. W5: watering for 5 d followed by no watering for 5 d, W10: watering for 10 d followed by
no watering for 10 d, D10: no watering for 10 d followed by watering for 10 d, D: no watering treatment.
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(Knapp and Bridges, 1990; Lorenz, 2013). Four plants of each

accession were grown in each microplot. The distances between

the rows, microplots, and plants were 50, 80, and 20 cm, respectively

(Figure 2). Fertilizers (13, 6.0, 20, 11, 7.0 g/m2 115 of N, P, K, Mg,

and Ca, respectively) were applied to the field prior to sowing.

Sowing was performed on 10 July 2019, 8 July 2020, and 6 July 2021.

Two to three seeds were sown at each position, after which the

germinated seedlings were thinned to one per position 2 weeks

after sowing.

White mulch sheets (Tyvec; DuPont, Wilmington, USA) were

laid over the ridges to prevent rainwater infiltration into the soil and

control soil drought levels (Figure 1). A watering tube was installed

under the mulch sheets at the center of each row. The watering tube

(JKC Agro, Kumamoto, Japan) irrigated at a flow rate of 1.1 L/h m.

Watering was done for over 5 h daily (7:00–9:00, 12:00–14:00, and

16:00–17:00), starting the day after seedling thinning for

Treatments W5, W10, and D10. The irrigation cycle for each

treatment is shown in Figure S1. Soil moisture was measured

using a soil moisture meter (TDR-341F; Fujiwara Seisakusho,

Tokyo, Japan) at 10 sites for each treatment over 30 d. Except for

rainy days, no more than 3 d were allowed between soil moisture

measurements. Soil moisture in each treatment was 127 calculated

as the average of the treatments in the year (Figure S1). Days to
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flowering (DTF), which was defined as the date that 50% of plants

flowered in each microplot (Figure S2), were determined. To record

DTF, we visited each microplot every other day during the

flowering period. In each microplot of the four plants, two

centrally located plants were collected 62 d after sowing, and the

fresh aboveground weight of each plant was measured. The

phenotypic value of the fresh weight of each microplot was

calculated as the average of the two plants measured for each

microplot. The number of rainy days was 19, 12, and 22 during

the field experiment in 2019, 2020, and 2021, respectively.
2.2 Multispectral data collection
and processing

The MS image collection and image analysis referred to the

method employed by Sakurai et al. (Sakurai et al., 2022). In each

treatment of a year, MS images were collected using unmanned

aerial vehicles (UAVs). In 2019 and 2020, MS images (1.0 cm/pixel)

were collected using a four-eye MS camera (Xacti, Osaka, Japan)

mounted on a quadcopter UAV (DJI Matrice 100; DJI, Shenzhen,

China). The MS camera has four independent lenses and sensors

attached to different filters (MidOpt, Palatine, USA), including a
D

A B

C

FIGURE 2

The setup of the experimental field. (A) Ridge for each treatment. (B) Irrigation tube on each ridge. (C) White multi-sheet. (D) Planting pattern in
each ridge. Pictures (A–C) were used in Bui et al. (Bui et al., 2022). Permission to use these pictures was granted by the author.
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triple-bandpass filter (TB550/660/850) and a red-edge bandpass.

The TB550/660/850 can collect spectral intensities at 550 nm

(green), 660 nm (red), and 850 nm (near-infrared). Bi725 can

collect the spectral intensity at 725 nm (red-edge). The MS camera

was set for continuous data capture at two frames per second per

lens for a total of eight frames per second. The overlap and sidelap

rates were set to 90% and the flights were set to an altitude of 20 m.

In 2021, MS images (0.74 cm/pixel) were collected using DJI

Phantom 4 Multispectral (P4M; DJI, Shenzhen, China). P4M has

one RGB sensor and five spectral-band sensors at 450 nm (blue),

560 nm (green), 650 nm (red), 730 nm (red-edge), and 840 nm

(near-infrared). P4M continuously collected MS images every two

seconds during each flight. The overlap and sidelap rates were set to

75% and the flights were set to an altitude of 15 m.

Each spectral reflectance was calculated as the ratio of each

spectral intensity from a grey scale panel set in the experimental

field (Figure 1). All the flights were scheduled for 11:00-13:00 under

clear sky conditions. Images were collected four, six, and seven times

in 2019, 2020, and 2021, respectively (Figure 3). UAVsmeasurements

were scheduled before and after the irrigation treatment was switched

on W10 and D10 to capture the response of plants to changes in

irrigation. Orthomosaic images of each spectral reflectance were

obtained using a Pix4Dmapper (Pix4D, Prilly, Switzerland). Sixteen

ground control points (GCPs) were set up in the field annually. The

positions of the GCPs were measured using Aeropoints (Propeller,

Sydney, Australia). Using geolocation information from the GCPs,

792 microplots, each with a maximum of four plants, were segmented

from the orthomosaic images. Plants were segmented from an image
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of each microplot using the NDVI-based segmentation method to

extract and analyze the MS image data from only the plants. In this

experimental field, it was reported that the NDVI differed

significantly from the soil surface, white mulch sheets, and plants

in 2019 (Sakurai et al., 2022); thus, plants were segmented with the

NDVI threshold set to 0.15, as applied by Sakurai et al. (Sakurai et al.,

2022). These analyses (extraction of spectral reflectance, calculation

of NDVI, and NDVI-based segmentation) were performed using the

OpenCV v3.3.1, library in Python v3.6.8.

Based on the spectral reflectance values of each plant pixel

segmented in each microplot, we calculated two types of VIs: NDVI

(Price and Bausch, 1995; Zarate-Valdez et al., 2015) and NDRE

(Jorge et al., 2019). The equations for these VIs are listed in

Supplementary Table S2. As there were four plants in each

microplot, MS data were collected as a community of four plants

within each microplot without considering the overlap between

plants. Although we attempted to segment only the plant pixels,

background noise was not completely removed. In each microplot,

the average VI value may have been heavily influenced by the

background noise. To reduce this effect, the median of all the

segmented plant pixels was used as the representative value of each

microplot. The VIs were calculated using R v4.1.2.
2.3 Genotyping

The genome dataset was the same as that used by Sakurai et al.

(Sakurai et al., 2022). Whole-genome sequence data were obtained
FIGURE 3

The timings of unmanned aerial vehicle measurements in each year. Blue (respectively Orange) numbers indicate the number of days elapsed since
the start of irrigation (respectively drought) treatment. DAS: days after sowing, W5: watering for 5 d followed by no watering 5 d, W10: watering for
10 d followed by no watering 10 d, D10: no watering for 10 d followed by watering 10 d, D: no watering treatment.
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for all accessions (Kajiya-Kanegae et al., 2021). All accessions were

genotyped using an Illumina HiSeq X Ten or HiSeq 4000 (Illumina,

San Diego, USA), and 4,776,813 single-nucleotide polymorphisms

(SNPs) were identified. Among these SNPs, those that were

heterozygous or those in which >95% of the individuals had

missing data were excluded. Markers were also filtered for a

minor allele frequency<0.025, and missing data were imputed

based on the mean, after which they were filtered again for a

minor allele frequency<0.05. Finally, linkage disequilibrium was

computed only for SNP pairs for which the distance was<25,000

base pairs, and SNPs with linkage disequilibrium below 0.8 were

selected, resulting in 173,583 SNP markers. Using these SNP

markers, the additive numerator relationship matrix G was

estimated using the ‘calcGRM’ function in the ‘RAINBOWR’

package in R v0.1.25 (Hamazaki and Iwata, 2020).
2.4 Random regression model

The MS data were collected at four, six, and seven time points in

2019, 2020, and 2021, respectively. The ratio of flowering at the

timings of UAV measurements in each combination of treatments

was calculated using DTF data (Table S3). A time series of VI values

was modeled using an RRM (Mrode, 2014) for each treatment of

each year separately. The RRM takes the following form:

yit = bt +o
nr

k=0

fk(t)uik + eit (1)

where yit is the phenotypic value of each VI (NDVI or NDRE) at

the time point t   (t = 1,…, 4 in 2019, t = 1,…, 6 in 2020, t = 1,…, 7

in 2021) for genotype i   (i = 1,…, 178), bt is the fixed effect of each

time point, nr is the order of Legendre polynomial for the genetic

effects, fk(t) is the k th (k = 0,…, nr) Legendre polynomials for time

point t, uik is the genetic effect for the k th coefficients of Legendre

polynomials, and eit is the random residual effect. Vector uk =

(u1k,…, u178k)
T , u = (uT0 ,…, uTnr)

T follows the multivariate normal

(MVN) distribution, u ∼ MVN(0,Q⊗ I178) where Q is (nr + 1)�
(nr + 1) (co)variance matrix for the Legendre polynomials and I178
is 178� 178 identical matrix. Vector ek = (e1k,…, e178k)

T , e = (eT0 ,

…, eTnr)
T follows the MVN distribution e ∼ MVN(0, I178(nr+1)s 2

e ),

where I178(nr+1) is the identical matrix and s 2
e is the residual

variance. To determine the order of nr, we built RRMs with three

values of nr   (nr = 0, 1, 2) using the data collected in 2021, because

the number of time points was the largest in 2021 among other

years. The goodness of the model fit was assessed by computing

Akaike’s information criterion (AIC) (Akaike, 1974). The best value

of nr is selected based on the lowest AIC value. This RRM model

was built using the “ASREML” R package v4.1.0.154 (Gilmour

et al., 2015).
2.5 Coefficient of variation

We used CV (Francis and Kannenberg, 1978) of fresh weight as

an indicator of plant’s stability under drought stresses. CV was
Frontiers in Plant Science 06
calculated as follows:

CVi =
si

mi
� 100 (2)

where mi is the mean fresh weight in all nine combinations of

treatments by years for genotype i   (i = 1,…, 178), si is the standard

deviation of the fresh weight in the combinations. A low CV value

indicates high environmental stability. Before calculating mi and si,

fresh weight was scaled by min-max normalization, ranging from 0

to 1 for each combination of treatments by years. This is because

CVi is significantly affected by specific combinations of treatments

by years, which have large mean values.
2.6 Genomic heritability and
genomic prediction

Simple genomic prediction models were built to calculate the

genomic heritability (Litchfield et al., 2015) for three traits; fresh

weight in each combination of treatments by years, the genetic

random regression coefficient of RRMs, and CV. Also, a simple

genomic prediction model was built to predict the genetic value of

the CV. The simple genomic prediction model has the following

form:

yi = m + ui + ei (3)

where yi is the phenotypic value for each trait of genotype i   (i =

1,…, 178), m is the overall mean, ui is the genetic random effect, and

ei is the residual random effect. The vector u = (u1,…, u178)
T

follows the MVN distribution, u ∼ MVN(0,Gs 2
g ) where G is the

additive numerator relationship matrix, and s 2
g is the additive

genetic variance. Vector e = (e1,…, e178)
T follows the MVN

distribution e ∼ MVN(0, I178s 2
e ), where I178 is the identical

matrix and s 2
e is the residual variance. Based on the estimated

parameters of genetic and residual variances, genomic heritability

was calculated as h2 =
s 2
g

s 2
g +s 2

e
. The model was implemented using the

‘EMM.cpp’ function in the ‘RAINBOWR’ package in R v0.1.25

(Hamazaki and Iwata, 2020).
2.7 Multitrait model

For each combination of treatments by years, the MTM was

built as a Bayesian multivariate Gaussian model (Montesinos-López

et al., 2016; Lado et al., 2018) to predict the CV of a genotype. An

MTM using M secondary traits takes the following form:

yim = mm + uim + eim (4)

where yi0 is the phenotypic value of the CV for genotype i   (i =

1,…, 178); yim   (m = 1,…,M) is the phenotypic value of the

secondary traits; mm is the overall mean for trait m   (m = 0,…,M);

uim is the genetic random effect (m = 0,…,M); and eim is the

residual random effect (m = 0,…,M). Vector um = (u1m,…, u178m)
T

, u = (uT0 ,…, uTM)
T follows the MVN distribution, u ∼ MVN(0,S⊗

G) where S is (M + 1)� (M + 1) genetic (co)variance matrix across
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traits and G is the additive numerator relationship matrix. Vector

em = (e1m,…, e178m)
T , e = (eT0 ,…, eTM)

T f o l l o w s t h e M V N

distribution e ∼ MVN(0,R⊗ I178), where R is (M + 1)� (M + 1)

residual (co)variance matrix across traits and I178 is the

identical matrix.

We built two different types of MTMs: (1) an MTM directly

using the VI value at each time point as a secondary trait

(MTAll   model), and (2) an MTM using the genetic random

regression coefficients of RRM (Equation 1) as a secondary trait

(MTRRM  model).
2.8 Cross-validation cases

We assumed three cases using MTM (Figure 4) and compared

the prediction accuracies of MTAll   model and MTRRM  model. The

prediction accuracy was evaluated using a 10-fold cross-validation

with 10 replicates. Pearson’s correlations were calculated between

the observed and predicted CV values in each replicate, and the

average of these correlations was used as the prediction accuracy.

2.8.1 Case 1: within each combination of
treatments by years

In the first case (Case1), the whole data set in each combination

of treatments by years was divided into training and test sets.

Predicting the CV of the test set using secondary traits and genome-

wide marker data. Because an MTM was built in each combination

of treatments by years in Case1, the number of secondary traits in

an MTM need not be equal among years. In MTAll   model, M (the

number of secondary traits) was four, six, and seven in 2019, 2020,

and 2021, respectively. In MTRRM  model, M was equal to nr + 1

(the order in Equation 1), which was the same for all years.

2.8.2 Case 2: using a small dataset of
secondary traits

In the second case (Case2), we assumed a situation that CV had

already been calculated from past data. In MTM, secondary trait

data are usually collected for all genotypes in the training and test

sets. We have to conduct the field experiment and collect time-
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series MS data to build an MTM in our study. The small number of

genotypes measured for secondary traits in the training set resulted

in cost reduction. The proportions of data with secondary traits

were set to 10%, 25%, and 50%. First, the whole data set for each

combination of treatments by years was divided into training and

test sets. Second, genotypes with secondary trait data in the training

data were randomly selected five times for each proportion to

reduce the effect of specific datasets with secondary traits.

Therefore, the prediction accuracy was evaluated via a 10-fold

cross-validation with 50 replicates. Because an MTM was built in

each combination of treatments by years in Case2, the number of

secondary traits in an MTM need not be equal among years. In

MTAll   model, M was four, six, and seven in 2019, 2020, and 2021,

respectively. In MTRRM  model, M was equal to nr + 1 for all

the years.
2.8.3 Case 3: across years for the same
type of treatment

The third case (Case3) was intended to create a prediction

model using specific year data and predict CV using data from

another year. In this case, we predicted the CV of novel genotypes

over the years with their secondary trait data and genome-wide

marker data using a previously prepared prediction model built

using another year’s data. The prediction accuracy was calculated

via cross-year cross-validation using the same treatment. Because

Treatment W5 did not have yearly replications, this validation was

performed only for treatments W10, D10, and D.

In MTAll   model, M was only three because the measurement

timings differ among the years. We set the start of irrigation (and

drought) in the irrigation changing treatments as a reference point

and considered the time difference within a day as the same

measurement timing. Therefore, MS data on the dates after

sowing (DAS) of 52, 55, and 56 in 2019; 50, 52, and 55 in 2020;

and 52, 54, and 55 in 2021 were used in MTAll   model (Figure 3).

However, in MTRRM  model, all time point data were available for

modeling because time-series MS data were modeled with nr + 1

orders, and the genetic random regression coefficients were used as

secondary trait data. In MTRRM  model,M can be fixed at nr + 1 for

all years.
FIGURE 4

Image representation of three cases using multi-trait (MT) model. The dataset has 178 accessions (N=178). Case1: MT prediction within each
combination of treatments by years. Case2: MT prediction within combination of treatments by years with small data set of secondary traits. Case3:
MT prediction across years for the same type of treatment. CV, coefficient of variation; M, the number of secondary traits.
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In all three cases, to compare the prediction accuracy between

MTAll and MTRRM  models, we calculated the proportion of

improvement. The proportion of improvement is defined as follows:

POV( % ) =
PARRM − PAAll

PAAll

� �
� 100 (5)

where POV denotes the proportion of improvement, PAAll

denotes the prediction accuracy of MTAll   model, and PARRM

denotes the prediction accuracy of MTRRM  model.
3 Results

3.1 Relationship between coefficient of
variation and fresh weight

Fresh weight varied among the nine combinations of treatments

by years (Figure 5). As the fresh weight in Treatment D was smaller

than that in the other treatments each year, Treatment D was the

treatment with the most severe drought stress. For Treatment D10,

the fresh weight in 2019 was higher than that in the other two years.

Genomic heritability of fresh weight ranged from 0.18 to 0.64 and

that of CV was 0.35 (Table 1). Next, we calculated the phenotypic

correlation between CV and fresh weight for each combination of

treatments by years. No positive phenotypic correlation was

observed between the CV and fresh weight. In addition, the

phenotypic correlation between CV and fresh weight was negative
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in seven out of nine combinations of treatments by years. This result

indicates a positive relationship between fresh weight and the

stability under drought stress as assessed by CV and in the seven

combinations of treatments and years.
3.2 Model selection for random
regression model

We evaluated the goodness-of-fit of the RRMs using NDVI and

NDRE values for each treatment in 2021. Under all treatments, the

best model was based on NDVI values using linear Legendre

polynomials, that is, the order of nr was 1 (Table 2). The model

with nr = 0 exhibited the best NDRE values under all treatments

(Table S4). This result indicates that only the intercept varied among

genotypes in the RRM of NDRE values. Therefore, we employed the

RRM of NDVI using nr = 1 in later analyses. We built each RRM

(Equation 1) using the time-series NDVI data for 2019, 2020, and

2021. We then calculated the genetic effect for the intercept and 1st

coefficients of the Legendre polynomials (L0 and L1) for each year.
3.3 Genetic correlation and genomic
heritability of secondary traits

We estimated the genetic correlations between CV and L0 and

CV and L1, and estimated the genomic heritability of L0, L1, and
FIGURE 5

Boxplot of observed fresh weights of 178 soybean accessions in each combination of treatments by years. W5: watering for 5 d followed by no
watering 5 d, W10: watering for 10 d followed by no watering 10 d, D10: no watering for 10 d followed by watering 10 d, D: no watering treatment.
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CV. In seven out of nine combinations of treatments by years,

negative genetic correlations between CV and L0 or CV and L1 were

observed (Table 3). L0 and L1 values for each genotype were

associated with the intercepts and slopes of the time-series NDVI

values. Therefore, these negative genetic correlations indicate that a

low CV is associated with large intercepts and slopes of the time-

series NDVI values. In 2019, there were no obvious patterns in

genetic correlations or genomic heritability among the treatments

(Table 3). However, in 2020, treatments W10 and D10 showed

higher genetic correlations and genomic heritability than Treatment

D for all the traits. In 2021, the genetic correlation of L0 was -0.2 (p<

0.01) in Treatment D, whereas W10 and D10 showed higher genetic

correlations of -0.4 (p< 0.001) and -0.51 (p< 0.001), respectively.
Frontiers in Plant Science 09
3.4 Case 1: within each combination of
treatments by years

In Case1, we used CV, which was calculated from the fresh

weight collected in nine combinations of treatments by years, as the

same target trait and built MTRRM  model andMTAll   model in each

combination of treatments by years. The prediction accuracy of the

simple genomic prediction model was 0.32. The prediction accuracy

of MTRRM  model was higher than that of the simple genomic

prediction model for all year treatments (Figure 6A). Three out of

nine MTAll   models evaluating plant’s stability under drought. We

focused on the MTRRM  model. In 2019, there was no difference in

the prediction accuracy among the treatments in MTRRM  model.

However, the prediction accuracies of treatments W10 and D10 in

2020 were 25% and 30% higher, respectively than those of

Treatment D in 2020. In addition, the prediction accuracies of

treatments W10 and D10 in 2021 were higher by 14% and 11%,

respectively than those of Treatment D in 2021. These results

indicate that the time-series MS data collected during the

treatment, which changed the irrigation pattern, were more useful

than those in the continuous drought treatment for predicting the

CV in 2020 and 2021. To evaluate the importance of using RRMs,

we compared MTRRM  model and MTAll   model. In the seven

combinations of treatments by years, the prediction accuracies of

MTRRM  model were h igher than those of MTAll   model

(Figure 6C). In particular, the proportion of improvement was

14% for Treatment W10 in 2021.
3.5 Case 2: using a small dataset of
secondary traits

To reduce the cost and labor required to create the prediction

model, we changed the proportion of genotypes collected as

secondary trait data in the training set. In 2020 and 2021, except
TABLE 2 The goodness-of-fit of random regression models (RRMs) with the normalized difference vegetation index (NDVI) values in 2021.

Treatment nr Loglik AIC p

W10 0 527.2572655 -1038.514531 8

1 739.1732966 -1458.346593 10

2 459.0197275 -892.0394551 13

D10 0 409.6136183 -803.2272366 8

1 553.0469996 -1086.093999 10

2 256.6404682 -487.2809363 13

D 0 704.2429918 -1392.485984 8

1 725.6443146 -1431.288629 10

2 458.2977954 -890.5955909 13
nr, the order of Legendre polynomial for the genetic effect; Loglik, log likelihood; AIC, Akaike’s information criterion; p, the number of parameters; W10, watering for 10 d followed by no
watering 10 d; D10, no watering for 10 d followed by watering 10 d; D, no watering treatment. The best model in each treatment is bolded based on AIC.
TABLE 1 Genomic heritability of fresh weight in each combination of
treatments by years, coefficient of variation (CV) calculated over the nine
combinations, and phenotypic correlation (r) between fresh weight in
each combination of treatments by years and the CV.

Year Treatment/Index h2 r

2019 W5 0.41 -0.12

D10 0.23 -0.12

D 0.23 -0.35***

2020 W10 0.64 -0.40***

D10 0.33 -0.41***

D 0.24 -0.42***

2021 W10 0.18 -0.44***

D10 0.40 -0.45***

D 0.43 -0.43***

CV 0.35
h2: genomic heritability, r: phenotypic correlation between fresh weight and coefficient of
variation (CV), W5: watering for 5 d followed by no watering 5 d, W10: watering for 10 d
followed by no watering 10 d, D10: no watering for 10 d followed by watering 10 d, D: no
watering treatment, ***: significant at p< 0.001.
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for Treatment D in 2020, the prediction accuracy for all

combinations of treatments by years increased as the proportion

of genotypes with secondary trait data increased (Figure 7). In

Treatment D10 of 2020 and 2021, even when the proportions of

data with secondary traits were 10%, the prediction accuracies of

MTRRM  models were 0.40 and 0.42. These prediction accuracies

were 23% and 30% higher than those of the simple genomic

prediction model, respectively. Moreover, there was no obvious

pattern in the proportion of improvement (Figure S3).
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3.6 Case 3: across years for the same type
of treatment

In Case3, we evaluated the across-year predictions for each

treatment. In all three treatments, MTRRM  models and MTAll  

models outperformed the simple genomic prediction model

(Figures 8A, B). In cross-validations with the 2020 and 2021

datasets, the prediction accuracy of MTRRM  models for

Treatments W10 and D10 were on average 42% and 42% higher
A B C

FIGURE 6

Prediction accuracy of MTRRM  model and MTAll  model, and the comparison of MTRRM  model and MTAll  model in Case1. (A, B) Prediction accuracy
of MTRRM  model and MTAll  model within each combination of treatments by years. Error bars represent standard error over 10 replicate cross-
validations. A dashed line represents the prediction accuracy of the simple genomic prediction model. (C) The proportion of improvement calculated
using the prediction accuracy of MTRRM  model and MTAll  model. W5: watering for 5 d followed by no watering 5 d, W10: watering for 10 d followed
by no watering 10 d, D10: no watering for 10 d followed by watering 10 d, D: no watering treatment.
TABLE 3 Genetic correlation between each parameter calculated in random regression models (RRMs) and coefficient of variation, and genomic
heritability of genetic random regression coefficient of RRMs.

Year Trait Index W5 W10 D10 D

2019 L0 rg -0.26*** -0.03 -0.16*

h2 0.59 0.33 0.1

L1 rg 0.08 -0.03 -0.17*

h2 0.79 0.54 0.31

2020 L0 rg -0.32*** -0.4*** -0.15

h2 0.41 0.29 0.21

L1 rg -0.22** -0.33*** -0.03

h2 0.79 0.43 0.1

2021 L0 rg -0.4*** -0.51*** -0.2**

h2 0.11 0.39 0.38

L1 rg -0.35*** -0.31*** -0.34***

h2 0.7 0.67 0.29
L0: genetic effect for the intercept of Legendre polynomials in RRM, L1: the genetic effect for the 1st coefficient of Legendre polynomials in RRM, rg genetic correlation, h
2: genomic heritability,

W5: watering for 5 d followed by no watering 5 d, W10: watering for 10 d followed by no watering 10 d, D10: no watering for 10 d followed by watering 10 d, D: no watering treatment, *, **, ***:
significant at p< 0.05, 0.01, and, 0.001, respectively.
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FIGURE 7

Prediction accuracy of MTRRM  model when a specific proportion of genotypes in the training set did not have secondary trait data. Dashed line
represents the prediction accuracy of simple genomic prediction model. Error bars represent standard error over 50 replicate cross-validations. W5:
watering for 5 d followed by no watering 5 d, W10: watering for 10 d followed by no watering 10 d, D10: no watering for 10 d followed by watering
10 d, D: no watering treatment.
A B C

FIGURE 8

Prediction accuracy of MTRRM  model and MTAll  model, and the proportion of improvement in Case3. Item names, such as 2019/2020, represent the
training year and test year. (A, B) Prediction accuracy of rmMTRRM  model and MTAll  model among years in the same treatment. Dashed line
represents the prediction accuracy of simple genomic prediction model. Error bars represent standard error over 10 replicate cross-validations.
(C) The proportion of improvement in each combination. W5: watering for 5 d followed by no watering 5 d, W10: watering for 10 d followed by no
watering 10 d, D10: no watering for 10 d followed by watering 10 d, D: no watering treatment.
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than that of the simple genomic prediction model, respectively. The

proportion of improvement in all MTRRM  models was greater than

zero (Figure 8C). The proportion of improvement was, on average,

11, 6, and 6% for treatments W10, D10, and D, respectively. This

result indicates that the time-series MS data should be modeled

using RRM for across-year predictions.
4 Discussion

4.1 Usefulness of MS data for predicting
plant’s stability under drought stress

In this study, we compared the prediction accuracy of a simple

genomic prediction model and a genomic prediction model using

time-series NDVI values as secondary traits to predict the CV

(Figures 6–8). In soybeans, a relationship between NDVI and

drought tolerance has been reported (Zhou et al., 2020). Except

for Case2 in 2019, all genomic prediction models using time-series

NDVI values as a secondary trait showed higher prediction

accuracy than a simple genomic prediction model (Figures 6–8).

These results suggest that time-series MS data are useful for

predicting the CV.

In 2020 and 2021, the prediction accuracy of treatments W10

and D10, which changed irrigation treatments, was higher than that

of Treatment D, which was the no watering treatment, in the same

year (Figures 6, 7). A relationship between plant responses to

changes in irrigation and drought tolerance has been reported. In

soybeans, slow wilting resulted in drought tolerance (Fletcher et al.,

2007; Pathan et al., 2014; Valliyodan et al., 2017; Ye et al., 2020) and

a relationship between slow wilting and NDVI values under

drought is observed (Zhou et al., 2020). Additionally, the speed of

recovery from drought stress is associated with drought tolerance in

several crop species (Hayano-Kanashiro et al., 2009; Kränzlein et al.,

2021), including soybean (Hossain et al., 2014). However, no study

has evaluated the plant’s stability under drought stress using time-

series NDVI changes caused by changes in irrigation. This result

indicates that plant responses to irrigation changes are useful for

evaluating plant’s stability under drought stress.

In this study, the overall prediction accuracy of CV was lower

in 2019 than that in the other years. There are two possible reasons

for this result. One possible reason is that NDVI was measured in

2019 (four times) less frequently than in 2020 (six times) and 2021

(seven times). The small number of measurements may not

capture the time-series changes in NDVI well. In addition, we

collected NDVI values on the first day after the irrigation change

in Treatment D10 in 2019 (Figure 3). The second possible reason

is the weather conditions. In 2020 and 2021, the soil moisture

content increased during the irrigation period and decreased

during the non-irrigation period (Figure S1). In contrast, in

2019, treatments W5 and D10 showed the opposite trend of

increasing soil moisture content during the last non-irrigation

period. In 2019, it rained for 6 out of 10 days from 25 August to 3

September during the period of no irrigation in Treatment D10.

The lack of drought stress during this period might have resulted
Frontiers in Plant Science 12
in a failure to capture the plant response to irrigation change and

low prediction accuracy in 2019.
4.2 The advantage of using
random regression

In Case1, MTRRM model, which modeled time-series NDVI

data and used L0 and L1 (genetic random regression coefficients) as

secondary traits in the MTM, generally showed a higher prediction

accuracy than MTAll model, which treated time-series NDVI data

as independent traits and used each day’s NDVI value as a

secondary trait in the MTM (Figure 6). It was reported that the

RRM is superior to the MTM in modeling time-series data (Kranis

et al., 2007; Mota et al., 2013). In addition, there are problems with

over-parameterization and high computational requirements when

treating time-series data as independent traits and constructing

MTMs (Misztal et al., 2000; Oh and See, 2008; Moreira et al., 2020).

In terms of calculation efficiency, RRM is useful for modeling time-

series data.

Campbell et al. (Campbell et al., 2018) built RRM using time-

series projected shoot area (PSA) data for 179 rice lines obtained in

their own study. Using the built-in RRM (Campbell et al., 2018),

Campbell predicted time-series changes in PSA for new 178 rice

lines collected in a different year (Campbell et al., 2017). This result

suggests that RRM is useful for predictions across years. In our

study, MTRRM model is superior to MTAll model in terms of

prediction across years in Case3 (Figure 8). MTRRM model can

build a model using all-day data of NDVI value in each year,

whereas MTAll model can only use dates that are common across

all years. This difference in the amount of data may be the reason for

the difference in prediction accuracy. When using MTAll model for

predictions across years, it is necessary to match the data

measurement dates. It was difficult to collect data on a desired

date because of weather conditions or equipment problems. At this

point, the RRM can be built without considering the measurement

date and number of days of data measurement.
4.3 Utility for breeding

Environmental stability, also, the stability of phenotypes over

environments, is an important target in breeding (Tollenaar and

Lee, 2002; Sabaghnia et al., 2008; Mickelbart et al., 2015; Blum,

2018). The CV of phenotypic values over environments can be a

good indicator for selecting stable genotypes. To evaluate

genotypes’ stability across environments, it is necessary to

conduct multi-environmental experiments which require high

costs and labor (Fan et al., 2007; Karimizadeh et al., 2013; Akter

et al., 2015; Lal et al., 2022). In this study, we proposed a method to

measure the response to changes in irrigation by remote sensing

and model it with RRM at a single location in multiple years. We

found that genetic variation captured by the RRM was associated

with plant’s stability under drought stress, even with only one

location in three years. The results of Case1 validation suggest that
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genetic variation captured by measuring and modeling plant

responses to irrigation in a single environment changes can

predict the stability over nine environments (Figure 6). The

results of Case2 validation indicate that even when 10% of

genotypes in a training set had secondary trait data, MTRRM

model was more accurate than a simple genomic prediction

model in treatments W10 and D10 in 2020 and 2021 (Figure 7).

Therefore, it is possible to reduce the number of genotypes

measured for secondary traits in the training set. The results of

Case3 validation also suggest that we can predict the plant’s stability

across years (Figure 8). Once a prediction model is constructed, the

stability of unknown genotypes can be predicted based on time-

series NDVI data. The results of Case2 and Case3 validations also

demonstrate the flexibility of MTRRMmodel. When the stability of

unknown genotypes under drought is evaluated in a single

environment, it greatly reduces the time and cost, and thus

streamlines breeding schemes. When calculating CVs,

experimental designs with repetitions per treatment and year

combination are usually used (Mohammadi and Amri, 2008; Das

et al., 2010; Küchenmeister et al., 2012; Di Matteo et al., 2016). ¨ In

this study, priority was given to increasing the number of genotypes

over replications. This is because it is known that maximizing the

number of genotypes (even with one replication) is the most

effective when the number of plots is limited for QTL analysis

and genomic prediction (Knapp and Bridges, 1990; Lorenz, 2013).

Given the lack of replications and the small size of microplots, the

fresh weight is probably influenced by non-genetic factors.

However, the prediction accuracy of CV was improved by using

information obtained from the methods for measuring and

modeling changes in time-series NDVI data. Therefore, the

effectiveness of the developed method was confirmed. In order to

apply these measuring and modeling methods in breeding selection,

it is necessary to associate the information obtained from the

developed methods with drought tolerance-related traits and even

yield-related traits in expanded field trials.

In this study, we developed a method to measure and model

plant responses to irrigation changes and confirmed their

association with plant’s stability under drought stress. Drone-

based HTP allows us to capture time-series plant responses to

environmental and irrigation changes (Chen et al., 2014; Dodig

et al., 2021), and measuring and modeling plant responses to these

environmental changes will provide important insights that have

not yet been obtained previously (Arnold et al., 2019; Moreira et al.,

2020). This developed method will contribute to the study of abiotic

stress and genetic improvement of soybean.
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