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Ligand recognition and signal
transduction by lectin receptor-
like kinases in plant immunity

Lu Liu, Jun Liu and Ning Xu*

State Key Laboratory of Agrobiotechnology and MOA Key Laboratory for Monitoring and Green
Management of Crop Pests, China Agricultural University, Beijing, China
Lectin receptor-like kinases (LecRKs) locate on the cell membrane and play

diverse roles in perceiving environmental factors in higher plants. Studies have

demonstrated that LecRKs are involved in plant development and response to

abiotic and biotic stresses. In this review, we summarize the identified ligands of

LecRKs in Arabidopsis, including extracellular purine (eATP), extracellular pyridine

(eNAD+), extracellular NAD+ phosphate (eNADP+) and extracellular fatty acids

(such as 3-hydroxydecanoic acid). We also discussed the posttranslational

modification of these receptors in plant innate immunity and the perspectives

of future research on plant LecRKs.
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Introduction

Plants constantly face challenges from bacteria, fungi, viruses, oomycetes, and

nematodes. To fight against these threats, plants have evolved a sophisticated innate

immune system. Conserved pathogen-/damage-/microbe-/herbivore-associated molecular

patterns (PAMPs/DAMPs/MAMPs/HAMPs) are recognized by cell surface-localized

pattern recognition receptors (PRRs), leading to the pattern-triggered immunity (PTI)

responses (Jones and Dangl, 2006; Tanaka and Heil, 2021; Snoeck et al., 2022). Pathogens

can secrete virulence effectors into plant cells through delivery devices, such as the type III

secretion system (T3SS) in bacteria, haustoria in fungi and oomycetes, and stylets in aphids

and nematodes, thereby inhibiting PTI responses and promoting infection (Dangl et al.,

2013). To counteract the infection, the intracellular nucleotide-binding leucine-rich repeat

receptors (NLRs) of plants recognize the cognate pathogen effectors, in many cases

triggering a strong immune response, such as hypersensitive response (HR), referring to

effector-triggered immunity (ETI) (Jones and Dangl, 2006). Recently, studies have

demonstrated that PTI and ETI are not two independent immune pathways. In contrast,

ETI enhances PTI immune response, and PTI, on the other hand, reinforces ETI-induced

cell death (Ngou et al., 2021; Tian et al., 2021; Ngou et al., 2022).

PRRs, a group of cell surface receptors, consist of two different types of cell surface-

localized proteins, receptor-like kinases (RLKs) and receptor-like proteins (RLPs) (Couto
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and Zipfel, 2016). RLKs possess three functional domains, including

an N-terminal variable ligand-binding ectodomain, a single-pass

transmembrane domain, and an intracellular kinase domain

(Walker, 1994). Unlike RLKs, RLPs lack the intracellular kinase

domain but have a short cytosolic tail (Jeong et al., 1999). The

typical extracellular ligand-binding domains of RLKs and RLPs

include the leucine-rich repeat (LRR), lysine motif (LysM), lectin

domain, and an epidermal growth factor (EGF)-like domain.

However, some RLKs, such as BAK1 and SERK1, lack functional

extracellular domains. Instead, they have the functional kinase

domains and act as coreceptors or scaffold proteins for the typical

RLKs or RLPs that possess extracellular domains (Li et al., 2002;

Stegmann et al., 2017; Liang and Zhou, 2018).

Lectin RLK (LecRK) is a large subfamily of RLKs and its N-

terminal lectin domain reversibly binds to carbohydrates

(Bouwmeester and Govers, 2009). Based on the characteristics of

extracellular lectin domains, LecRKs are classified into three types:

G-type, L-type, and C-type lectins (Vaid et al., 2013). The number

of LecRKs varies dramatically among different species (Table 1). G-

type LecRKs contain an a-mannose binding bulb lectin domain, an

S-locus glycoprotein domain (SLG), and a PAN and/or Epidermal

Growth Factor (EGF) domain (Vaid et al., 2013; Sun et al., 2020). L-

type LecRKs contain a legume-lectin domain with a typical b-
sandwich structure (Bellande et al., 2017). In plants, the number of

C-type LecRKs, which are predicted to be calcium-dependent

kinases, is quite small and their function remains unclear (Sun

et al., 2020). The central transmembrane domain of LecRKs usually

consists of approximately 18-25 amino acid residues. Kinase

domains generally consist of 250-300 amino acid residues and

contain various conserved phosphorylation sites that are

responsible for transducing external signals to downstream

pathways (Morillo and Tax, 2006).

Several excellent reviews have described the structures and

functions of LecRKs in various abiotic and biotic processes, and
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in the process of plant development (Vaid et al., 2012; Singh and

Zimmerli, 2013; Vaid et al., 2013; Sun et al., 2020). Wang et al.

performed a systematic functional analysis to evaluate phenotypic

changes in Arabidopsis LecRK T-DNA insertion lines in response to

pathogen infection and abiotic stress treatment (Wang et al., 2014).

We summarized the recent research progress of LecRKs in Table 2.

In this review, we will mainly focus on summarizing the latest

findings in ligand recognition, posttranslational modification, and

natural variation of LecRKs.
Ligand perception by LecRKs

LecRKs are widely distributed in plant kingdoms, but

interestingly they have no orthologs in yeast and human genomes

(Navarro-Gochicoa et al., 2003). L-type LecRKs have a conserved

hydrophobic cavity that can bind hydrophobic ligands like

monosaccharides (glucose/fucose/mannose) or polypeptides, while

G-type LecRKs exhibit a strong high binding affinity to a-D
mannose. Due to the diversity of LecRKs and their target

carbohydrates, it is difficult to identify the ligand-receptor

interaction between them (Bellande et al., 2017). To date, only

four ligands (eATP, eNAD+, eNADP+, and 3-OH-C10:0) of LecRKs

have been identified.
ATP

ATP is not only an essential energy currency in nature, but also

acts as an enzyme cofactor. Moreover, ATP is released into the

extracellular matrix after wounding or other environmental

stimulation (Kim et al., 2006; Khakh and Burnstock, 2009; Dark

et al., 2011; Ramachandran et al., 2019). At present, eATP signaling

has been widely studied in animals. Most mammals contain two
TABLE 1 The number of LecRK genes in plant.

Organism L-type G-type C-type Total Reference

Arabidopsis thaliana 45 40 1 86 (Bouwmeester and Govers, 2009)

Cerasus humilis 43 125 2 170 (Han et al., 2021)

Glycine max 64 123 2 189 (Liu et al., 2018b)

Oryza sativa 72 100 1 173 (Vaid et al., 2012)

Prunus avium 50 110 1 161 (Sun et al., 2022)

Populus trichocarpa 50 180 1 231 (Yang et al., 2016)

Setaria italica 53 59 1 113 (Zhao et al., 2016)

Solanum lycopersicum 22 38 1 61 (Wang et al., 2015c)

Solanum tuberosum 26 85 2 113 (Zhang et al., 2020a)

Saccharum officinarum 160 266 3 429 (Wang et al., 2021)

Triticum aestivum 84 177 2 263 (Shumayla et al., 2016)

Vigna radiata 34 38 1 73 (Singh et al., 2021)

Zea mays 48 46 1 95 (Yang et al., 2016)
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TABLE 2 The function of LecRKs in different plants.

Name Type Organism Ligand Function References

Biotic processes

LecRK-I.5 L Arabidopsis
thaliana

eATP Recoginze eATP and defense against Pseudomonas
syringae

(Pham et al., 2020)

LecRK-I.8 L Arabidopsis
thaliana

eNAD+ Recoginze eNAD+ and Perceive Pieris brassicae eggs (Wang et al., 2017; Gouhier-Darimont et al., 2019)

LecRK-I.9 L Arabidopsis
thaliana

eATP Recoginze eATP and enhance plant resistance against
multiple pathogens

(Bouwmeester et al., 2014; Choi et al., 2014a;
Balagué et al., 2017; Jewell et al., 2022)

LecRK-V.5 L Arabidopsis
thaliana

– Response to Pseudomonas syringae pv. tomato DC3000
and Pectobacterium carotovorum

(Arnaud et al., 2012; Desclos-Theveniau et al.,
2012)

LecRK-VI.2 L Arabidopsis
thaliana

eNAD+ and
NADP+

Recoginze eNAD+ and NADP+, Resistance against
Pseudomonas syringae

(Singh et al., 2012; Wang et al., 2019)

LecRK-IX.2 L Arabidopsis
thaliana

– Defense against Phytophtora and Pseudomonas syringae (Wang et al., 2015b; Luo et al., 2017; Xu et al.,
2020)

LecRK-V L Haynaldia
villosa

– Defense against powdery mildew (Wang et al., 2018)

SlLecRK1 L Solanum
lycopersicum

– Increase the tomato resistance against Fusarium
oxysporum f. sp. radicis-lycopersici

(Yue et al., 2022)

StLecRK-
IV.1

L Solanum
tuberosum

– Negatively regulate plant resistance to Phytophthora
infestans

(Guo et al., 2022)

LORE G Arabidopsis
thaliana

3-OH-C10:0 Recoginze 3-OH-C10:0 and interact with effector
HopAO1

(Ranf et al., 2015; Kutschera et al., 2019; Luo
et al., 2020)

Pi-d2 G Oryza sativa – Resistance against Magnaporthe grisea strain ZB15 (Chen et al., 2006)

PtLecRK L Sphaerulina
musiva

Resistance against Sphaerulina musiva (Muchero et al., 2018)

PtLecRLK1 G Populus
trichocarpa

– Participate in Populus–Laccaria bicolor symbiotic
interactions

(Labbé et al., 2019)

Abiotic processes

LecRK-
VII.1

L Arabidopsis
thaliana

– Regulate plant tolerance to salt stress (Zhang et al., 2016)

LecRK-b2 L Arabidopsis
thaliana

– Response to salt and osmotic stress (Deng et al., 2009)

PnLecRLK1 L Pohlia nutans – Enhance Arabidopsis chilling-stress tolerance (Liu et al., 2016)

GmLecRLK G Glycine max – Improve the tolerance of soybean to salt stress (Zhang et al., 2022)

Development

LecRK-
VIII.2

L Arabidopsis
thaliana

– Regulate seed yield and source–sink relationship (Xiao et al., 2021)

AP1 L Oryza sativa – Promote starch accumulation during rice pollen
maturation

(He et al., 2021)

OsDAF1 L Oryza sativa – Regulate pollen aperture patterning formation (Zhang et al., 2020b)

OsLecRK‐
S.7

L Oryza sativa – Regulate pollen development and male fertility (Peng et al., 2020)

TaLecRK-
IV.1

L Triticum
aestivum

– Promote wheat height (Saidou and Zhang, 2022)

OslecRK G Oryza sativa – Promote seed germination and enhance seed vigor (Cheng et al., 2013)

SlG-
LecRK-II.9

G Solanum
lycopersicum

– Promote pollen grain development (Micol-Ponce et al., 2023)
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families of ATP receptors, seven P2X receptors and eight P2Y

receptors. P2X receptors are ion channels on the plasma membrane

and are activated by the binding of eATP (Khakh and North, 2006).

P2Y receptors are a family of metabotropic receptors that couple to

intracellular second-messenger systems through heteromeric G-

proteins (Van Der Giet et al., 2002). These receptors have diverse

temporal and spatial expression patterns and respond differently to

individual nucleotide ligands (Lustig et al., 1993; Webb et al., 1993;

Ralevic and Burnstock, 1998; Abbracchio et al., 2006).

In contrast to mammals, the function of eATP in plants is

poorly understood. During growth and in response to various biotic

and abiotic stimuli, ATP can be released into the extracellular
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matrix. eATP plays fundamental roles in mediating plant defense

against pathogens and herbivores, such as the production of reactive

oxygen species (ROS), elevation of cellular Ca2+ concentration,

activation of mitogen-activated protein kinase (MPK)

phosphorylation, and indolic glucosinolate pathway (Figure 1)

(Demidchik et al., 2003; Roux and Steinebrunner, 2007; Tanaka

et al., 2010; Liu et al., 2012; Feng et al., 2015; Cho et al., 2017; Jewell

et al., 2022). However, plant genomes do not contain potential

orthologs of animal P2X and P2Y receptors (Fountain et al., 2008;

Tanaka et al., 2010). Nevertheless, eATP did induce NADPH

oxidase-mediated accumulation of superoxide (O2
-), indicating

that plants must possess a receptor for eATP (Song et al., 2006).
FIGURE 1

Functions of LecRKs in stress responses of plants. LecRKs are divided into three types, L-type, G-type and C-type, based on the extracellular lectin
domain in plants. LecRKs can recognize specific extracellular signaling molecules and transduce signals into the cell, thus activating the plant immune
response. (1) P2K1 (LecRK-I.9) perceives eATP and then phosphorylates RbohD and MPK3/6, causing increased production of ROS and stomatal closure
to fight against pathogen infection. (2) In addition, P2K1 directly interacts with and phosphorylates PATs to activate their S-acylation ability. Activated
PATs S-acylate P2K1 to inhibit the immune response and protect plant growth. (3) In the presence of eATP, P2K1 interacts with and phosphorylates ILK5.
Then, ILK5 interacts with and phosphorylates the MKK5, leading to an activated immune response. (4) Upon eATP treatment, P2K1 and P2K2 (LecRK-I.5)
interact with each other and may function as part of a heteromeric complex. (5) LecRK-I.8 can perceive eNAD+ and activate the plant immune response.
(6) LecRK-VI.2 is a potential receptor for eNAD+ and eNADP+. Furthermore, LecRK-VI.2/BAK1 complex mediates systemic acquired resistance that is
triggered by eNAD+. (7) G-type LecRK LONE is the receptor of 3-OH-C10:0. After perception of 3-OH-C10:0, the phosphorylation level of LORE Y600 is
elevated and trans-phosphorylates PBL34 at T306 and T310. Phosphorylated PBL34 dissociates from LORE, activating immune response. However, the
bacterial effector HopAO1 targets LORE Y600 and dephosphorylates the tyrosine-phosphorylated Y600 to suppress immune response. (8) When
perceiving pathogen infection, LecRK-IX.2 recruits CPKs to phosphorylate RbohD, resulting in PTI activation, ROS production, and the subsequent ROS
triggered SA accumulation. (9) Moreover, the bacterial effector AvrPtoB ubiquitinates LecRK-IX.2 to degrade LecRK-IX.2, thus suppressing LecRK-IX.2-
mediated PTI. However, LecRK-IX.2 phosphorylates AvrPtoB at S335 which leads to AvrPtoB dimer dissociation and reduces its virulence.
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Until 2014, the first eATP receptor, the DOes not Respond to

Nucleotides 1 (DORN1), was identified in Arabidopsis by forward

genetic screening approach (Choi et al., 2014a). DORN1 is an L-

type lectin receptor kinase that binds ATP with high affinity

(dissociation constant of 45.7 ± 3.1 nM). In addition, eight

ethylmethanesulfonate (EMS) mutants and two T-DNA insertion

lines, which are distributed in the entire gene of DORN1, including

the extracellular lectin domain, the transmembrane domain and the

intracellular serine/threonine kinase domain, all showed defects in

eATP-induced calcium influx (Choi et al., 2014a; Choi et al., 2014b).

Therefore, DORN1 is a bona fide receptor for eATP.

Arabidopsis DORN1, also termed P2K1 or LecRK-I.9, belongs

to the L-type LecRK subfamily, which contains 45 members. Most

LecRK-encoded genes are differentially expressed in various tissues

and at different developmental stages. Their expression can be

induced by various elicitors and pathogen infections

(Bouwmeester and Govers, 2009). dorn1 mutants completely lose

the ability to respond to eATP in young seedlings. However, the

diverse expression patterns of different LecRKs suggest the

possibility that there are other LecRKs involved in the eATP-

activated signaling pathway (Choi et al., 2014a; Choi et al.,

2014b). In Arabidopsis, L-type LecRK family is divided into nine

subclades; P2K1 belongs to clade I which consists of 11 members.

Recently, by screening all members of the LecRK clade I, only P2K2

(LecRK-I.5) was able to partially restore the Ca2+ response in p2k1

mutant plants. Further experiments confirmed that P2K2 is a

second purinergic receptor. P2K1 and P2K2 showed self-

association and formed heterodimer with each other upon ATP

treatment (Chen et al., 2017; Pham et al., 2020) The fact that

the low expression of P2K2 and activation of P2K1 leads to

transphosphorylation of P2K2 likely explains why P2K2 was not

identified in the initial eATP response deficient mutant screening

(Pham et al., 2020).

A previous study showed that by analyzing data from

Genevestigator V3 web, different Arabidopsis LecRK genes had

different expression profiles in response to hormone treatment,

abiotic stress, elicitor treatment and pathogen infection

(Bouwmeester and Govers, 2009). We analyzed and visualized the

relative expression patterns of 45 L-type AtlLecRKs under both cold

(4°C) and heat (38°C) stresses using Plant eFP database (Figure S1).

Most AtlLecRKs showed obvious changes at 12 h after cold

treatment and 1h after heat treatment. P2K1 did not show

obvious changes after temperature treatment, however, P2K2

could be suppressed by cold treatment and induced by heat.

Therefore, by changing specific growth conditions, such as high

or low temperature, it may be possible to identify additional eATP

receptors in plants in the future.
NAD+

NAD+ and NAD phosphate (NADP+) are electron carriers in

most of metabolic reactions. In mammalian cells, NAD+ is released

into the extracellular space upon cell death and inflammation,

which could potentially activate immunity, but whether there is

an eNAD+-recognition receptor remains elusive (Billington et al.,
Frontiers in Plant Science 05
2006). In Arabidopsis, many experiments have revealed that NAD+

and NADP+ are released into the extracellular compartment during

infection by the bacterial pathogens. NAD+ or NADP+ release leads

to the activation of salicylic acid (SA) signaling pathway and the

accumulation of ROS resulting in disease resistance (Zhang and

Mou, 2009; Pétriacq et al., 2012; Zhang and Mou, 2012; Pétriacq

et al., 2016). In addition, exogenously applied NAD+ moves

systemically and induces systemic acquired resistance (SAR)

(Wang et al., 2019). These studies suggest that there is an NAD+

or NADP+ receptor to sense these signals in Arabidopsis.

In 2017, Wang et al. analyzed the transcriptomic changes in

Arabidopsis after eNAD+ treatments. The microarray data indicated

that the expression of some receptor kinases was induced by NAD+.

In the receptor kinase mutant lecrk I.8, NAD+-induced PR1

expression was significantly decreased and disease resistance to P.

syringae pv. maculicola (Psm) ES4326 was largely compromised

(Figure 1) (Wang et al., 2017). LecRK-I.8 specifically binds to

NAD+, but not to NADP+, ATP, ADP, or AMP. In contrast,

P2K1, LecRK-I.3, and LecRK-I.6 do not bind to NAD+.

Moreover, although LecRK-I.8 null mutants do not respond to

low concentration of NAD+, it does have response to high

concentrations of NAD+, including induced Pathogenesis-Related

gene (PR) expression and enhanced disease resistance. These data

suggest that LecRK-I.8 is not the only receptor that perceives

eNAD+ (Wang et al., 2017). In addition, LecRK-I.8 is also a

potential cell surface receptor for Pieris brassicae egg-derived

elicitors, where loss of LecRK-I.8 significantly reduced the

immune response to the egg extract, suggesting that there is a

potential egg-derived ligand for LecRK-I.8 (Gouhier-Darimont

et al., 2019).

Although LecRK-I.8 is a potential receptor for NAD+, it does

not bind NADP+ (Wang et al., 2017). Later, the same group found

that LecRK-VI.2 is a potential receptor for eNADP+, where

NADP+-induced disease resistance is clearly reduced in lecrk-VI.2

mutants. The recombinant extracellular domain of LecRK-VI.2

(eLecRK-VI.2) exhibited a typical saturation curve in binding

with 32P-NAD+. Unlabeled NAD+ and NADP+ compete for

binding of 32p-NAD+, but unlabeled ATP cannot. However, the

binding affinity of NADP+ with eLecRK-VI.2 is slightly higher than

that of NAD+ (Figure 1) (Wang et al., 2019). Notably, exogenous

NAD(P)+-induced systemic PR1 transcription was only slightly

reduced in lecrk-VI.2 mutants, suggesting that there are other

receptors that can sense NAD(P)+.
Lipopolysaccharide and 3-OH-C10:0

Lipopolysaccharide (LPS), a major cell wall component of

gram-negative bacteria, consists of three different functional

moieties: lipophilic lipid A, a core oligosaccharide, and O-antigen

(Ranf, 2016; Kagan, 2017). In mammals, LPS acts as MAMP and

triggers strong immune responses, and the molecular mechanism

for LPS recognition has been well studied. The event can be divided

into intracellular and extracellular recognition in two different ways.

In extracellular recognition, Toll-like receptor 4 (TLR4) forms a

heterodimer with myeloid differentiation factor 2 (MD2) to
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recognize LPS and initiates intracellular signaling mediated by

caspase-11 (Park et al., 2009; Kayagaki et al., 2011). Moreover,

LPS-binding protein (LBP) and CD14 are also essential for LPS

recognition (Tsukamoto et al., 2018). In intracellular recognition,

human caspase-4 and its mouse homologue caspase-11 can directly

bind to LPS and lipid A with high specificity and affinity, resulting

in activation of caspases (Shi et al., 2014).

Compared to the studies of the responses to LPS in mammals,

there are few studies of the mechanisms involved in LPS recognition

and downstream signal transduction in plants. LPS-elicited defense-

related responses include programmed cell death, nitric oxide (NO)

production, PR gene expression, and ROS burst in plants (Zeidler

et al., 2004; Desaki et al., 2006; Sun et al., 2012; Proietti et al., 2014;

Shang-Guan et al., 2018). Using a forward-genetic approach to screen

Arabidopsis mutants that are insensitive to LPS, Ranf et al. reported

that a G-type LecRK LORE (lipooligosaccharide-specific reduced

elicitation) is required for LPS -mediated PTI responses (Ranf et al.,

2015). Moreover, they found that lipid A moiety is indispensable and

sufficient for LORE-dependent sensing of LPS. Removal of the ester-

linked acyl chains from lipid A abolishes its ability to trigger plant

immunity (Ranf et al., 2015). In Arabidopsis, miR393 regulates one L-

type LecRK and two G-type LecRKs following the perception of

bacterial LPS to initiate immunity and basal resistance (Djami-

Tchatchou and Dubery, 2019). These results suggest that LPS and

acylated Lipid A are essential for immune sensing in Arabidopsis.

However, the same group in 2019 found that medium-chain 3-

hydroxy fatty acids (mc-3-OH-FAs) rather than LPS, produced

during LPS biosynthesis, are sensed by LORE (Figure 1). mc-3-OH-

FAs can be copurified with LPS and lipid A. mc-3-OH-FA-depleted

LPS does not activate the immune responses (Kutschera et al.,

2019). The immune strength elicited by mc-3-OH-FAs depends on

the chain length and the specificity of hydroxylation. Free 3-OH-

C10:0 is the strongest immune molecule and has a strong binding

affinity with the LORE ectodomain. In addition, LORE can sense

the (R)-3-hydroxyalkanoate precursors HAAs which are involved

in bacterial surface dissemination and biofilm development

(Schellenberger et al., 2021). These results indicate that plants can

also utilize LecRK to perceive pathogens by sensing the conserved

features of microbial metabolites.
Modification of LecRKs

Protein phosphorylation and ubiquitination are two major

posttranslational modifications in eukaryotes (Mithoe and Menke,

2018). These modifications play important roles in the turnover of

proteins, signal transduction, and cellular homeostasis.
Phosphorylation modification

Phosphorylation and autophosphorylation
of LecRKs

Phosphorylation is required for signal transduction and for

maintaining cellular homeostasis upon receptor complex activation.
Frontiers in Plant Science 06
Previous studies have shown that phosphorylation regulation is

critical for the function of protein kinase RLKs (Couto and Zipfel,

2016; Tang et al., 2017; Mithoe and Menke, 2018). PnLPK, a lectin-

like protein kinase in Populus nigra var. italica, is the first identified

LecRK in plants, and exhibits autophosphorylation activity on

serine and threonine residues in the protein kinase domain but

not on tyrosine residues (Nishiguchi et al., 2002). Further studies

proved that the autophosphorylation of LecRKs plays important

roles in signal transduction in Arabidopsis and rice. AtLecRK-VI.2

has autophosphorylation activity in vitro in the presence of divalent

metal cations and positively modulates early bacterium-mediated

MPK signaling (Singh et al., 2012; Singh et al., 2013). P2K1 has

autophosphorylation activity and this activity is essential for ATP-

induced plant responses (Choi et al., 2014a; Choi et al., 2014b).

Mass spectrometry (MS) and biochemistry assays revealed that

autophosphorylation of S391, S440, and S451 is critical for P2K1

kinase domain-mediated eATP recognition. Phosphomimetic

S391D, S440D, and S451D mutants exhibited a significant

increase in Ca2+ cyt concentration after ATP addition (Chen

et al., 2017). Overexpression of LecRK-IX.2 leads to spontaneous

cell death in Arabidopsis (Wang et al., 2015b). In contrast, three

kinase-dead LecRK-IX.2 mutant variants, LecRK-IX.2K379R, LecRK-

IX .2K47 7E , and LecRK-IX .2D53 2N , no t on ly have no

autophosphorylation activity, but also lost the ability to elicit cell

death in N. benthamiana (Luo et al., 2017).

In addition to the serine/threonine phosphorylation, recent

studies have demonstrated that the tyrosine phosphorylation of

LRR-RLKs and LysM-RLKs is also essential for immune activation

(Liu et al., 2018a; Perraki et al., 2018). Although plants do not have

tyrosine kinases discovered in animals, many RLKs, including

BAK1, have been shown to possess dual specificity kinases, auto-

phosphorylating in vitro on serine/threonine as well as tyrosine

residues (Perraki et al., 2018). Luo et al. showed that LORE is also a

dual-specificity protein kinase (Figure 1) (Luo et al., 2020). Y600 in

LORE is a conserved residue in many immunity-related RLK

orthologs, including G-type lectin kinases, EFR, CERK1, and

BAK1 (Macho et al., 2014; Liu et al., 2018a; Perraki et al., 2018;

Luo et al., 2020). Substitution of Y600 with phenylalanine markedly

reduces the kinase activity of LORE and LORE-mediated 3-OH-

C10:0 recognition in Arabidopsis.

The phosphorylation targets of LecRKs
In addition to autophosphorylation, LecRKs can also

phosphorylate other proteins to transmit the signal to

downstream pathways. In rice, a G-type LecRK OsPID2 is able to

phosphorylate OsPUB15, a U-box/ARM repeat protein.

Phosphorylated OsPUB15 exhibits an active E3 ligase activity. In

addition, overexpression of OsPUB15 in rice leads to a spontaneous

cell death phenotype as well as a constitutive activation of plant

basal defense responses (Chen et al., 2006; Wang et al., 2015a). The

L-type LecRK Salt Intolerance 1 (SIT1) phosphorylates MPK3/6 to

mediate salt sensitivity and regulates ethylene homeostasis in rice

(Li et al., 2014). In Arabidopsis, upon perception of eATP, P2K1

directly phosphorylates the NADPH oxidase RBOHD and the Raf-

like MAP kinase kinase kinase INTEGRIN-LINKED KINASE 5
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(ILK5), which subsequently elevates the production of ROS, induces

stomatal closure and triggers innate immune response (Figure 1)

(Chen et al., 2017; Kim et al., 2023). Although LecRK-IX.2 interacts

with RBOHD, it is unable to directly phosphorylate RBOHD.

Instead, LecRK-IX.2 likely recruits the calcium-dependent protein

kinases (CPKs) to phosphorylate and activate RBOHD, which leads

to the ROS burst and the enhanced ROS-triggered SA biosynthesis

(Figure 1) (Luo et al., 2017). Recent phosphoproteomics

biochemical results showed that cGMP-dependent protein kinase

is a potential substrate of PtLecRLK1 (Shrestha et al., 2023).

PRRs often trans-phosphorylate RLCKs to activate immune

signaling from extracellular ligand perception into downstream

signaling in plants (Monaghan et al., 2014; Liang and Zhou,

2018). Our recent study showed that LORE-mediated immune

activation follows this rule. After perception of the ligand 3-OH-

C10:0, LORE is autophosphorylated at Y600, which further

transphosphorylates the receptor-like cytoplasmic kinases PBL34,

PBL35, and PBL36 to activate plant immunity. However,

Pseudomonas syringe pv. tomato (Pst) effector HopAO1, which is

a phosphatase, targets LORE to dephosphorylate tyrosine-

phosphorylated Y600 and suppresses immune responses (Luo

et al., 2020). Whether other LecRKs also rely on RLCKs to

activate the immune signaling deserves further investigation.
Ubiquitination and
palmitoylation modifications

Ubiquitination plays an important role in maintaining cellular

homeostasis and activating the immune receptor complex in

plants. For example, Arabidopsis LRR-RLK FLAGELLIN-

SENSING 2 (FLS2) can be polyubiquitinated by two U-box E3

ligases, PUB12 and PUB13, to attenuate immune signaling upon

flagellin recognition (Lu et al., 2011). The large-scale identification

of ubiquitination sites in Arabidopsis reveals that over 100 protein

kinases that are associated with or integrated into the plasma

membrane are ubiquitinated, including L-type LecRKs, LecRK-

VII.2 (K339), LecRK-VIII.1 (K374), RLK/LecRK-IV.1 (K350,

K370), and a C-type lectin receptor kinase (K265, K278, K292)

(Grubb et al., 2021). We recently found that Pst effector AvrPtoB,

a 553-amino-acid protein with a functional E3 ligase domain,

targets and degrades LecRK-IX.2 to suppress LecRK-IX.2-

mediated PTI. In contrast, LecRK-IX.2 phosphorylates AvrPtoB

at serine site 335 to interrupt AvrPtoB self-association and reduce

its E3 ligase activity (Figure 1) (Xu et al., 2020). Very recently,

OsPID2, a key protein in the resistance of rice to Magnaporthe

oryzae strain ZB15, was shown to interact with U-box E3 ubiquitin

ligase OsPIE3 (PID2-interacting E3). This interaction leads to the

intracellular kinase domain of PID2 entering the nucleus and

reducing blast disease resistance (Wang et al., 2023). These

findings indicate that ubiquitination is important in maintaining

the function of LecRKs.

Recently, LecRK S-acylation has been reported. S-acylation is a

reversible and cycling posttranslational modification, in which
Frontiers in Plant Science 07
cysteine residues are conjugated with a variety of acyl chains

through a thioester bond; however, how to regulate this process is

still poorly understood in plants. Arabidopsis plant encodes 24 S-

acyl transferases (PATs) which contain a conserved Asp-His-His-

Cys (DHHC) catalytic domain; however, the specific substrates of

these AtPATs are barely identified (Batistic, 2012). A previous study

has identified two proteins from the CLAVATA2 (CLV2)-like

AtRLP subfamily and eight RLCK subfamily members that are S-

acylated, indicating that S-acylation may play an important role in

the LRR-RLK/AtRLP/RLCK signaling pathway (Hemsley et al.,

2013). Although subsequent study suggests that juxta-membrane

S-acylation of plant RLKs is likely fortuitous, S-acylation of FLS2

adjacent to the transmembrane domain is not required for FLS2-

mediated immune signaling (Hurst et al., 2019). A recent study

discovered that two DHHC-PAT proteins AtPAT5 and AtPAT9

negatively regulate the plant immune receptor P2K1 via S‐acylation.

Upon perception of eATP, P2K1 is rapidly autophosphorylated,

which then in turn phosphorylates PATs to activate PAT mediated

S-acylation. Activation of PATs can S-acylate P2K1 to reduce P2K1

phosphorylation, dampen the immune response and protect growth

(Figure 1) (Chen et al., 2021). These works highlight the important

roles of S-acylation in plant innate immunity.
Natural variation of LecRKs

Due to technical advances in genetic mapping, resequencing,

and genome-wide association study (GWAS), some LecRKs have

been identified to regulate many biological processes in plants. A

recent GWAS using a set of 295 natural Arabidopsis accessions

showed that LecRK-I.1, a close homolog of LecRK-I.8, is specifically

involved in large white butterfly Pieris brassicae egg extract (EE)-

triggered HR-like response (Groux et al., 2021). There are five most

significant single nucleotide polymorphisms (SNPs) in the LecRK-

I.1 gene. One SNP is located in the carbohydrate-binding lectin-like

domain. Two are located in the kinase domain, while the other two

are silent mutations. Further analysis found that two main

haplotypes of LecRK-I.1 segregated at the population level and

the SNP in the kinase domain was significantly associated with the

EE-triggered HR-like responses (Groux et al., 2021). Moreover,

three novel QTLs were determined by genetic analysis of EE-

induced HR-like cell death in 56 Brassica rapa accessions. These

three QTLs include many candidate genes that are involved in plant

immunity processes One QTL contains a cluster of LecRK-I genes,

which are homologous genes of AtLecRKI.1 Another QTL includes

LecRK-V.5, which negatively modulates plant immunity against

necrotrophic bacteria (Arnaud et al., 2012; Bassetti et al., 2022).

Further fine-mapping of these identified QTLs will help to identify

the key genes. By GWAS mapping of ca. 1,000 resequenced Populus

trichocarpa trees individually challenged with an invasive fungal

pathogen Sphaerulina musiva, one L-type LecRK was associated

with resistance and one G-type LecRK was a susceptibility-

associated locus. The L-type LecRK had a mutant frequency of

10% and predicted to have a high impact on protein translation.
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The G-type LecRK showed only two high-impact mutations at

frequency 1.5% and 8.0%. Biochemical results demonstrated that

both LecRKs lection domain bound to cell wall preparations of S.

musiva (Muchero et al., 2018). Intriguingly, Lin et al. used another

advanced technology named RLP/KSeq and successfully fine-

mapped the SCR74 (an apoplastic effector of Phytophthora

infestans) receptor to a 43-kbp G-LecRK locus in Solanum

microdontum plants (Lin et al., 2020).

Recently, some LecRKs have been identified to respond to

abiotic stress treatments. GWAS and epigenome wide association

studies (EWAS) for the 60 Populus tomentosa hub genes identified

that LecRK-VIII.2 is associated with chlorophyll content among

different methylotypes (Zhou et al., 2023). Using in-field overwinter

survival as a trait, another GWAS and population differentiation

analysis in Lotus japonicas revealed that LjLecRK is required for

non-acclimated freezing tolerance and haplotype dependent cold

responses (Shah et al., 2020; Mustamin et al., 2023). As there is

tremendous natural variation in LecRKs, more LecRKs may be

identified by GWAS analysis combined with different biotic or

abiotic treatments in the future.
Conclusions and future perspectives

In the past decade, our knowledge about plant LecRKs has

greatly advanced. Some new ligands have been found. Accordingly,

new modifications and natural variations of LecRKs have been

discovered. Although many LecRKs have been identified in plants,

very few LecRKs have been functionally characterized. Of these

LecRKs, most have been discovered in Arabidopsis. Future studies

should explore the ligand and signal transduction of LecRKs in

other plant species.
Ligand identification

By forward genetic screen approach and transcriptomics, a few

ligands of LecRKs have been identified. However, the highly

variable lectin domains of LecRKs imply that a wide range of

ligands have not been identified in plants. Self-molecules, such as

eATP, eNAD+ and lipids from pathogens are known ligands that

can be recognized by LecRKs. The current challenge is that

although LecRKs have sugar-binding residues, they are poorly

conserved and unlikely to bind monosaccharide molecules

(Bouwmeester and Govers, 2009). 3-OH-C10:0 is hydrophobic

ligand and the main egg-derived elicitors which can activate the

expression of PR1 in Arabidopsis are enriched in the fraction

containing total egg lipids (Bruessow et al., 2010; Kutschera et al.,

2019). This indicates that some LecRKs may recognize some

hydrophobic compounds from insect egg. In addition,

metabolomic analysis of apoplast wash fluid is a powerful tool

for discovering novel ligands. Suspension cells can also be used to

search for potential ligands after stress treatment. Some small
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signaling peptides have been identified from chitin-treated rice

suspension cells combined with metabolomic analysis (Wang

et al., 2020). Recently, glycan array assays have emerged as an

excellent tool for high-throughput screening of the interaction

between proteins and glycans (Malik et al., 2014; Nikiforova et al.,

2022). By using of functionalized sugar nucleotide donors on

glycan microarrays, a few plant glycosyltransferases have been

characterized (Ruprecht et al., 2020). Moreover, nuclear magnetic

resonance followed by computational modeling to study the 3D

structure of LecRKs and glycans is another ascendant method to

mine novel ligands. The newly developed RLP/KSeq technology is

assisting us in rapidly identifying the novel immune receptors and

helps to genetically map the genes responsible for ligand-

triggered immune responses in plants (Lin et al., 2020).
Signal transduction

As a kind of RLK protein kinase, autophosphorylation and

transphosphorylation play important roles in LecRKs. At present,

some LecRKs have been proven to function in autophosphorylation

and some substrates have been identified. However, compared to

the large number of LecRKs, these results only show the tip of the

iceberg. Future researches should continue to focus on the

identification of downstream substrates of LecRKs. Yeast two-

hybrid and co-immunoprecipitation combined with MS assays

are frequently-used means to identify the protein-protein

interactions (PPIs). In addition, the recently developed proximity

labeling (PL) approach has been used to screen PPIs. PL can detect

weak, transient, hydrophobic, low-abundance and membrane-

localized PPIs by exploring an unprecedented spatial and

temporal protein interaction network in their native state (Yang

et al., 2021). The application of PL methods may help to identify

more interacting proteins of LecRKs in the future.
Applications in crop improvement

LysM-RLKs control different stages of symbioses with

beneficial mycorrhizal fungi and nitrogen-fixing bacteria (Chiu

and Paszkowski, 2020). In addition to LysM-RLKs, a recent

report has shown that G-type LecRK mediates the symbiotic

interaction between Populus and the ectomycorrhizal fungus

Laccaria bicolor. Moreover, genetic transformation of

PtLecRLK1 in Arabidopsis (Labbé et al., 2019) and switchgrass

(Qiao et al., 2021; Shrestha et al., 2023) facilitated the

colonization of L. bicolor with non-host plants. This work

implied that LecRKs can be used to promote plant-microbe

symbioses in crops. In addition to symbioses, LecRKs are also

widely involved in resistance to pathogens and insects. Different

LecRKs of different species might sense different ligands

from multitudinous pathogens. Thus, transferring AtLORE to

crops, such as rice, might enable the engineering of resistance
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traits to bacteria, such as Xanthomonas species, or constructing

transgenic plants with chimeric LecRKs will achieve a potentially

important step toward generating pathogen resistant crops (He

et al., 2019). Meanwhile, LjLecRK of Lotus japonicas, plays

important roles in freezing tolerance (Mustamin et al., 2023).

SIT1 mediates ethylene production and salt-induced ethylene

signaling (Li et al., 2014). These LecRKs can be used for

engineering cold and salt-tolerant crops in the future.
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