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In woody plants, bark is an important protective tissue which can participate in

photosynthesis, manage water loss, and transport assimilates. Studying the bark

anatomical traits can provide insight into plant environmental adaptation

strategies. However, a systematic understanding of the variability in bark

anatomical traits and their drivers is lacking in woody plants. In this study, the

bark anatomical traits of 23 Picea species were determined in a common garden

experiment. We analyzed interspecific differences and interpreted the patterns in

bark anatomical traits in relation to phylogenetic relationships and climatic

factors of each species according to its global distribution. The results showed

that there were interspecific differences in bark anatomical traits of Picea species.

Phloem thickness was positively correlated with parenchyma cell size, possibly

related to the roles of parenchyma cells in the radial transport of assimilates.

Sieve cell size was negatively correlated with the radial diameter of resin ducts,

and differences in sieve cells were possibly related to the formation and

expansion of resin ducts. There were no significant phylogenetic signals for

any bark anatomical trait, except the tangential diameter of resin ducts. Phloem

thickness and parenchyma cell size were affected by temperature-related factors

of their native range, while sieve cell size was influenced by precipitation-related

factors. Bark anatomical traits were not significantly different under wet and dry

climates. This study makes an important contribution to our understanding of

variability in bark anatomical traits among Picea species and their

ecological adaptations.
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1 Introduction

In woody plants, bark refers to all tissues outside the vascular

cambium and is an important component of the stem (Evert, 2006).

Structurally, it is divided into two distinct parts: the outer bark (OB)

and the inner bark (IB). The OB consists of dead cells, generally the

rhytidome, and serves functions such as mechanical support and

protection against pathogens. The IB, on the other hand, consists of

living tissues including the phloem, and is responsible for the

storage and transport of water and photosynthetic assimilates

(Rosell et al., 2017). Bark plays important roles in the basic

physiological functions of woody plants, and the sizes of tissues

and cell morphologies in the periderm and phloem are determined

by several developmental pathways and affect plant functions

(Srivastava, 1964; Paine et al., 2010; Rosell, 2019). Bark

morphology and structure are closely related to the physiological

and ecological processes of plants. For example, the cortex in the

bark contains chloroplasts capable of photosynthesis, which convert

carbon dioxide produced by mitochondrial respiration and flowing

in the xylem into sugars (Pfanz, 2008). It also increases bark oxygen

concentration and reduces plant stem hypoxia (Wittmann and

Pfanz, 2018). Furthermore, the phellem and lenticels in the bark

structure regulate the exchange of water, oxygen, and carbon

dioxide between the stem and its environment (Lendzian, 2006).

For example, the phellem cells have suberin, a waxy substance that

makes them impermeable to gases and water. Loram-Lourenço et al.

(2022) found that the water conductance of bark across species was

related to the morphoanatomical characteristics of the outer bark

(i.e., thickness, density, and lenticel investment), while these outer

bark characteristics were related to stem transpiration and

respiration. For example, the phellem on the bark surface, which

consists of dead cells, effectively prevents excessive water loss from

the plant (Leite and Pereira, 2017). Therefore, bark anatomical traits

are important to clarify their multifunctionality, resource allocation

trade-offs , and environmental adaptative mechanisms

(Rosell, 2019).

Environmental adaptability is apparent in the ecological

strategies of most plant organs and tissues, including bark

anatomical traits (Wright et al., 2004; Freschet et al., 2021; Yang

et al., 2022). Differences in bark thickness and tissue structure can

develop under stress, and such changes are associated with plant

resilience (Kopanina et al., 2022). The phylogenetic niche

conservatism hypothesis suggests that more closely related species

are more likely to have similar functional traits and that conserved

and similar functional traits will exhibit stronger phylogenetic

signals (Blomberg et al., 2003; Losos, 2008). Plant anatomical

traits can exhibit a wide range of variation due to climate-driven

effects, for example, xylem vessels of plants in arid regions are often

characterized by narrow lumens and thick walls (Baas et al., 1983).

Many previous studies have shown that bark structural

characteristics are related to fire factors (Lawes et al., 2013;

Pausas, 2015) and that species from fire-prone areas tend to have

thicker bark that better protects phloem tissues from destruction.

Thus, it is important to study how bark anatomical traits vary due to

environmental factors in the context of phylogeny.
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There are about 40 Picea species worldwide, they are widely

distributed in boreal, temperate, and subtropical high-altitude

regions of the northern hemisphere (Farjon, 2001), making up

significant portions of forests. Picea species provide ecological

benefits and their bark is well utilized as a forest by-product

(Harkin, 1971). For example, spruce bark extract is a natural

antioxidant and anti-inflammatory agent. According to the

information recorded by the Global Biodiversity Information

Facility (GBIF, http://www.gbif.org), this genus has been widely

introduced to various regions of the world and has strong

environmental adaptability. Previous studies on Picea species have

focused on the morphological and anatomical traits of wood

(Piermattei et al., 2020; Puchi et al., 2020), pollen (Jia et al.,

2014), and needles (Wang et al., 2021). Importantly, the organ or

tissue anatomical traits of Picea species have been shown to be

closely related to their physiological and ecological functions. For

example, certain needle anatomical traits determine photosynthetic

performance (Wang et al., 2021), and xylem cell number and cell

lumen area affect the hydraulic systems of trees (Sperry and Tyree,

1988; Puchi et al., 2020). The structure and function of the bark

influence water transport and storage in the plant. For example, low

density bark has a higher hydraulic conductivity (Loram-Lourenço

et al., 2020). Indeed, the organ or tissue anatomical traits in Picea

can provide new insight into interspecific relationships and the

mechanisms by which biotic and abiotic factors affect them.

However, studies on the interspecific variation in bark anatomical

traits and the underlying driving mechanisms in species of this

genus are lacking.

In this study, the bark anatomical traits of 23 Picea species

native to North America, Europe, and Asia were examined in

conjunction with information on climatic factors of the Picea

species. This was done to address the following questions: (1) are

there interspecific differences in bark anatomical traits among Picea

species and are anatomical traits phylogenetically conserved among

species in different habitats; (2) are there trade-offs in changes

among bark anatomical traits; and (3) what are the climatic factors

driving variation in bark anatomical traits of Picea?
2 Materials and methods

2.1 Bark sample collection

The samples were collected from the experimental nursery of

outdoor in the Shaba experimental base of the Research Institute of

Forestry of Xiaolong Mountain in Gansu Province, China (104°

38’E, 34°07’N). The area has an elevation of 1,550–2,100 m, average

annual temperature of 7.2°C, average annual precipitation of 757

mm, and average relative humidity of 78%, and the growing

conditions are similar for all Picea species in the nursery. In

October 2020, 23 Picea species from the experimental nursery

were sampled. All species were sown in 2008. After three years of

cultivation, individual trees were transplanted into the nursery with

1.5 m of spacing between them. For each Picea species, three single

plants of uniform size and normal growth were selected and bark
frontiersin.org
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samples 2 × 2 cm in size were taken at 30 cm from the base of each

plant. Bark samples include all tissues peeled from the cambium to

the surface of the bark.
2.2 Bark sample fixation

Referring to the method offixation in needles and pollen of Picea

(Jia et al., 2014; Wang et al., 2021), bark sections were prepared using

the following 10 steps: (1) Sample fixation: Bark samples were fixed

with FAA fixative (90 mL ethanol + 5 mL formaldehyde + 5 mL

acetic acid) for 24 h. (2) Sample dehydration waxing: Cut 2–3 mm

bark samples along the tangential direction and rinsed in running

water for 30 min, placed in 15% ethanol for 2 h, and transferred to a

dehydrator (DIAPATH, Donatello) for dehydration. (3) Sample

embedding: Melted wax was poured into an embedding frame and

before the wax solidified the tissue was removed from the

dehydration box and placed into the frame according to the

embedding surface. Finally, the samples were cooled on the -20°C

freezing table to solidify the wax, which was then trimmed. (4)

Sample sectioning: Trimmed wax blocks were placed in a paraffin

slicer (Shanghai Leica Instruments Co., Ltd., China, RM2016) and

sectioned at a thickness of 4 mm. (5) Sample dewaxing: Sections were

dewaxed and hydrated using ethylene glycol monoethyl ether

acetate, ethanol solution, and distilled water. (6) Safranin O

staining: Sections were placed in safranin O staining solution for 2

min, and then washed briefly in distilled water to remove excess dye.

(7) Decolorization: Sections were placed sequentially in a 50%, 70%,

and 80% alcohol gradient for 3–8 s each, in order to wash away the

excess safranin O staining solution. (8) Fast green staining: Sections

were placed in fast green staining solution for 6–20 s and dehydrated

in anhydrous ethanol. (9) Sample sealing: Sections were placed in

xylene for 5 minutes and sealed with neutral balsam. (10)

Microscopic examination: Bark samples were observed using an
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optical microscope (Nikon Eclipse E100, Japan) and imaged with a

high-definition camera (Nikon DS-U3, Japan).
2.3 Data acquisition

We selected three bark samples for each species as biological

replicates. Considering the differences between primary and

secondary structures in the bark and the difficulty in

differentiating them, 30 parenchyma cells and sieve cells were

randomly selected from the scanned image of each sample to

measure their radial and tangential widths. In this study, bark

anatomical sections were measured using the CaseViewer software

(3DHISTECH CaseViewer, Budapest, Hungary). The anatomical

trait related to bark structure and function were selected for

assessment (Angyalossy et al., 2016; Schweingruber et al., 2019;

Rosner and Morris, 2022), including (Table 1): periderm thickness

(PE), cortex thickness (CO), phloem thickness (PH), tangential

diameter of resin duct (TR), radial diameter of resin duct (RR),

phloem ray width (PR), tangential diameter of sieve cell (TS), radial

diameter of sieve cell (RS), tangential diameter of parenchyma cell

(TP), and radial diameter of parenchyma cell (RP). In order to

reduce the effects of uneven growth of bark cells and tissues, the

aspect ratios of some anatomical traits were also calculated,

including tangential diameter of resin duct/radial diameter of

resin duct (TR/RR), tangential diameter of sieve cell/radial

diameter of sieve cell (TS/RS), and tangential diameter of

parenchyma cell/radial diameter of parenchyma cell (TP/RP). A

detailed bark anatomy is provided in Figure 1.

To further understand the responses and adaptations of bark

anatomical traits of Picea species to climatic factors, we collected

information regarding all original collection sites of the 23 Picea species

by referencing Ouyang et al. (2021) and GBIF (http://www.gbif.org)

(Figure 2 and Table 2). Each species averaged all sites within the GBIF
TABLE 1 Bark anatomical traits analyzed.

Abbreviation Unit Traits

PE mm Periderm thickness

CO mm Cortex thickness

PH mm Phloem thickness

TR mm Tangential diameter of resin duct

RR mm Radial diameter of resin duct

PR mm Width of phloem ray

TS mm Tangential diameter of sieve cell

RS mm Radial diameter of sieve cell

TP mm Tangential diameter of parenchyma cell

RP mm Radial diameter of parenchyma cell

TR/RR – Tangential diameter of resin duct/Radial diameter of resin duct

TS/RS – Tangential diameter of sieve cell/Radial diameter of sieve cell

TP/RP – Tangential diameter of parenchyma cell/Radial diameter of parenchyma cell
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record range to represent the center position of the sampling site. The

temperature and precipitation related climate factors were also

obtained from WorldClim v2.0 (http://www.worldclim.org) in

conjunction with the geographic information of the sources. These

included the annual mean temperature, mean temperature of the

wettest quarter, mean temperature of the driest quarter, annual

precipitation, precipitation of the wettest quarter, and precipitation

of the driest quarter. The global aridity index was obtained at the

CGIAR consortium for spatial information (CGIAR-CSI, https://

cgiarcsi.community) (Zomer et al., 2022). In addition, based on

mean annual precipitation, we classified areas with > 500 mm as

moist and areas with < 500 mm as dry (Smith et al., 2008). The climate
Frontiers in Plant Science 04
variables for each species were averaged across all source sites for the

species using the ‘raster’ package in R 3.6.3 software (R Core

Team, 2020).
2.4 Statistical analysis

The ‘V.PhyloMaker’ package (Jin and Qian, 2019) and the

‘Plantlist’ package (Zhang, 2018) in the R 3.6.3 software were

used to elucidate the influence of phylogenetic relationships on

Picea species attributes. The Pagel’s l and Blomberg’s K values

(Harmon et al., 2008; Kembel et al., 2010) of bark anatomical traits
FIGURE 2

Collection sites of the 23 Picea species. For simplicity, the species point distributions use the average latitude and longitude for all source locations.
Point shapes and colors distinguish among species.
FIGURE 1

Cross section of bark anatomical traits, exemplified by Picea engelmannii. Abbreviations: ca, cambium; co, cortex; ib, inner bark; ob, outer bark; pc,
parenchyma cell; pd, phelloderm; pe, periderm; pg, phellogen; ph, phloem; pl, phellem; pr, phloem ray; rd, resin duct; rh, rhytidome; sc, sieve cell;
sp, suberized filling tissue or phellem cells with polyphenolic content; uf, unsuberized filling tissue; x, xylem.
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TABLE 2 Tree size, geographical origin, and climatic information of 23 Picea species.

° MTDQ (°
C)

APRE
(mm)

PREWQ
(mm)

PREDQ
(mm) AI

2.31 1,039.99 353.92 168.10 1.51

-1.13 731.31 389.00 15.55 0.72

3.57 973.98 546.71 30.80 0.93

-9.26 433.06 253.44 6.00 0.41

-1.25 571.29 181.16 109.30 0.48

-9.49 1,014.93 320.42 183.43 1.29

-13.72 686.81 423.63 19.94 0.76

-17.30 601.00 377.00 18.33 0.59

-0.48 703.67 331.67 36.33 0.63

1.45 1,151.32 325.96 247.95 1.43

-10.19 394.00 269.00 9.33 0.29

3.59 1,122.00 489.50 82.00 0.98

-11.33 183.00 67.00 24.00 0.14

0.60 1,174.00 316.00 260.00 0.89

-3.23 1,276.16 384.42 233.00 1.36

0.57 1,148.62 314.20 255.87 0.90

-6.15 570.86 304.21 8.50 0.56

1.31 744.88 412.75 15.00 0.66

-8.14 177.72 76.14 19.07 0.13

15.62 1,897.70 837.38 160.15 2.18

8.63 407.00 137.00 68.00 0.31

2.76 727.00 369.50 36.00 0.63

-7.46 436.67 255.33 4.00 0.38

ipitation of the wettest quarter; PREDQ, precipitation of the driest quarter, AI: aridity index.
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Species Sources Ground diameter
(cm)

Height
(m) Latitude Longitude AMT (°

C)
MTWQ

C)

P. abies Norway 9.64 ± 2.26 5.90 ± 0.41 60.77°N 10.09°E 4.86 6.38

P. asperata Jiulong, Sichuan, China 5.36 ± 0.50 1.83 ± 0.27 31.37°N 102.22°E 7.38 14.56

P. brachytyla Ya’an, Sichuan, China 5.86 ± 0.36 3.32 ± 0.32 30.11°N 102.88°E 12.00 19.10

P. crassifolia Datong, Qinghai, China 5.52 ± 1.32 2.02 ± 0.16 36.13°N 101.05°E 1.31 11.27

P.
engelmannii

Colorado, America 4.09 ± 0.71 1.44 ± 0.26 39.24°N 106.17°W 1.02 7.92

P. glauca Quebec, Canada 6.00 ± 1.67 2.80 ± 0.52 48.06°N 73.13°W 2.37 14.15

P. jezoensis Changbai, Jilin, China 4.48 ± 0.44 2.94 ± 0.21 42.69°N 128.42°E 2.99 17.85

P. koraiensis Yichun, Heilongjiang, China 5.34 ± 0.77 2.85 ± 0.15 46.78°N 129.76°E 2.48 19.83

P.
likiangensis

Diqing, Shangri-La, Yunnan,
China

5.56 ± 1.43 2.89 ± 0.61 27.81°N 99.72°E 6.05 12.69

P. mariana New Brunswick, Canada 5.46 ± 2.16 3.08 ± 1.40 46.46°N 66.01°W 4.40 2.96

P. meyeri Chifeng, Inner Mongolia, China 3.52 ± 0.87 1.89 ± 0.31 41.49°N 115.55°E 5.98 19.95

P. neoveitchii Shennongjia, Hubei, China 6.62 ± 0.65 3.13 ± 0.34 31.20°N 112.16°E 14.45 23.30

P. obovata Altai, Xinjiang, China 5.06 ± 0.36 1.68 ± 0.31 47.81°N 88.07°E 3.77 19.82

P. omorika New York, USA 4.64 ± 1.22 2.74 ± 0.33 40.86°N 73.88°W 11.88 22.37

P. orientalis Russia 3.18 ± 0.15 2.22 ± 2.67 43.46°N 41.38°E 3.99 6.46

P. pungens New York, USA 6.88 ± 1.34 4.21 ± 0.80 40.90°N 74.34°W 11.64 19.58

P. purpurea Zhangxian, Gansu, China 5.12 ± 0.24 1.42 ± 0.34 34.81°N 103.64°E 4.56 13.36

P. retroflexa Ma’er Kang, Sichuan, China 5.96 ± 0.37 2.56 ± 0.24 31.25°N 102.06°E 9.88 17.41

P.
schrenkiana

Yili, Xinjiang, China 2.72 ± 0.54 0.93 ± 0.28 43.51°N 85.03°E 7.52 20.67

P. sitchensis Washington, America 7.22 ± 1.32 5.16 ± 0.36 47.66°N 123.01°W 9.78 4.66

P. smithiana Jilong, Tibet, China 8.40 ± 0.73 5.06 ± 0.36 28.85°N 85.29°E 4.90 -1.35

P. spinulosa Rikaze, Tibet, China 4.44 ± 1.07 2.74 ± 0.54 28.30°N 90.62°E 6.28 9.43

P. wilsonii Huzhu, Datong, Qinghai, China 5.01 ± 1.39 1.83 ± 0.51 36.75°N 101.82°E 3.05 12.88

AMT, annual mean temperature; MTWQ, mean temperature of the wettest quarter; MTDQ, mean temperature of the driest quarter; APRE, annual precipitation; PREWQ, pre
Ground diameter and tree height were expressed as mean ± standard deviation.
(
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were calculated using phylogenetic trees to assess the phylogenetic

signal of bark anatomical traits in Picea species. To further elucidate

the relationships among bark anatomical traits, phylogenetic

independent contrasts (PIC) were calculated for each bark

anatomical trait using the ‘ape’ package (Felsenstein, 1985).

General Linear Model (GLM) with ANOVA and Duncan’s

multiple range test were performed in SAS 9.4 (SAS Institute Inc.,

Raleigh, NC) to assess differences in bark anatomical traits among

Picea species. Pearson’s correlation analysis and principal

component analysis (PCA) were used to assess the relationships

between different bark anatomical traits and their associations with

climatic factors of their native range (Ouyang et al., 2021; Meng

et al., 2022). Independent sample T-tests were used to analyze

differences in bark anatomical traits under dry and moist

conditions. The phylogenetic tree of this study was plotted online

in ChiPlot (http://www.chiplot.online/). All statistical analysis was

conducted in the R 3.6.3 software unless specified and P < 0.05 was

considered statistically significant.
3 Results

3.1 Bark anatomical traits and their
interspecific differences

The bark of the 23 Picea species consisted of similar tissues

(Figure 1 and Supplementary Figure 1). The outer bark is mainly

consisted of a thick periderm and a thin rhytidome. The periderm

had suberized filling tissue (A looser tissue arising outward from the

phellogen in the lenticels) or phellem cells with polyphenolic content

and also included unsuberized filling tissue. Between the cortex and

the periderm was phellogen, with more neatly arranged cells. The

cortex included resin ducts, sieve cells, and parenchyma cells, and the

secondary resin ducts were mainly composed of about 2–3 layers of

epithelial cells. The phloem was composed of multiple layers of

parenchyma cells, sieve cells, and radially distributed phloem rays,

however, the sieve cells in the secondary phloem collapsed (Figure 1).

Among all the observed species, P. pungens had the largest RR

(384.92 mm), while P. sitchensis had the largest PH (1614.60 mm). P.

obovata had the smallest TP (32.59 mm) (Table 3). The resin ducts

size of Picea species ranges from about 132.32–803.80 mm, with large

variation. ANOVA and Duncan’s multiple range test showed that

there were significant differences in bark anatomical traits among the

23 Picea species (Tables 3, 4). The principal component analysis

showed that the first principal component was loaded mostly by PH

and CO, while the second principal component was loaded mostly

by TR, RR, and PR (Figure 3).
3.2 Correlations between bark
anatomical traits

The present study showed that there were significant correlations

between the bark anatomical traits of Picea species (Figure 4). There

was a significant positive correlation between phloem thickness and

parenchyma cell size (P < 0.05). There was a significant negative
Frontiers in Plant Science 06
correlation between sieve cell size and RR (P < 0.05). The aspect ratio

of parenchyma cells was significantly and positively correlated with

sieve cell size (P < 0.05). There was a highly significant positive

correlation between TS and PH (P < 0.001).
3.3 Phylogenetic signals of bark
anatomical traits

The analysis of phylogenetic signals showed that TR had a weak

phylogenetic signal (Blomberg’s K = 0.47, P < 0.05). However, none

of the other bark anatomical traits of Picea species had significant

phylogenetic signals (Table 5 and Figure 5).
3.4 Relationships between bark anatomical
traits and climatic factors

The bark anatomical traits of Picea species were influenced by

climatic factors of their native range (Figure 6). PR exhibited a

positive correlation with the annual mean temperature (P < 0.05),

while both PH and TP were positively correlated with the mean

temperature of the driest quarter (P < 0.01). TP was positively

correlated with annual precipitation (P < 0.05). However, there was

a negative correlation between TS and precipitation of the driest

quarter (P < 0.05). For all Picea species, TR was not correlated with

any climatic factor (P > 0.05). These results clearly indicated that

climatic factors of their native range had driving effects on bark

anatomical traits. In addition, we found no significant differences

(P > 0.05) in bark anatomical traits between dry and moist

conditions (Supplementary Figure 2). This study suggested that

the PH and TP of bark in Picea species are driven by temperature-

related factors of their native range while TS is influenced by

precipitation-related factors, but all traits are relatively insensitive

to moist and dry environments at the global scale.
4 Discussion

In this study, we assessed the interspecific patterns in bark

anatomical traits of Picea species and analyzed the phylogenetic

relationships and climatic drivers underlying the differences in bark

anatomical traits. The large variability in bark anatomical traits

among the 23 Picea species suggested that species had a significant

influence on bark anatomical traits. In addition, some of the bark

anatomical traits exhibited synergistic relationships, there were no

obvious trade-offs between traits. In general, bark anatomical traits

showed only a slight influence from phylogeny, but strong

influences from climatic factors of their native range.
4.1 Functions and interspecific variation in
bark anatomical traits

It is generally accepted that tree phenotypes are shaped by a

combination of genetic, developmental, and environmental factors
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TABLE 3 Differences in bark anatomical traits of 23 Picea species.

TP RP TR/RR TS/RS TP/RP

.17 ±

.28h
32.44 ±
7.48i

3.03 ±
1.51abc

1.94 ±
0.58abc

1.35 ±
0.36ghi

.26 ±

.29efg
32.37 ±
8.99i

2.20 ±
0.30bc

1.86 ±
0.57cdefg

1.49 ±
0.38bcdefg

.10 ±

.41bc
37.76 ±
7.3efg

2.08 ±
0.27bc

2.04 ±
0.52ab

1.59 ± 0.49ab

.94 ±

.96efgh
35.62 ±
7.79gh

1.98 ±
0.47bc

1.69 ±
0.47gh

1.39 ±
0.81efgh

.44 ±

.98bc
45.38 ±
8.11a

1.54 ±
0.19c

1.88 ±
0.5bcdef

1.36 ±
0.35fghi

.50 ±

.07de
36.44 ±
6.81fg

1.78 ±
0.11bc

1.69 ±
0.53gh

1.5 ±
0.47abcde

.21 ±

.67efg
32.26 ±
5.91i

2.34 ±
0.74bc

1.93 ±
0.5abcd

1.56 ± 0.38ab

.37 ±

.45fgh
33.08 ±
6.20i

2.21 ±
0.29bc

1.75 ±
0.52efgh

1.50 ±
0.58abcdef

.58 ±

.96cd
36.49 ±
6.97fg

2.23 ±
0.33bc

1.90 ±
0.59abcde

1.56 ± 0.35ab

.64 ±

.45cd
39.40 ±
6.4de

1.82 ±
0.23bc

1.58 ± 0.41h 1.48 ±
0.35bcdefg

.57 ±

.77i
27.34 ±
7.63j

1.75 ±
0.16bc

1.71 ±
0.45efgh

1.32 ± 0.28hi

.60 ±

.69bc
40.29 ±
6.51cd

3.41 ±
1.52ab

2.06 ± 0.69a 1.54 ±
0.46abc

.59 ± 9.15i 27.20 ±
6.74j

1.67 ±
0.19bc

1.88 ±
0.54bcdef

1.20 ± 0.15j

.46 ±

.60gh
34.19 ±
6.11hi

2.29 ±
0.57bc

1.77 ±
0.43cdefg

1.33 ± 0.34hi

.08 ±

.02bc
39.33 ±
7.27de

1.59 ±
0.22c

1.88 ±
0.59bcdef

1.53 ±
0.45abcd

.28 ±

.28b
42.10 ±
9.02bc

2.03 ±
0.25bc

1.71 ±
0.5fgh

1.54 ±
0.35abc

.43 ±

.52fgh
32.92 ±
6.86i

1.59 ±
0.17c

1.75 ±
0.56efgh

1.42 ±
0.47cdefgh
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P. abies
152.44 ±
20.37lmn

1,027.07 ±
240.00fg

1,129.01 ±
399.25de

572.64 ±
358.76abc

201.14 ±
122.09cdef

25.79 ±
3.77defgh

26.04 ±
6.47bc

14.02 ±
3.47bc

4
1

P. asperata
263.06 ±
46.23efghi

795.62 ±
104.77jkl

574.61 ±
130.82m

381.64 ±
152.04bc

169.21 ±
50.63def

27.70 ±
7.63cdefg

19.67 ±
7.79i

10.91 ±
3.99h

4
2

P.
brachytyla

221.34 ±
25.44hijk

1,064.76 ±
83.57ef

1,251.31 ±
172.58c

315.49 ±
133.30bc

157.77 ±
77.20ef

28.57 ±
3.78bcdef

27.99 ±
4.37a

14.23 ±
2.63abc

5
1

P.
crassifolia

236.24 ±
27.53ghij

891.88 ±
226.41hij

651.91 ±
168.33lm

376.33 ±
121.88bc

192.27 ±
59.52def

31.97 ±
10.31bc

18.35 ±
4.63j

11.27 ±
2.97gh

4
2

P.
engelmannii

251.80 ±
42.18fghi

1,488.89 ±
283.90b

847.13 ±
59.70hij

530.50 ±
279.24abc

332.60 ±
129.52ab

20.12 ± 4.08i 21.08 ±
4.74fgh

11.59 ±
2.48gh

6
1

P. glauca
196.84 ±
64.79jkl

900.86 ±
133.34hij

759.96 ±
312.46jk

419.34 ±
185.22bc

234.98 ±
100.05bcdef

32.73 ± 4.05b 20.25 ±
4.15ghi

12.54 ±
2.64ef

5
1

P. jezoensis
265.98 ±
55.94efgh

961.60 ±
234.90gh

1,088.06 ±
88.46ef

447.10 ±
365.68bc

177.26 ±
79.34def

23.01 ±
3.03hi

25.16 ±
5.57cd

13.39 ±
2.59cde

5
1

P.
koraiensis

346.41 ±
102.34c

850.69 ±
106.21hijk

1,002.67 ±
134.55fg

288.76 ±
64.54c

132.32 ± 34.41f 21.52 ±
2.81hi

24.56 ±
5.64d

14.62 ±
3.02ab

4
1

P.
likiangensis

321.68 ±
103.65cd

886.67 ±
140.90hij

1,202.14 ±
180.66cd

403.62 ±
46.10bc

183.49 ±
26.25def

29.28 ±
4.54bcde

26.26 ±
6.50bc

14.65 ±
4.31ab

5
1

P. mariana
297.31 ±
64.77def

809.71 ±
110.74ijkl

955.14 ±
161.72g

347.21 ±
94.69bc

189.30 ±
38.89def

23.97 ±
3.69fghi

16.28 ± 3k 10.72 ±
2.42h

5
1

P. meyeri
178.70 ±
43.77klm

740.11 ±
114.94l

669.91 ±
84.29klm

325.87 ±
108.37bc

186.48 ±
58.80def

24.77 ±
6.67efgh

21.49 ±
3.49efg

13.10 ±
2.99de

3
1

P.
neoveitchii

264.50 ±
38.30efghi

1,169.97 ±
235.23cd

1,228.93 ±
238.63c

622.69 ±
370.49ab

182.80 ±
63.94def

27.94 ±
4.46cdef

26.36 ±
5.64bc

13.43 ±
2.64cde

6
1

P. obovata
283.13 ±
36.69defg

718.70 ±
137.45l

744.17 ±
238.56jkl

411.34 ±
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243.82 ±
102.56bcdef

23.24 ±
2.89ghi

19.98 ±
5.26hi

11.02 ±
2.90gh

3

P. omorika
172.56 ±
28.90lmn

718.76 ±
136.24l
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109.54kl
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235.28bc

189.88 ±
148.63def

28.86 ±
5.44bcde

16.89 ±
3.77k

9.77 ± 1.93i 4
1

P. orientalis
131.14 ±
22.10n

1,108.09 ±
111.82def

843.60 ±
165.93hij

478.49 ±
286.42bc

310.23 ±
186.20abc

29.21 ±
4.17bcde

17.12 ±
4.35jk

9.47 ± 1.99i 5
1

P. pungens
442.66 ±
159.88a

777.27 ±
191.99kl

578.32 ±
359.03m

803.80 ±
713.79a

384.92 ±
309.76a

37.09 ± 8.79a 16.32 ±
5.11k

9.78 ± 2.79i 6
1

P. purpurea
301.63 ±
132.18de

865.64 ±
213.61hijk

770.77 ±
136.88jk

410.74 ±
269.33bc

254.43 ±
161.22bcde

25.46 ±
2.67defgh

19.64 ±
3.72i

11.9 ±
3.11fg
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(Coleman et al., 1994). Our study revealed specific interspecific

differences in anatomical traits of the outer and inner bark,

suggesting that the bark performs different functions among

species. Sieve cells mainly perform the axial transport of

assimilates, whereas parenchyma cells perform the radial transport

of assimilates (Deng et al., 2020). Different bark anatomical structures

determine bark functional traits, for example, differences in the radial

structures of the phloem lead to discontinuities in the radial

distribution of in-situ water content and saturation osmotic

potential (Rosner et al., 2001). Bark is multifunctional and involved

in the transport of photosynthetic assimilates, transpiration of plants,

mechanical support, and defense against fire, insects, and pathogens.

Bark often has lenticels that regulate water loss under dry conditions

(Lendzian, 2006). Studies have shown that bark transpiration under

drought conditions can be the source of more than half of the water

loss from the plant and that transpiration from bark is generally a

passive process not associated with plant metabolism (Lintunen et al.,

2021). This water dissipation function tends to be more closely

related to the outer bark (Loram-Lourenço et al., 2022), while

water storage and transport are more related to the structure and

function of the inner bark (Loram-Lourenço et al., 2020). Picea

species typically have lenticels in the outer bark associated with

water loss (Rosner and Kartusch, 2003), but lenticel anatomy was not

studied here. Cortex contains chloroplasts that perform

photosynthesis, reduce CO2 production by the stem, and prevent

acidification of the cortex (Pfanz, 2008). Bark tissues have ecological

strategies appropriate to the environment of different locations, with

thicker bark occurring in fire-prone areas and thinner bark in tropical

areas (Paine et al., 2010). Similarly, bark in areas with high insect

infestation rates exhibited a denser composition and other induced

defense strategies (Franceschi et al., 2005) associated with specific

bark structures.

In addition, the structure of the phloem in the bark changes with

age. For example, sieve cells tend to accumulate and take on irregular

shapes. Furthermore, the thickening of the cell walls of parenchyma

cells can turn them into stone cells, thus halting their cellular activity

(Schweingruber et al., 2019). All species in our study were 12 years

old, which controlled for any error caused by differences in age. There

were significant interspecific differences in bark anatomy, which is

similar to the results of interspecific differences in needle anatomy of

Picea (Wang et al., 2021). All growth conditions in our common

garden experiment were consistent, so we concluded that genetic

factors had an important influence. Correlation analysis and principal

component analysis of bark anatomical traits revealed significant

positive correlations among most anatomical traits, correlations

which were consistent even when the phylogenetic independent

contrasts were resolved (Supplementary Figure 3). This indicated

there were strong correlations among different bark anatomical traits.

Both phloem thickness and parenchyma cell size were significantly

and positively correlated, which may have been related to the

involvement of parenchyma cells in the radial transport of

assimilates. Sieve cell size was significantly negatively correlated

with the radial diameter of resin ducts, and the variation of sieve

cells might have been related to the expansion of resin ducts (Esau,

1969). Previous studies have shown that the swelling of the sieve cells

was accompanied by a decrease in the number of resin ducts, which
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had a positive effect on the resistance of the plant (Krokene et al.,

2008). Our results demonstrated that bark anatomical traits were

generally located along the same axis in the principal component

analysis, which indicated that there were no trade-offs among them,

but mostly synergistic or complementary relationships. Thus, this

study provides new insights into the unique position in which the

bark economics spectrum (BES) is located in the plant economics

spectrum (PES) (Li et al., 2022).
4.2 Drivers of variation in bark anatomical
traits of Picea species

Except for TR, there were no significant phylogenetic signals for

bark anatomical traits in any of the 23 Picea species. This indicated

that phylogeny has little influence on the variation in bark

anatomical traits, which was similar to the observation that bark

thickness traits of angiosperms were not significantly influenced by
Frontiers in Plant Science 09
phylogeny (Rosell et al., 2014). Our analysis indicated that climatic

factors of their native range have a strong influence on bark

anatomical traits. Martıń-Sanz et al. (2019) found that dry

conditions were not conducive to bark biomass partitioning and

thus led to thinner bark, which is generally consistent with the

positive correlation between the precipitation of the wettest quarter

(PREWQ) and phloem thickness in our study. The mean

temperature of the driest quarter had a strong effect on

parenchyma cell size, which increased significantly with

increasing temperature. There can also be seasonal differences in

saturated osmotic pressure in the secondary phloem (Rosner et al.,

2001), which may be related to the climate-driven nature of the

phloem structure. Previous studies have revealed associations

between parenchyma cell size and the partitioning of

nonstructural carbohydrates, a mechanism of assimilate

partitioning that regulates osmotic pressure in the phloem and is

associated with plant resistance to embolism (Janssen et al., 2020).

Poorter et al. (2014) concluded that there were no significant
TABLE 4 ANOVA of bark anatomical traits among 23 Picea species. For trait abbreviations, see Table 1.

Variance
Statistics

PE CO PH TR RR PR TS RS TP RP TR/
RR

TS/
RS

TP/
RP

Interspecific F 29.56 59.01 67.39 1.91 3.68 8.31 73.29 41.19 37.16 51.13 1.74 4.66 7.33

P < 0.001 < 0.001 < 0.001 < 0.05 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.05 < 0.001 < 0.001

Intraspecific F 7.92 8.17 16.11 2.06 3.14 3.02 19.47 11.65 11.51 11.44 1.20 4.89 5.24

P < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 0.2059 < 0.001 < 0.001
fronti
FIGURE 3

Principal component analysis of bark anatomical traits. For trait abbreviations, see Table 1.
ersin.org

https://doi.org/10.3389/fpls.2023.1201553
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Nie et al. 10.3389/fpls.2023.1201553
differences in bark characteristics between dry and moist forests,

however, our results suggested that bark anatomical traits were

more strongly driven by temperature than moisture conditions.

Previous studies have shown that resin ducts are associated with

conifer defense functions, with wide resin ducts providing more
Frontiers in Plant Science 10
resin and more effective protection to conifers (Mason et al., 2019).

It has also been shown that the number of resin ducts is strongly

correlated with temperature (Novak et al., 2013), which is consistent

with our finding of a weak correlation between resin duct size and

temperature. There was a weak negative correlation between resin

ducts and the precipitation of the wettest quarter (PREWQ) in our

study, suggesting that resin production may be reduced under less

stressful conditions. Bark surface insect activity and microbial

composition are often linked to bark anatomical traits. For

example, the bark structure of inverted wood is associated with

invertebrate and microbial composition within communities, and

the greater the overall variation in bark traits, the greater the

variation in faunal community composition and species richness

on its surface (Zuo et al., 2016). The cortex and phloem are mostly

living tissues consisting of multiple layers of parenchyma cells and

sieve cells in which chemicals such as phenolics, terpenoid resins,

and alkaloids provide a second layer of protection for the tree

(Franceschi et al., 2005). In conclusion, bark exhibits corresponding

physiological and ecological strategies when disturbed by biotic and

abiotic factors.
5 Conclusions

Our common garden experiment revealed large interspecific

differences in bark anatomical traits. Bark anatomical traits were

not phylogenetically influenced but were influenced by climatic

conditions of the plant origin. Interspecific variation in bark
FIGURE 4

Correlations among bark anatomical traits of 23 Picea species. *: P < 0.05, **: P < 0.01, ***: P < 0.001. For trait abbreviations, see Table 1.
TABLE 5 Phylogenetic signals of bark anatomical traits.

Bark anatomical traits Pagel’s l Blomberg’s K

PE < 0.001 0.17

CO 0.05 0.30

PH < 0.001 0.25

TR 0.94 0.47*

RR 0.39 0.33

TR/RR < 0.001 0.26

PR < 0.001 0.20

TS < 0.001 0.23

RS < 0.001 0.19

TS/RS < 0.001 0.27

TP 0.24 0.25

RP 0.48 0.39

TP/RP < 0.001 0.12
*: P < 0.05. For trait abbreviations, see Table 1.
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FIGURE 5

Phylogenetic relationships of Picea species and the variability in their bark anatomical traits. Different heatmap colors represent different bark
anatomical trait sizes. All bark anatomical traits were normalized to 0-1. For trait abbreviations, see Table 1.
FIGURE 6

Correlation between bark anatomical traits and climatic factors in 23 Picea species. PE, periderm thickness; CO, cortex thickness; PHm phloem
thickness; TRm tangential diameter of resin duct; PR, width of phloem ray; TS, tangential diameter of sieve cell; TP, tangential diameter of
parenchyma cell; AMT, annual mean temperature; MTWQ, mean temperature of the wettest quarter; MTDQ, mean temperature of the driest
quarter; APRE, annual precipitation; PREWQ, precipitation of the wettest quarter; PREDQ, precipitation of the driest quarter; AI, aridity index. All
climatic factors were acquired in their native range. *: P < 0.05, **: P < 0.01.
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anatomical traits is an important driver of multifunctional variation

in bark. It appeared that all bark anatomical traits contributed in the

same dimension, influencing to the mechanical and chemical

defenses of the plant. In addition, bark anatomical traits were

driven by climatic factors at the seed source, which may indicate

long-term climatic adaptation by the plants. Our study provided

important new insight into the variability of bark anatomical traits

in Picea, but this effort should be followed by controlled

experiments to elucidate the plasticity of bark structures and use

molecular techniques to reveal the functions and mechanisms of

bark structural variation.
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