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Introduction: Real-time fruit detection is a prerequisite for using the Xiaomila

pepper harvesting robot in the harvesting process.

Methods: To reduce the computational cost of the model and improve its

accuracy in detecting dense distributions and occluded Xiaomila objects, this

paper adopts YOLOv7-tiny as the transfer learning model for the field detection

of Xiaomila, collects images of immature and mature Xiaomila fruits under

different lighting conditions, and proposes an effective model called YOLOv7-

PD. Firstly, the main feature extraction network is fused with deformable

convolution by replacing the traditional convolution module in the YOLOv7-

tiny main network and the ELAN module with deformable convolution, which

reduces network parameters while improving the detection accuracy of multi-

scale Xiaomila targets. Secondly, the SE (Squeeze-and-Excitation) attention

mechanism is introduced into the reconstructed main feature extraction

network to improve its ability to extract key features of Xiaomila in complex

environments, realizing multi-scale Xiaomila fruit detection. The effectiveness of

the proposed method is verified through ablation experiments under different

lighting conditions and model comparison experiments.

Results: The experimental results indicate that YOLOv7-PD achieves higher

detection performance than other single-stage detection models. Through

these improvements, YOLOv7-PD achieves a mAP (mean Average Precision) of

90.3%, which is 2.2%, 3.6%, and 5.5% higher than that of the original YOLOv7-tiny,

YOLOv5s, and Mobilenetv3 models, respectively, the model size is reduced from

12.7 MB to 12.1 MB, and the model’s unit time computation is reduced from 13.1

GFlops to 10.3 GFlops.

Discussion: The results shows that compared to existing models, this model is

more effective in detecting Xiaomila fruits in images, and the computational

complexity of the model is smaller.
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1 Introduction

As one of the important vegetable crops, chili pepper has the

highest output value and benefit (Ye et al., 2021). The special chili

pepper industry has become the pillar industry for agricultural and

rural economic development in some areas of Yunnan (Ren et al.,

2022).Currently, the research on chili pepper harvesting machinery

in China mainly focuses on the one-time harvesting of bell peppers,

linear peppers, and other chili pepper varieties (Zhang and Xu,

2019; Su et al., 2021; Yuan et al., 2021). However, Xiaomila peppers

in Yunnan are harvested in batches during the flowering and

fruiting periods, and traditional mechanical one-time harvesting

methods cannot adjust to the characteristics of Xiaomila pepper

picking (Zhu et al., 2022).

With the advent of agricultural digitization 4.0 (Abbasi et al., 2022),

advanced sensor technology, the Internet of Things (IoT), and artificial

intelligence (AI) are widely used for fruit detection, information

collection, and fruit analysis in agriculture (Chamara et al., 2022),

and agricultural picking robots have entered the public’s vision. The

rapid and accurate detection of ripe fruits has become a research hot

spot (Lv et al., 2022). The green and ripe fruit of Xiaomila has a light

yellow-green peel, and smooth, or slightly wrinkled skin, and a single

plant has a high fruit-bearing rate, with irregularly distributed space,

making it difficult to detect Xiaomila with an embedded device in the

orchard or field environments. Therefore, it is very necessary to carry

out research on lightweight target detection methods for crop fruits

with dense targets, small sizes, and high occlusion.

At present, two methods are mainly used for fruit target

detection. One is the traditional image detection and segmentation

technology that mainly uses color (Janani and Jebakumar, 2023;

Tajdar et al., 2023), texture (Alshehhi and Marpu, 2023; Chapeta

et al., 2023), edge (Xie et al., 2022; Quan et al., 2023), and other

feature information. However, the shallow features can only detect

the target in a limited scene, and these methods often lack

generalizability and robustness.

As deep learning network has been widely applied to crop

target detection (Fu et al., 2022), researchers began to use deep

learning networks to solve crop detection problems in complex

environments. For example, Iqbal and Hakim (2022) proposed a

deep learning-based method for automatic classification and grading

of eight harvested mango varieties using Inception v3, considering

features such as color, size, shape, and texture. The proposed

approach achieved up to 99.2% classification accuracy and 96.7%

grading accuracy. However, this study was conducted under a single

background condition and did not consider the impact of complex

background conditions in non-structured environments on

recognition. Zhou et al. (2023) modified the YOLOv7 model to

detect Camellia oleifera fruits and determine the center point of the

fruit recognition frame. Image processing and a geometric algorithm

were used to process the image, segment the fruit, determine its

morphology, extract the centroid of the fruit’s outline, and analyze

the position deviation between its centroid point and the center point

in the YOLO recognition frame. Accurate detection results were

achieved for Camellia oleifera fruits under different lighting

conditions and when the fruits were occluded. Tang et al. (2023a)

developed a fruit detection model based on the YOLOv4-tiny
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architecture. The proposed method utilizes the generated bounding

boxes from the model to extract the regions of interest for fruits.

Subsequently, an adaptive stereo matching is performed based on the

bounding box generation mechanism. The model demonstrates

robust fruit detection under various lighting conditions. However,

these studies are specifically focused on regular-shaped Camellia

oleifera fruits and may not be applicable to irregularly growing

Xiaomila peppers with varying growth directions. Wang et al.,

(2022) modified the YOLOv5s model (YOLOv5sCFL) by replacing

the Conv layer in the cross-stage part with GhostConv and adding a

coordinated attention (CA) layer and using a bidirectional feature

pyramid Network (BiFPN) to replace the PANet (path aggregation

network) in the neck to improve detection accuracy. While this study

improved the computational speed of the model, it did not achieve

significant improvements in terms of detection accuracy and model

size. Wu et al. (2022) proposed a fruit detection method by using the

YOLOv7 network with multi-data augmentation for detecting fruits

in complex field scenes. The proposed method effectively improves

the model’s generalization capability. However, it did not take into

account factors such as model size and runtime speed. Zhong et al.

(2022) proposed an improved fast R-CNN algorithm for the small

size and cluster growth of pepper fruits in the detection process,

which effectively improved the ability to extract small features. Cong

et al. (2023) proposed an improved Mask RCNN with the Swin

Transformer attention mechanism and exploited UNet3+ to improve

the mask head and mask segmentation quality to efficiently segment

sweet peppers of different categories under leaf occlusion. As

representatives of two-stage object detection algorithms, although

the R-CNN series algorithms have high detection accuracy, their

running speed and model parameter size are difficult to meet the

requirements of real-time detection and embedded development in

agricultural applications. Li et al. (2021) combined the idea of multi-

scale prediction and attention mechanism with the YOLOv4-tiny

backbone to improve the recognition performance of occluded and

small bell peppers. Nan et al. (2023) used NSGA II to prune the

YOLOv5l model and obtained a lightweight bell pepper detection

model. Although both of these models have achieved high accuracy in

bell pepper detection, it is important to note that the study was

conducted in orchards and did not consider various factors in

unstructured environments, such as lighting, that may affect the

accuracy of detection.The above research shows that deep learning

algorithms such as YOLO have become the mainstream fruit

detection methods, and this type of algorithm has been improved

in different ways to improve its target detection effect in unstructured

environments. However, the slow running speed of the network, the

large network weight file, and the low detection accuracy of the

network for multi-scale alternating targets and occluded targets are

still problems that need to be solved urgently (Tang et al., 2023b). To

solve these problems, this paper designs an improved YOLOv7-tiny

model. The contributions of the model proposed in this article can be

summarized as:

1) We propose a lightweight one-stage detection model based

on YOLOv7, called YOLOv7-PD, for real-time detection of

Xiaomila fruits. Deformable convolutions are used to significantly

reduce FLOPS and model weight size, while SE modules are used to

enhance the feature extraction capabilities of the network.
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2)We improve the network’s detection performance of complex

poses of Xiaomila fruits by applying techniques such as horizontal

flipping and random rotation to the original images. We also add

noise and adjust image brightness to reduce the inconsistencies in

brightness caused by different light intensities and visual sensor

differences, in order to improve clarity. Furthermore, we increase

the number of targets in the images by mosaic stitching, which

enhances the detection performance of densely-packed targets.

3) We have determined the effectiveness of the model through

ablation experiments and model comparison experiments. Among

various fruit detection models, the model proposed by us achieved

the highest accuracy and required the least number of FLOPS and

computational resources.
2 Materials and methods

2.1 Collection of a Xiaomila fruit dataset

On August 2, 2022, at Shupi Village, Yi Nationality Township,

Qiubei County, Wenshan Autonomous Prefecture, Yunnan

Province (104° 6′ 44″ N, 23° 53′ 7″ E), Yunxiao Lai No.10 was

taken as the research object. Under different natural lighting

conditions, the Intel RealSense D435i camera was placed 15 to

30 cm directly above the Xiaomila pepper plant, and the RGB

images of the Xiaomila pepper in the mature stage were collected.

The resolution of the image was 1920×1080 pixels, and a total of

1500 images were collected. The schematic diagram of the picking

method and the collected images are shown in Figures 1, 2.
2.2 Production of a Xiaomila dataset

Considering the impact of the complex environment on fruit

detection in the Xiaomila picking process, to avoid model training
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overfitting and improve the robustness of the model, the original

image was enhanced (Akbar et al., 2022; Shoaib et al., 2022; Bosquet

et al., 2023) through image mirroring, random rotation, and other

methods to improve the detection effect of the network for Xiaomila

fruits with complex postures. By adding noise and adjusting image

brightness, image brightness deviations caused by different light

intensities and differences in visual sensors were reduced. Then, the

number of objects in the image was increased through mosaic

stitching, thus improving the detection performance of dense

objects. The data enhancement method is shown in Figure 3. In

this way, the dataset was expanded to 4000 images, and the

expanded images were manually marked in the YOLO format

using Labelimg software. Then, the dataset was divided into a

training set, a test set, and a verification set at a ratio of 7: 2: 1

(the training set is used to train the network parameters, the test set

is used to test the generalization ability of the model after training,

and the verification set is used to tune the hyperparameters used in

the model training process to improve the model performance).

Besides, to ensure the reliability of the trained model, duplicated

images between datasets were removed.
2.3 Construction of the Xiaomila target
detection model

2.3.1 YOLOv7 model
The YOLOv7 model is an anchor-based target detection

algorithm, which can achieve a fast detection speed while

maintaining high accuracy. It has seven versions, namely,

YOLOv7, YOLOv7-d6, YOLOv7-e6, YOLOv7-e6e, YOLOv7-tiny,

YOLOv7x, and YOLOv-w6, to meet the needs of different

application scenarios and computing resources (Wang et al.,

2022). As shown in Figure 4, the YOLOv7-tiny framework

consists of three parts: backbone, neck, and head. The backbone

part is mainly constructed by convolution, the E-ELAN (Extended-

ELAN) module, the MPConv (Max Pooling Conv) module, and the

SPPCSPC module. Specifically, based on the original ELAN (Zhang

et al., 2022), the E-ELAN module changes the calculation block

while maintaining the transition layer structure of the original

ELAN, and it enhances the ability of network learning by

expanding, shuffling, and merging cardinality. The MPConv

module uses parameters of different precisions for convolutional

operations to trade off between computational complexity and

accuracy. The SPPCSPC module is used to enhance the expressive

power of convolutional neural networks. It is composed of two

modules: the spatial pyramid pooling (SPP) module and the cross-

stage partial network (CSP) module. The SPP module is designed

for multi-scale object detection and classification tasks. It partitions

the input feature map into multiple sub-regions by adding a pooling

layer to the network and pools each sub-region to obtain a fixed-size

feature vector. The CSP module is used to reduce network

parameters and computational complexity. It divides the network

into two parts: one for feature extraction and the other for feature

processing and fusion, thus reducing the number of parameters and

computations in the network. The combination of the SPP module

and CSP module in the SPPCSPC module can improve the
FIGURE 1

The schematic diagram of the Xiaomila collection method.
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network’s expressive power and computational efficiency

simultaneously. The neck module is used to combine feature

maps at different levels to generate feature maps with multi-scale

information to improve object detection accuracy. The head

network takes the multi-scale feature maps generated by the neck
Frontiers in Plant Science 04
network and performs object detection. The head network uses

anchor boxes to predict the location, size, and class of objects in the

input image. The predicted object boxes are then refined by a post-

processing step called Non-Maximum Suppression (NMS) to

eliminate redundant detections and improve the model’s precision.
A B C

D E F

FIGURE 3

An example of Xiaomila image enhancement: (A) original image (B) adjusting brightness (C) adding Gaussian noise (D) adding salt and pepper noise
(E) mosaic stitching (F) random angle rotation.
A B C

D E F

G H I

FIGURE 2

An example of Xiaomila data collection: (A-C) backlight; (D-F) weak light intensity; (G-I) strong light intensity.
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2.3.2 Model improvement
The backbone feature extraction network affects the parameters of

YOLOv7, and its depth determines the speed of model detection. To

meet the requirements of real-time detection, this study replaces the

traditional convolution operation with the deformable convolution

operation. The shape and size of each convolution kernel (filter) in the

traditional convolution operation are pre-defined, and they cannot be

changed during the convolution process, making it difficult to adapt to

the shape change of the target. To solve the problem of the limited

detection ability of traditional convolutional neural networks, Dai et al.

(2017) proposed deformable convolution, as shown in Figure 5. The

deformable convolution introduces a learnable deformable offset

(deformable offset) so that the convolution kernel can be deformed

with different shapes and spatial positions of the input data. By using

deformable convolutions, the network can reduce the number of

convolution kernels and parameters while maintaining the same

receptive field size and the effectiveness of convolution operations.

This is because the parameters of the deformable convolution are

more compact than the traditional convolution; meanwhile, since the

shape of the convolution kernel can be adaptively changed, it is more
Frontiers in Plant Science 05
suitable for processing features of different shapes and positions. Thus,

compared with traditional convolution, deformable convolution can

reduce network parameters and improve the model’s ability to detect

dense targets at different scales on the same plant.

The attention mechanism was first proposed by MNIH (Zhang

et al., 2022) and later introduced into the field of image

classification. The visual attention mechanism embodies the

visual characteristics of the human visual system that actively

selects objects of interest and concentrates on them for

processing. This characteristic can effectively improve image

content screening, target retrieval, and image processing

capabilities (Mnih et al., 2014). The attention mechanism is a

technique used to improve the expressive power of neural

network models. It guides the learning and prediction of the

model by weighting different parts of input data, making the

model focus more on the parts relevant to the task (Nan et al.,

2023). This paper proposes to add the SE attention mechanism

module (Dai et al., 2017) to the 14th and 21st layers of the

backbone. This module (Hu et al., 2017) can adaptively adjust the

channel weight of the feature map by learning a specific weight
FIGURE 4

The architecture of the YOLOv7 network.
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vector to improve the performance of the model. As illustrated in

Figure 6, the SE attention mechanism includes two steps: the

squeeze operation and the excitation operation. Specifically, the

squeeze operation calculates the feature value of each channel

through global average pooling. This process can compress the

information of each channel into a value to obtain global

information. The excitation operation uses a fully connected

network layer to learn a non-linear function that takes as input

the feature values of each channel from the previous step and

outputs a new weight vector. Then, this new weight vector is scaled

through a sigmoid activation function to assign attention weights to

each channel. Compared with other attention mechanisms, the SE

attention mechanism uses the global average pooling and fully

connected layers, which are lightweight operations, so the SE

module can improve the detection performance of such objects

tha t a re eas i ly occ luded wi thout add ing too much

computational burden.
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2.3.3 The overall structure of the Xiaomila
detection model

Due to the high fruiting rate and irregular spatial distribution of

Xiaomila plants, as well as the presence of Xiaomila targets of

different scales on the same plant, it is difficult for most deep

learning networks to accurately identify fruits in an unstructured

environment. To address this issue, this paper replaces the 3×3

convolution kernel in the YOLOv7-tiny network skeleton with

deformable convolution, and this is called deformable convolution

(DCN). BN (batch normalization) and SiLU form the DBS module,

which reduces the number of convolution kernels and parameters

while maintaining the same receptive field as the traditional size

convolution kernel. Meanwhile, the SE module is inserted in the 14th

and 21st layers of the skeleton so that the model can learn the channel

weight of the feature map of this layer while extracting features, which

improves the detection ability of the model for small targets. The

structure of the improved framework is shown in Figure 7. When an
A B

C

FIGURE 5

The deformable convolution module: (A) The traditional convolution method (B) The deformable convolution method (C) The principle of
deformable convolution.
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image is fed into the Xiaomila network, the YOLOv7-PD network

initially resizes it to 640x640x3 before passing it through the

backbone network. The feature maps are then processed by the

DBS, ELAN, and Maxpooling modules, reducing their length and

width by half while doubling the output channels. The MP module’s

upper branch reduces the feature maps’ length and width by half via

max pooling and their channels via convolution, while the lower

branch halves the channels with the first convolution and reduces the

feature maps’ length and width with the second convolution. The

upper and lower branches are combined, producing a feature map

with half the length and width and an equal number of input and

output channels. The network assigns channel weights during feature

extraction due to SE modules added at layers 14 and 21 in the

backbone.Using the three-layer outputs of the backbone feature

extraction network, the head network produces three different-sized

feature maps. The final number of output channels is adjusted by the

Repconv module before utilizing three 1x1 convolution layers for

objectness, class, and bbox prediction tasks, yielding the Xiaomila

detection outcomes.
2.4 Model training

2.4.1 Training method and platform
The training platform is a desktop workstation equipped with

64 GB memory, an Intel Xeon® W-214 CPU, and an NVIDIA RTX

2080Ti GPU (11 GB video memory). The operating system is

Windows 11 (64-bit), the programming language is Python 3.9,

the deep learning platform is CUDA 11.6, and the framework

is Pytorch.

2.4.2 Training strategy
In the model training process, the input image size was set to

640×640, the batch size was 16, the number of iterations was 300, the

learning rate was set to 0.01, and the weight decay was set to 0.05.

Since the Xiaomila detection method was proposed by changing the

structure of the YOLOv7-tiny model, the pre-training weights
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provided by YOLOv7 cannot be used. Therefore, the YOLOv7-PD

model proposed in this paper was not added with training weights at

the training time, and the training data was saved in the model weight

file to resume training in the case of interruption at the training time.

Meanwhile, the training data of each iteration was saved for

performance comparison and analysis of the model.

2.4.3 Evaluation indicators
This paper adopted evaluation metrics including precision (P),

recall (R), mean average precision (mAP), F1 score, detection speed,

GFlops, and model weight.

mAP is the average precision of each class and the average value

of AP, its calculation formula is:

mAP =
1
C

Z 1

0
P(R)dR

The F1 score considers both precision and recall, and it can

reflect the stability of a model. A higher F1 score indicates a more

stable model. The formula for calculating the F1 score is:

F1 =
P � R� 2
P + R

P and R refer to the precision and recall of the detection model,

respectively. Precision represents the proportion of true positive

samples in the samples predicted as positive by the classifier. Recall

represents the proportion of true positive samples that are correctly

predicted as positive by the classifier among all true positive

samples. The formula for calculating precision and recall is:

P =
TP

TP + FP
� 100%

R =
TP

TP + FN
� 100%

Detection speed refers to the number of image frames that the

network model can detect per second. GFlops refers to the number

of billions of floating-point operations performed per second, and it

is used to evaluate the computational complexity of a network.
FIGURE 6

The structure of the SE module.
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3 Results

3.1 Ablation experiment results

To investigate the impact of improved methods on detection

accuracy, different improved models were tested, and ablation

experiments were conducted. The test results are shown in Figure 8.

From the ablation experiment results, it can be seen that the

proposed YOLOv7-PD model achieves the highest detection

accuracy and the smallest model size.
3.2 Model comparison test results

To verify the advantages of the YOLOv7-PD model in detecting

Xiaomila, this paper took three lightweight network models

(Howard et al., 2019) including Mobilenetv3, YOLOv5s, and

YOLOv7-tiny (Wang et al., 2022) for performance comparison.

All deep learning detection algorithms adopted the same training
Frontiers in Plant Science 08
and test datasets, and the input image size of the models was set

to 640×640.

Figure 9 shows the mAP curve and loss curve of the models.

Compared with the unimproved YOLOv7-tiny model, the

improved YOLOv7-PD model converged faster and achieved

higher accuracy. Affected by the addition of noise in the dataset,

the mAP value of YOLOv5s began to decline after reaching the

peak, while those of the other three models were not affected by the

noise. During the training process of YOLOv7-tiny and YOLOv7-

PD models, the model loss gradually stabilized when the number of

iterations reached 100, and the final loss value tended to be stable at

around 0.08, which was lower than that of Mobilenetv3

and YOLOv5s.

Table 1 shows the comparison of each evaluation index between

YOLOv7-PD and the other three deep-learning networks in the

field detection of Xiaomila.

It can be seen from Table 1 that the mAP value of the

YOLOv7-PD model was 90.3%, which was 2.2% higher than

that of YOLOv7-tiny (88.1%), 9.9% higher than that of
FIGURE 7

The structure of the YOLOv7-PD network.
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Mobilenetv3 (80.4%), and 3.3% higher than that of YOLOv5s

(87%). The experimental results indicated that compared to other

models, YOLOv7 has advantages in all aspects. The model size of

YOLOv7-PD is 12.1 MB, and the number of calculations per

second is 10.3 GFlops. Compared with YOLOv7-tiny and

YOLOv5s, both the number of computations per unit of time

and the model size have been reduced. Compared with

Mobilenetv3, although the model size has increased, the speed

and accuracy of the model have been improved.

By analyzing the experimental results, the YOLOv7-PD model

reduces the training time and model size while improving the

detection accuracy, contributing to a lightweight detection model.

The model is significantly superior to the other three deep learning

networks in terms of model parameters, weights, GFlops, etc.,

indicating that it is more suitable for deployment on agricultural

mobile devices.
3.3 Comparison of model detection effects

To verify the Xiaomila detection performance of YOLOv7-

PD, YOLOv7-tiny, YOLOv5s, and Mobilenetv3 models, 90

Xiaomila images under different lighting conditions in the test

set were used for testing. Among these images, 33 images have

strong light intensity and include 639 Xiaomila peppers, 28

images have medium light intensity and include 491 Xiaomila

peppers, and 29 images have weak light intensity and include 582

Xiaomila peppers. The test results are shown in Table 2

and Figure 10.
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Overall, in the case of weak light intensity, the detection

difficulty increased, and in the case of strong light intensity, the

characteristics of the object were easier to learn by the model, and

most fruits can be recognized. Specifically, the YOLOv7-PD model

proposed in this paper showed better performance. The

performance of YOLOv7-tiny was similar to that of YOLOv7-PD,

which was much higher than that of YOLOv5s, and Mobilenetv3

obtained the worst performance. The results indicate that YOLOv7-

PD can still accurately recognize Xiaomila under different

lighting conditions.
FIGURE 9

The mAP curve and loss curve.
TABLE 1 The comparison of evaluation indices in the field detection.

Model Precision Recall F1 Score mAP GFlops Model Size

Mobilenetv3 84.1% 75.8% 79.95% 84.8% 11.3 10.1M

YOLOv5s 86% 77.9% 81.95% 86.7% 15.9 13.7M

YOLOv7-tiny 85.5% 81.3% 83.4 88.1% 13.1 12.7M

YOLOv7-PD 87.3% 81.3% 84.3% 90.3% 10.3 12.1M
FIGURE 8

Ablation experiment results.
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Detecting Xiaomila fruits on the Xiaomila plant in the field

environment and the occlusion problem has become the key issues

to address in the research. The current deep learning models are

difficult to accurately identify the occluded target, but the YOLOv7-

PD model proposed in this paper can detect some occluded

Xiaomila fruits, and the detection effect is shown in Figure 11.

Compared with other models, the YOLOv7-PD model significantly

improves the detection ability of fruits occluded by branches

and leaves.

Since the color of the Xiaomila fruit in the green and ripe

periods is similar to that of the stems and leaves of the plant,

other models suffer from the problem of misidentifying leaves as

fruits and missing the detection of fruits. The proposed

YOLOv7-PD model shows good performance in solving the

problem of poor detection of target fruits with similar colors,

as shown in Figure 12, In the figure, purple circles indicate

missed detections caused by similar colors, yellow circles

indicate false detections caused by similar colors, and green

circles indicate missed detections caused by dense fruit.

YOLOv7-PD demonstrates better detection performance on

occluded targets, while YOLOv7-tiny struggles to detect

partially occluded targets with larger areas. Additionally,

YOLOv5s misses the detection of two occluded fruits, while

Mobilenetv3 performs poorly in detecting occluded targets.

Xiaomila takes more than a year to ripen, and the nature of the

same period offlowers and fruits leads to a high fruit-setting rate per

plant. There are objects of different scales on the same plant, and the
Frontiers in Plant Science 10
distribution of each object is very close. For detecting large-scale

Xiaomila targets, each model can perform well. However, for the

alternate distribution of Xiaomila targets of different scales, each

model suffers from the problem of missed detection or

false detection.

It can be seen from Figure 13 that although YOLOv7-PD mis-

detects and misses a small number of small targets, it shows the

best performance compared to the other three models. The figure

highlights missed and false detections made by the model. The

green circles in the figure shows the misdetection of small targets,

and the red circles shows the missed detection of small targets: It

not only ensures the detection accuracy of Xiaomila but also

reduces the calculation amount per unit time of the model and the

size of the model weight file; besides, it can identify dense targets,

small targets, occluded targets, and targets with similar colors to

branches and leaves. The above comparative experiments indicate

that the YOLOv7-PD model proposed in this study has certain

advantages in detection speed and detection accuracy. Overall, it

can accurately identify Xiaomila under complex lighting and

background conditions, laying the foundation for Xiaomila’s

automatic picking.
4 Discussion

Compared to other single-stage models, the proposed

YOLOv7-PD model achieves better performance by reducing
TABLE 2 Xiaomila detection results under different lighting conditions.

Lighting
conditions

Model Quantity The number of correct
detections

The number of false
detections

The number of failed
detections

strong light
intensity

YOLOv7-
PD

639 562 72 77

YOLOv7-
tiny

639 559 83 80

YOLOv5s 639 550 110 89

Mobilenetv3 639 524 132 115

low light
intensity

YOLOv7-
PD

491 428 55 63

YOLOv7-
tiny

491 423 71 68

YOLOv5s 491 426 63 65

Mobilenetv3 491 410 78 81

backlight YOLOv7-
PD

582 527 49 55

YOLOv7-
tiny

582 509 58 73

YOLOv5s 582 501 61 81

Mobilenetv3 582 479 53 103
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the model weight files and improving the detection accuracy of

occluded and alternatively distributed targets in complex

environments while increasing the computational speed. To

further validate the effectiveness of the model, it was trained

on our dataset using other improved deep learning detection

methods (Li et al., 2021; Bosquet et al., 2023; Nan et al., 2023)

mentioned in this paper, and the detection results on the

Xiaomila dataset under different illuminations were compared,

as shown in Tables 3, 4.

The results indicate that compared to other pepper detection

models, the YOLOv7-PD model proposed in this paper has

advantages in both model size and detection accuracy.
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5 Conclusions

This paper proposes a method for the detection of Xiaomila fruits

in complex field environments. In this method, YOLOv7-tiny is

selected as the transfer learning model for field detection of Xiaomila

fruits. Meanwhile, the backbone extraction network is integrated with

deformable convolution, the DCN is used to replace the YOLOv7-

tiny backbone and the traditional convolution module in the ELAN

module, and the network’s ability to extract multi-scale target features

is improved. Besides, the SE attention mechanism is inserted into the

reconstructed backbone feature extraction network to improve its

ability to extract the key features of Xiaomila peppers and realize
A B C D

E F G H

I J K L

FIGURE 10

Comparison of detection results of each model under weak, medium, and strong light intensity: (A, E, I) YOLOv7-PD; (B, F, J) YOLOv7-tiny; (C, G, K)
YOLOv5s; (D, H, L) Mobilenetv3.
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A B

C D

FIGURE 11

The detection of occluded targets by each model. (A) YOLOv7-PD; (B) YOLOv7-tiny; (C) YOLOv5s; (D) Mobilenetv3.
A B

C D

FIGURE 12

The detection results of each model in detecting objects with similar colors to fruits and branches and leaves. (A) YOLOv7-PD; (B) YOLOv7-tiny;
(C) YOLOv5s; (D) Mobilenetv3.
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multi-scale Xiaomila pepper fruit detection in complex

environments. Moreover, the detection performance of three other

single-stage object detection networks is compared and analyzed.

Through the analysis of the experimental results, it can be seen that

the improved model significantly enhances the detection effect of

dense multi-scale targets while reducing the model training
Frontiers in Plant Science 13
parameters and improving the detection speed. It has achieved

excellent performance on the Xiaomila dataset with complex

backgrounds and different lighting conditions.

There are certain limitations to this study because the algorithm

proposed in this article can only recognize the Xiaomila fruit in the

image, but in practical applications, we not only need to recognize
A B

C D

FIGURE 13

The detection of dense multi-scale targets by each model. (A) YOLOv7-PD; (B) YOLOv7-tiny; (C) YOLOv5s; (D) Mobilenetv3.
TABLE 3 Comparison of training results.

Model Precision Recall F1 mAP GFlops Model Size

YOLOv7-PD 87.3% 81.3% 84.3% 90.3% 10.3 12.1M

YOLOv4-tiny (Li et al., 2021) 85.9% 78.9% 82.4% 86.8% 48.2 30.9M

YOLOv5l (Nan et al., 2023) 86.2% 79.9% 83.05% 87.2% 41 22.3M
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the Xiaomila fruit but also locate it. In future work, we will

concentrate on the detection of Xiaomila picking points and the

determination of Xiaomila’s growth direction with a depth camera

and migrate the detection model to the embedded device to realize

the automatic picking of Xiaomila.
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