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Acid soil syndrome leads to severe yield reductions in various crops worldwide. In

addition to low pH and proton stress, this syndrome includes deficiencies of

essential salt-based ions, enrichment of toxic metals such as manganese (Mn)

and aluminum (Al), and consequent phosphorus (P) fixation. Plants have evolved

mechanisms to cope with soil acidity. In particular, STOP1 (Sensitive to proton

rhizotoxicity 1) and its homologs are master transcription factors that have been

intensively studied in low pH and Al resistance. Recent studies have identified

additional functions of STOP1 in coping with other acid soil barriers: STOP1

regulates plant growth under phosphate (Pi) or potassium (K) limitation,

promotes nitrate (NO3
-) uptake, confers anoxic tolerance during flooding, and

inhibits drought tolerance, suggesting that STOP1 functions as a node for

multiple signaling pathways. STOP1 is evolutionarily conserved in a wide range

of plant species. This review summarizes the central role of STOP1 and STOP1-

like proteins in regulating coexisting stresses in acid soils, outlines the advances

in the regulation of STOP1, and highlights the potential of STOP1 and STOP1-like

proteins to improve crop production on acid soils.

KEYWORDS
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Introduction

About 30% of the world’s ice-free land and 50% of the world’s potentially arable lands

are acidic (characterized by pH<5.5) (von Uexküll and Mutert, 1995). Approximately 60%

of the acid soils occur in tropical or subtropical regions (Kochian et al., 2004), where

rainfall is high, leaching is intense, and the soil’s water-holding capacity is low. As a result,

acid soils usually have many other factors besides low pH that can impair crop production

(Delhaize and Ryan, 1995), including: (a) hypoxia stress caused by submergence and water-

logging (Voesenek and Bailey-Serres, 2015); (b) deficiency of soluble basic cations of K,

calcium (Ca), and magnesium (Mg) caused by leaching (Krug and Frink, 1983; von Uexküll

and Mutert, 1995); (c) dissolving and enrichment of insoluble iron (Fe), Al, and Mn in

oxides caused by low pH and hypoxic conditions (Kochian et al., 2004); (d) passivation and

deficiency of Pi caused by the fixation of reactive toxic metals (Kochian et al., 2004; Zheng,
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2010) together with (e) unbalanced nitrogen nutrition with

predominantly ammonium (NH4
+) rather than NO3

- (Kidd and

Proctor, 2001). These factors also accelerate the process of

soil acidification.

Acid soils inhibit root elongation and function, affect root water

and nutrient uptake, and suppress plant growth (Ma, 2007). As

early responsive factors to environmental signals, transcription

factors play an essential role in stress resistance. STOP1 is a

critical Cys2His2-type zinc finger transcription factor for proton

tolerance and Al resistance (Iuchi et al., 2007). Recent studies

further demonstrated that STOP1 is involved in regulating

nutrient homeostasis and multiple stress tolerance in acid soils. In

the post-genomic era, molecular breeding and genetic engineering

are effective measures to improve the stress resistance of various

crop species. Identification and functional characterization of

STOP1 offer promising results for overcoming acid soil syndrome

(Iuchi et al., 2007). This review focuses on recent advances in the

biological function and regulatory processes of STOP1, which

highlights the application of STOP1 and STOP1-like proteins in

improving crop resistance to acid soil syndrome.
Overview of STOP1 and STOP1-
like proteins

STOP1 is a C2H2 zinc finger transcription factor originally

identified by forward genetics in Arabidopsis (Arabidopsis

thaliana). The stop1 mutant was screened for its low pH

sensitivity, and subsequent research showed that this mutant is

also hypersensitive to Al stress (Iuchi et al., 2007). STOP1 localizes

to the nucleus and up-regulates the expression of many genes

involved in low pH tolerance and Al resistance (Sawaki et al.,

2009). Recent studies revealed that STOP1 is essential for low-O2

(Enomoto et al., 2019), low-Pi (Balzergue et al., 2017; Mora-Macias

et al., 2017), low-K (Wang et al., 2021), drought and salt tolerance

(Sadhukhan et al., 2019) in Arabidopsis. These findings suggest that

STOP1 functions as a central factor in modulating the response to

coexisting environmental stresses in acid soils. STOP1 is

evolutionarily conserved in a wide range of crops (Garcia-Oliveira

et al., 2013; Ohyama et al., 2013; Sawaki et al., 2014; Fan et al., 2015;

Huang et al., 2018; Wu et al., 2018; Kundu et al., 2019; Silva-Navas

et al., 2021). Homologs of the Arabidopsis STOP1 (AtSTOP1) exist

in wheat (Triticum aestivum), rice (Oryza sativa), soybean (Glycine

max), tobacco (Nicotiana tabacum), sorghum (Sorghum bicolor),

cotton (Gossypium hirsutum), rye (Secale cereale), and rice bean

(Vigna umbellata), etc. Many plant species possess multiple STOP1-

like proteins (Figure 1). Studies on the biological functions of

STOP1-like proteins mainly focused on low pH tolerance and Al

resistance. AtSTOP2, the paralog of AtSTOP1, is a physiologically

minor isoform that activates the transcription of several AtSTOP1-

regulated genes in Arabidopsis (Kobayashi et al., 2014). Knockdown

of AtSTOP2 did not alter proton or Al sensitivity, but

overexpression of AtSTOP2 partially rescued the low pH

sensitivity of Atstop1 (Kobayashi et al., 2014). This is consistent

with the fact that AtSTOP2 has lower expression and functions
Frontiers in Plant Science 02
downstream of AtSTOP1, suggesting a possible unequal functional

redundancy between them.

Similarly, OsART1 (Al resistance transcription factor 1), a

STOP1 homolog in rice, was identified by mutant screening and

map-based cloning (Yamaji et al., 2009). As a core transcription

factor for Al resistance, OsART1 regulates many Al resistance genes

through direct promoter binding and transcription activation

(Tsutsui et al., 2011). Although not so sensitive as Osart1, the

Osart2 mutants also showed reduced growth under Al3+ treatment

(Che et al., 2018). However, unlike AtSTOP1, mutation of OsART1

or OsART2 in rice did not increase sensitivity to proton stress

(Yamaji et al., 2009; Che et al., 2018). One possible reason is that

OsART1 and OsART2 function redundantly with their homologs in

regulating low pH tolerance; since rice has six copies of STOP1-like

proteins, neither OsART1 nor OsART2 is the closest homolog to
FIGURE 1

Phylogenetic analysis of STOP1-like proteins in representative crop
species. The plant STOP1-like proteins analyzed include
representatives from Arabidopsis (Arabidopsis thaliana Araport11
data: AtSTOP1, At1G34370; AtSTOP2, At5G22890), soybean (Glycine
max Wm82 ISU-01 v2.1 data: GmSTOP1-1, Gm10G178500;
GmSTOP1-2, Gm16G128700; GmSTOP1-3, Gm20G138900;
GmSTOP2-1, Gm13G281700; GmSTOP2-2, Gm11G153300;
GmSTOP2-3, Gm12G147100), upland cotton (Gossypium hirsutum
v3.1 data: GhSTOP1/GhSTOP1-A1, GhA02G060700; GhSTOP1-A2,
GhA09G117100; GhSTOP1-D1, GhD02G066100; GhSTOP1-D2,
GhD09G114000; GhSTOP2-A1, GhA09G088500; GhSTOP2-D1,
GhD09G088200; GhSTOP2-A2, GhA05G086600; GhSTOP2-D2,
GhD05G087900), tobacco (Nicotiana tabacum v4.5 data: NtSTOP1/
NtSTOP1-1, 0000159g0180; NtSTOP1-2, 0009001g0020; NtSTOP1-
3, 0000303g0050; NtSTOP1-4, 0004461g0030; NtSTOP2-1,
0000173g0150; NtSTOP2-2 0028281g0010; NtSTOP2-3
0000083g0190; NtSTOP2-4, 0005475g0020), rice (Oryza sativa
v7.0 data: OsART1, Os12g0170400; OsART1B, Os01g0871200;
OsART1C, Os03g0838800; OsART2, Os04g0165200; OsART2B,
Os08g0562300; OsART2C, Os02g0572900), sorghum (Sorghum
bicolor v5.1 data:SbSTOP1a, Sb01G020200; SbSTOP1b,
Sb04G188300; SbSTOP1c, Sb07G166000; SbSTOP1d, Sb
03G370700). Evolutionary relationships were inferred from amino
acid sequences using the Neighbor-Joining method in MEGA11
(Tamura et al., 2021). The branching topology pattern of the
condensed tree is shown under a 40% cut-off.
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AtSTOP1 (Figure 1). Additionally, studies of STOP1 and STOP1-

like proteins in other plant species (Table 1) showed they have

slightly different roles in response to low pH and Al stress (Yamaji

et al., 2009; Garcia-Oliveira et al., 2013; Ohyama et al., 2013;

Kobayashi et al., 2014; Sawaki et al., 2014; Fan et al., 2015; Che

et al., 2018; Daspute et al., 2018; Huang et al., 2018; Wu et al., 2018;

Kundu et al., 2019; Silva-Navas et al., 2021). Therefore, future

research is needed to evaluate the redundancy between multiple

STOP1-like proteins in some plant species, especially in response to

low pH, and to investigate whether functional preferences have

evolved between them in dealing with specific stresses. The study of

the functional preferences of STOP1-like proteins will benefit the

extension of STOP1 and STOP1-like proteins to crop

genetic improvement.
STOP1 and STOP1-like proteins
mediated low pH tolerance

Proton stress is thought to be the proximal cause of poor plant

growth in acid soils (Arnon and Johnson, 1942). The primary target

of low pH toxicity might be related to the disturbance of the stability

in the pectic polysaccharide network (Koyama et al., 2001). In

Arabidopsis, AtSTOP1-regulated AtPGIPs (Polygalacturonase

inhibitory proteins) inhibit pectin depolymerization in the root

cell wall under acidic conditions, maintain the stability of the pectic

polysaccharide network, and have a potential role in low pH

tolerance (Spadoni et al., 2006).

The balance of cellular pH is influenced by proton transport

across the membrane, H+-coupled ion transport, the production or

degradation of organic acids, and the uptake and assimilation of

nitrogen (Felle, 2001; Britto and Kronzucker, 2005; Reguera et al.,

2015; Feng et al., 2020). Activation of several transporters by

AtSTOP1 (Figure 2) has been reported to be critical for low pH

tolerance in Arabidopsis. AtSTOP1 modulates the transcription of

AtHAK5 (High-affinity K+ transporter 5) (Sawaki et al., 2009;

Nakano et al., 2020), AtSULTR3;5 (Sulfate transporter 3;5)

(Sawaki et al., 2009), H+-coupled high-affinity NO3
- symporter

gene AtNRT1.1 (Nitrate transporter 1.1) (Fang et al., 2016; Ye

et al., 2021) and AtCIPK23 (CBL-interacting protein kinase 23)

(Sawaki et al., 2009). AtCIPK23 additionally regulates the activity of

AtHAK5 (Ragel et al., 2015; Wang et al., 2021), AtAKT1

(Arabidopsis K+ transporter 1) (Li et al., 2006; Xu et al., 2006),

AtNRT1.1 (Liu and Tsay, 2003; Leran et al., 2015), and AtAMTs

(Ammonium transporters) (Straub et al., 2017; Wang et al., 2021)

through phosphorylation to influence ion uptake, overcome

rhizosphere acidification and establish a favorable cellular pH.

Besides, AtSTOP1 promotes the expression of AtTDT (tonoplast

dicarboxylate transporter) to increase the concentration of

dicarboxylate and, hence, enhance the capacity to produce OH- to

regulate the pH homeostasis in the cytosol (Hurth et al., 2005).

Several enzymes involved in metabolic processes that generate

or consume protons are also associated with low pH tolerance

(Sawaki et al., 2009). Genes encoding malic enzymes (AtME1 and

AtME2) that supply pyruvate in the biochemical pH-stat pathway
Frontiers in Plant Science 03
and enzymes (AtGDH1 and AtGAD1) that reduce H+ by

accumulating GABA in the GABA shunt pathway are

transcriptionally regulated by AtSTOP1 (Sakano, 1998; Magneschi

and Perata, 2009; Bown and Shelp, 2016). Furthermore, AtSTOP1

transcriptionally regulates its minor isoform AtSTOP2, which co-

regulates a subset of AtSTOP1-regulated genes that confer low pH

tolerance (Kobayashi et al., 2014).

Although low pH toxicity is the most direct abiotic stress in acid

soils, limited studies are still insufficient to fully elucidate the molecular

mechanisms by which plants, especially crops, respond to low pH.

Further progress is needed to increase our understanding of the

diversity and regulating mechanism of low pH resistance genes.
STOP1 and STOP1-like proteins
mediated Al resistance

Al toxicity is one of the most critical factors limiting crop yield

in acid soils (Kochian et al., 2015). In acid soils, Al3+ ions dissolved

from clay minerals enter root cells within 30 minutes and rapidly

inhibit root growth within an hour (Lazof et al., 1994; Delhaize and

Ryan, 1995). Al-induced exudation of organic acid anions from the

roots is the first barrier for plants to cope with Al toxicity. These

organic acid anions chelate Al3+ to form non-toxic compounds,

thereby inhibiting Al entry into the roots (Kochian et al., 2015). In

Arabidopsis, AtSTOP1 transcriptionally regulates genes encoding

organic acid transporters (Figure 2), including AtALMT1

(Aluminum-activated malate transporter 1) and AtMATE

(Multidrug and toxic compound extrusion), to increase the

secretion of malate and citrate, respectively (Hoekenga et al.,

2006; Liu et al., 2009; Sawaki et al., 2009). These organic acids

sequestrate toxic Al3+ in the rhizosphere, forming a non-toxic

complex to reduce plant damage. Similarly, OsART1 activates the

transcription of MATE family gene OsFRDL4 (Ferric reductase

defective-like 4) to exude citrate to cope with Al stress in rice

(Yokosho et al., 2011). Excess Al3+ can still break the barrier of

organic acids. The root cell wall is the next site where Al directly

contacts and interacts with the plant. The negatively charged groups

of pectin and hemicellulose have a high affinity for Al3+ and can

alleviate Al toxicity by reducing its entry into the root cell (Yang

et al., 2008). However, the replacement of Ca2+ by Al3+ results in a

thick and rigid cell wall. Too much Al bound to the cell wall also

inhibits root growth and development (Tabuchi and

Matsumoto, 2001).

Different strategies have evolved in plants to modify the cell wall

in response to Al toxicity. In Arabidopsis, AtSTOP1 up-regulates

AtPGIPs to strengthen the pectic polysaccharide network in the cell

wall under Al stress (Agrahari et al., 2021). In sorghum, SbSTOP1

activates the transcription of a b-1,3-glucanase gene SbGLU1 to

degrade callose and avoid cell wall rigidity (Gao et al., 2019). In rice,

OsART1 up-regulates the expression of ABC (ATP binding

cassette) transporters OsSTAR1 (Sensitive to Al rhizotoxicity 1)

and OsSTAR2 to transport UDP-glucose for cell wall modification,

which is required for Al detoxification (Huang et al., 2009). Direct

inhibition of OsMYB30 transcription by OsART1 reduces 4-
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TABLE 1 Function summary of STOP1 and STOP1-like proteins.

Low-pH tolerance Al toxicity tolerance her toxic
metals

Other stress
response Reference

t sensitive
low-oxygen, Pi,
K, salt, drought

(Iuchi et al., 2007; Balzergue et al.,
2017; Mora-Macias et al., 2017;
Enomoto et al., 2019; Sadhukhan
et al., 2019; Wang et al., 2021)

ND ND
(Kobayashi et al., 2014)

ND ND

t sensitive ND (Yamaji et al., 2009)

ND ND (Che et al., 2018)

t sensitive low-oxygen (Ohyama et al., 2013; Enomoto et al.,
2019)ND ND

ND ND

(Ohyama et al., 2013)

ND ND

ND ND

ND ND

ND ND

ND ND

(Sawaki et al., 2014)
ND ND

ND ND (Fan et al., 2015)

ND ND (Huang et al., 2018)

ND low Pi (Silva-Navas et al., 2021)

ND ND (Kundu et al., 2019)

ND ND

(Wu et al., 2018)ND ND

ND ND
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Species Gene Host Method O

pH Phenotype Concentration Phenotype

Arabidopsis thaliana

AtSTOP1 A.thaliana Mut/comp 4.7/5.0/5.2 sensitive 2 mM # sensitive n

AtSTOP2
A.thaliana RNAi 4.5/4.7/5.0 not sensitive 2/4 mM # not sensitive

Atstop1 OE/comp 4.5/4.7/5.0 slightly rescue 2/4 mM # slightly rescue

Oryza sativa
OsART1 O.sativa Mut/comp 3.5/4.0/4.5/5.0 not sensitive 10/30/50 mM # sensitive n

OsART2 O.sativa Mut/comp 3.5/4.0/4.5/5.0 not sensitive 10/30/50 mM # sensitive

Nicotiana tabacum NtSTOP1
N.tabacum RNAi 4.7/5.0/5.2 sensitive 2/4 mM # sensitive n

Atstop1 Comp 4.7 fully rescue 4 mM # slightly rescue

Lotus japonicus LjSTOP1 Atstop1 Comp 4.7 fully rescue 4 mM # slightly rescue

Populus nigra PnSTOP1 Atstop1 Comp 4.7 fully rescue 4 mM # slightly rescue

Physcomitrella patens PpSTOP1

P.patens RNAi 4.2 not sensitive 400 mM * sensitive

Atstop1 Comp 4.7 fully rescue 4 mM # partially
rescue

Camellia sinensis CsSTOP1 Atstop1 Comp 4.7 fully rescue 4 mM # cannot rescue

Eucalyptus EguSTOP1

Eucalyptus RNAi 4.0 sensitive 25 mM * sensitive

Atstop1 Comp 4.7
partially
rescue

2 mM # cannot rescue

Vigna umbellata VuSTOP1 Atstop1 Comp 4.7
partially
rescue

2 mM # slightly rescue

Sorghum bicolor SbSTOP1d Atstop1 Comp ND ND 50 mM *
partially
rescue

Secale cereale ScSTOP1 Atstop1 Comp 4.8 fully rescue 300 mM * fully rescue

Gossypium hirsutum GhSTOP1 G.hirsutum RNAi 4.4 sensitive 20 mM # sensitive

Glycine max

GmSTOP1-1 Atstop1 Comp 4.7
partially
rescue

2 mM # slightly rescue

GmSTOP1-2 Atstop1 Comp 4.7
partially
rescue

2 mM # cannot rescue

GmSTOP1-3 Atstop1 Comp 4.7
partially
rescue

2 mM # slightly rescue

Mut, mutation; Comp, complementation; OE, overexpression; ND, not described; #, hydroponic culture; *, solid medium.
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coumaric acid accumulation, preventing excess Al3+ from binding

to the cell wall (Gao et al., 2022). OsART1 also promotes the

expression of the cell wall loosening protein OsEXPA10 (Expansin-

A10) under Al stress, which regulates cell elongation but

contributes less to Al tolerance (Che et al., 2016). In addition to

the cell wall, Al3+ can also be bound to the plasma membrane-

anchored cysteine-rich peptide OsCDT3 (Cadmium tolerance 3).

OsCDT3 is downstream of OsART1, and it binds Al3+ directly to

prevent Al3+ from entering the root cell, thus alleviating Al toxicity

(Xia et al., 2013).

Despite almost 90% of the soluble Al3+ in roots being tightly

bound to the cell wall (Ma, 2007), a small proportion of toxic Al3+

entering the cell can still inhibit root growth (Lazof et al., 1996;

Blancaflor et al., 1998; Yamamoto et al., 2002). Once Al enters the

root cell, sequestration and storage of Al in the vacuole is an

essential mechanism for detoxification (Figure 2). OsART1

positively regulates the Al-induced expression of OsNRAT1
Frontiers in Plant Science 05
(NRAMP Al transporter 1) and OsALS1 (Al-sensitive 1) (Yamaji

et al., 2009). OsNRAT1 is localized to the plasma membrane, which

takes up extracellular Al3+ to alleviate cell wall damage (Xia et al.,

2010). OsALS1 is a half-size ABC transporter that sequesters the

cytoplasmic Al into vacuoles for safe storage (Huang et al., 2012).

OsNRAT1 may function cooperatively with OsALS1 to be involved

in the intracellular detoxification of Al. In addition, OsART1-

regulated OsMGT1 (Magnesium transporter 1) alleviates Al

toxicity by increasing intracellular Mg concentration (Chen

et al., 2012).

STOP1-like proteins have also been characterized in many plant

species (Table 1) and show some functional differentiation in

response to Al and low pH stress (Ohyama et al., 2013; Sawaki

et al., 2014; Fan et al., 2015; Huang et al., 2018; Wu et al., 2018). As

orthologous genes with similar functions, the transcription of

OsSTAR1 and OsALS1 in rice is regulated by OsART1, whereas

the expression of AtSTAR1 and AtALS1 in Arabidopsis is unaffected
FIGURE 2

Schematic representation of STOP1/ART1 regulation of Al resistance and nutrient acquisition. Left panel: Under Al stress, AtSTOP1 regulates AtPGIPs
to maintain cell walls stability. AtSTOP1 also up-regulates the organic acid transporter coding genes AtALMT1 and AtMATE to increase the secretion
of malate and citrate, respectively, which chelate Al in the rhizosphere. For cellular nutrient management, AtSTOP1 enhances Pi bioavailability by
regulating malate secretion and Fe-dependent remodeling of root system architecture. AtSTOP1 up-regulates the transcription of AtHAK5, AtNRT1.1,
and AtSULTR3;5 to facilitate the uptake of K+, NO3

-, and SO4
2-, respectively. In addition, AtSTOP1 regulates the activity of AtHAK5, AtNRT1.1, AtAKT1,

AtIRT1, AtNRAMP1, AtTPKs, and AtAMTs through AtCIPK23. Right panel: In rice, OsART1 transcriptionally activates OsFRDL4 to exude citrate,
positively regulates OsSTAR1/2 to maintain cell wall stability, and enhances the Al-induced expression of OsNRAT1 and OsALS1 to sequester Al into
vacuoles for intracellular detoxification. OsART1 also promotes the expression of the cell wall loosening protein OsEXPA10 and the cysteine-rich
peptide OsCDT3 to cope with Al stress. In addition, OsART1 confers Mg uptake through positive regulation of OsMGT1 transcription to alleviate the
Al toxicity. ROS, Reactive oxygen species; STOP1, Sensitive to proton rhizotoxicity 1; ALMT1, Aluminum-activated malate transporter 1; MATE,
Multidrug and toxic compound extrusion; TDT, Tonoplast dicarboxylate transporter; PGIPs, Polygalacturonase inhibitory proteins; NRAMP1/3, Natural
resistance-associated macrophage protein 1/3; CIPK23/LKS1, CBL-interacting protein kinase 23/Low potassium sensitivity 1; SULTR3;5, Sulfate
transporter 3;5; HAK5, High-affinity K+ transporter 5; NRT1.1, Nitrate transporter 1.1; AKT1, Arabidopsis K+ transporter 1; IRT1, Iron-regulated
transporter 1; TPKs, Two-pore K+ channels; AMTs, Ammonium transporters; ART1, Al resistance transcription factor 1; FRDL4, Ferric reductase
defective-like 4; STAR1/2, Sensitive to Al rhizotoxicity 1/2; EXPA10, Expansin-A10; NRAT1, NRAMP Al transporter 1; ALS1, Al-sensitive 1; MGT1,
Magnesium transporter 1. Figure created using BioRender (https://biorender.com/).
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by AtSTOP1 (Larsen et al., 2007; Huang et al., 2010). This suggests

that different living environments may affect the function of STOP1

and STOP1-like proteins by evolving their preferences for

downstream genes. For example, in dryland crops, Al-mediated

root exudation of organic acids plays a more important role in Al

resistance, whereas rice lives in an aqueous environment that easily

disrupts the organic acid barrier (Famoso et al., 2010). Thus,

STOP1-like proteins in dryland crops may tend to activate Al

resistance genes associated with organic acids secretion, while rice

may rely more on cell wall modification and internal detoxification.

In addition, overexpression of AtSTOP2 partially rescued Al

resistance and low pH tolerance of Atstop1 by restoring the

expression of AtSTOP1-regulated genes, including AtPGIP1/2,

AtALS3, and AtMATE, but not AtALMT1 (Kobayashi et al.,

2014). Whereas in rice, mutation of OsART2 did not affect the

expression of previously identified OsART1-regulated genes (Che

et al., 2018). This difference may be due to different experimental

approaches, as the knockdown of AtSTOP2 reduced the expression

of AtPGIP2 and AtCIPK23 but did not affect the transcription of

AtPGIP1, AtALS3 and AtMATE (Kobayashi et al., 2014). This

difference may also be related to rice having six STOP1-like genes

that may compensate for each other, with additional copies

increasing functional redundancy. In fact, according to RT-qPCR

results (Che et al., 2018), some of the potential downstream Al

resistance genes identified in Osart2 are also regulated by OsART1.

Differences in downstream gene sets and regulatory preferences

of STOP1-like proteins have been reported in different plants

(Table 2). In the Atstop1 complementation assay, STOP1-like

proteins showed slight differences in the activation of AtSTOP1

downstream genes (Table 3). This suggests there may be a

functional differentiation of STOP1-like proteins in different

species, or STOP1 partners in Arabidopsis not cooperating well

with STOP1-like proteins. Therefore, it is necessary to carry out in

vivo functional studies in these plants. Despite small differences in

the activation of downstream genes by STOP1 and STOP1-like
Frontiers in Plant Science 06
proteins, they remain central factors regulating Al resistance.

Further dissection and engineering of STOP1 and STOP1-like

proteins have great potential in improving Al resistance in

acid soils.
STOP1 and STOP1-like proteins
mediated nutrient homeostasis

Nutrient sensing and homeostasis are crucial for plants to adapt

to the environment. Soil acidification begins with the loss of salt-

based ions, so the acid soils are typically deficient in salt-based ions

such as K+ and Mg2+ (von Uexküll and Mutert, 1995). AtSTOP1

contributes to K uptake by mediating the transcription of AtHAK5,

which encodes a high-affinity K+ transporter (Sawaki et al., 2009).

In addition, the AtCIPK23, downstream of AtSTOP1, together with

AtCBL1/9 (Calcineurin B-like), enhances K+ uptake by

phosphorylating the K+ transporters AtHAK5 and AtAKT1 (Li

et al., 2006; Xu et al., 2006; Ragel et al., 2015; Wang et al., 2021). As a

partner of AtCBL2/3, AtCIPK23 also regulates K homeostasis

redundantly with AtCIPK3/9/26 through activating tonoplast

AtTPK (Two-pore K+) channels that promote K+ remobilization,

which plays a vital role in plant adaptation to K deficiency (Tang

et al., 2020). Besides, the AtCBL2/3-CIPK3/9/23/26 module

regulates vacuolar Mg storage, thereby influencing Mg

homeostasis (Tang et al., 2015). In rice, OsART1 transcriptionally

regulates the plasma membrane-localized Mg2+ transporter

OsMGT1 to promote Mg uptake, especially under Al treatment,

thereby increasing cellular Mg content and, on the other hand

alleviating Al toxicity (Chen et al., 2012). Apart from the deficiency

of salt-based ions, acid soils usually contain excessive levels of metal

nutrients such as Fe2+, Mn2+, and Zn2+, which in excess cause

phytotoxicity (Kochian et al., 2004). AtCIPK23 phosphorylates the

broad-spectrum high-affinity metal transceptor AtIRT1 (Iron-

regulated transporter 1) when excess non-iron metals are present
TABLE 2 Identified downstream genes of STOP1 and STOP1-like proteins.

Species Gene Method Decrease expression Reference

Arabidopsis
thaliana

AtSTOP1 Mut

AtALMT1, AtALS3, AtMATE, AtRAE1, AtPGIP1/2, AtGDH1/2, AtHsfA2, AtME1/2,
AtSTOP2, AtCIPK23, AtHAK5, AtNIA1, AtPLT3, AtSULTR3;5, AtNRT1.1, AtBG3,
AtTDT, AtCDPK2, AtCAX7, AtNRAMP3, AtMLO6, AtGRF6, AtCML10, AtESR1,

AtPP2C61, AtSAUR54

(Sawaki et al., 2009; Enomoto
et al., 2019; Zhang et al., 2019;
Agrahari et al., 2021; Ye et al.,

2021)

AtSTOP2 RNAi AtPGIP2, AtCIPK23 (Kobayashi et al., 2014)

Oryza
sativa

OsART1 Mut
OsFRDL4, OsSTAR1, OsSTAR2, OsNRAT1, OsALS1, OsMGT1, OsEXPA10, OsCDT3,

OsLAC3, Os4NPP1, OsALPHACA5
(Yamaji et al., 2009; Che et al.,

2018)

OsART2 Mut OsLAC3, Os4NPP1, OsALPHACA5, Os03g0154000 (Che et al., 2018)

Nicotiana
tabacum

NtSTOP1 RNAi NtALS3, NtMATE (Ohyama et al., 2013)

Eucalyptus EguSTOP1 RNAi EguALS3, EguMATE (Sawaki et al., 2014)

Gossypium
hirsutum

GhSTOP1 RNAi GhMATE, GhALMT1, GhALS3, GhGABAT, GhGAD (Kundu et al., 2019)

Cajanus
cajan

CcSTOP1 RNAi CcALS3, CcMATE1 (Daspute et al., 2018)
Mut, mutation.
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and bound to the histidine-rich motif of AtIRT1, which

subsequently recruits the E3 ubiquitin ligase AtIDF1, targeting

AtIRT1 to the vacuole for its degradation, thus prevent non-iron

metal toxicity (Dubeaux et al., 2018). Together with AtCBL1/9,

AtCIPK23 interacts with and phosphorylates the high-affinity Mn2+

transporter NRAMP1 (Natural resistance-associated macrophage

protein 1), promotes its clathrin-mediated endocytosis, reduces its

plasma membrane distribution and improves plant tolerance to Mn

toxicity (Zhang et al., 2023). In conclusion, AtSTOP1/OsART1

affects the uptake of metals, including K+ and Mg2+, by

controlling the transcription of their transporters directly, and

regulates the absorption of K+, Mg2+, Fe2+, Mn2+, and Zn2+ via

CIPK23-mediated phosphorylation.

In addition to affecting the homeostasis of salt-based ions and

toxic metals, AtSTOP1 regulates the uptake of non-metallic

elements. Under Pi deficiency conditions, AtSTOP1 accumulates

in the nucleus and enhances the expression of AtALMT1 and

AtMATE1 to secrete malate and citrate, respectively. These

organic acids desorb Pi from mineral surfaces and dissolve Pi

from complexes of Al and Fe oxides, increasing bioavailable Pi

concentrations in soil (Kochian et al., 2004). Furthermore,

AtSTOP1-promoted malate secretion triggers ROS (reactive

oxygen species) production and callose deposition in the presence

of the ferroxidases AtLPR1 and AtLPR2 (Low phosphate root 1 and

2), thereby regulating root system architecture, repressing primary

root elongation and stimulating lateral root development to

efficiently utilize the low mobility Pi in the topsoil (Balzergue
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et al., 2017; Mora-Macias et al., 2017). During these processes, Fe

and Al promote AtSTOP1 accumulation in the nucleus, possibly by

inhibiting AtSTOP1 degradation (Godon et al., 2019). Low Pi-

induced AtSTOP1 transcriptionally activates AtALS3, while

AtALS3 interacts with AtSTAR1 to inhibit the nuclear

accumulation of AtSTOP1 to prevent AtSTOP1 overactivation

(Wang et al., 2019). Low Pi also promotes the expression of

AtAMT1;1 and AtAMT1;2, inducing rhizosphere acidification

through NH4
+ uptake, which in turn promotes nuclear

accumulation of AtSTOP1 to increase soil Pi availability (Tian

et al., 2021). In response to the imbalance in nitrogen availability in

acidic soils, AtSTOP1-induced AtCIPK23 inhibits the transport

activity of AtAMTs through phosphorylation, which alleviates

rhizosphere acidification and avoids NH4
+ toxicity (Straub et al.,

2017; Wang et al., 2021). AtSTOP1 also controls the NO3
- uptake by

activating AtNRT1.1 transcription directly, and AtCIPK23 activates

AtNRT1.1 through phosphorylation (Ye et al., 2021). Besides,

AtSTOP1 positively regulates the expression of AtSULTR3;5 in

the root vasculature, and AtSULTR3;5 is localized to the plasma

membrane for sulfate (SO4
2-) uptake and affects the transport of

SO4
2- from root to shoot (Kataoka et al., 2004; Sawaki et al., 2009).

Collectively, STOP1 promotes Pi uptake by regulating root system

architecture and regulates the uptake of SO4
2-, NH4

+, and NO3
- by

regulating their transporters. It is interesting to note that STOP1

functions as a center for nutrient management under deprivation

conditions, controlling nutrient homeostasis other than

stress tolerance.
TABLE 3 Expression of STOP1 downstream genes in the Atstop1 mutant complemented with STOP1-like proteins.

Species Gene Method Fully restore Partially restore Cannot restore Reference

Arabidopsis
thaliana

AtSTOP2 OE/Comp
AtPGIP1, AtPGIP2,
AtALS3, AtMATE

— AtALMT1
(Kobayashi
et al., 2014)

Eucalyptus EguSTOP1 Comp AtALS3 AtCIPK23, AtSTOP2, AtMATE, AtPGIP1 AtALMT1
(Sawaki et al.,

2014)

Vigna
umbellata

VuSTOP1 Comp AtPGIP1, AtGDH1 AtCIPK23, AtSTOP2, AtALS3, AtMATE AtALMT1
(Fan et al.,

2015)

Nicotiana
tabacum

NtSTOP1 Comp AtPGIP1, AtPLT3
AtCIPK23, AtSTOP2, AtGDH1, AtALS3,

AtMATE, AtALMT1
—

(Ohyama
et al., 2013)

Lotus
japonicus

LjSTOP1 Comp —
AtPGIP1, AtCIPK23, AtSTOP2, AtALMT1,

AtGDH1, AtPLT3
AtALS3, AtMATE

Populus nigra PnSTOP1 Comp AtCIPK23,
AtPGIP1, AtSTOP2, AtALMT1, AtGDH1,

AtPLT3
AtALS3, AtMATE

Camellia
sinensis

CsSTOP1 Comp AtCIPK23, AtPGIP1, AtSTOP2, AtALMT1
AtALS3, AtMATE,
AtGDH1, AtPLT3

Physcomitrella
patens

PpSTOP1 Comp
AtCIPK23, AtALMT1,

AtMATE
AtPGIP1, AtSTOP2, AtALS3, AtGDH1, AtPLT3 —

Glycine max

GmSTOP1-1

Comp

—
AtGDH1/2, AtGABA-T, AtPMI, AtTDT,
AtMATE, AtNADP-ME2 (pH and Al3+)

—

(Wu et al.,
2018)

GmSTOP1-2 — AtGDH1/2, AtGABA-T, AtNADP-ME2 (pH)
AtPMI, AtTDT,

AtMATE,
AtNADP-ME2 (Al3+)

GmSTOP1-3 —
AtGDH1/2, AtGABA-T, AtPMI, AtTDT,
AtMATE, AtNADP-ME2 (pH and Al3+)

—

OE, overexpression; comp, complementation.
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STOP1 and STOP1-like proteins
regulate other stress responses

Approximately 60% of the acid soil occurs in rainfed areas of

the tropics or subtropics (Kochian et al., 2004), where plants are

sometimes submerged in low (hypoxia) or no oxygen (anoxia)

conditions, which are an important abiotic constraint on lowland

yields (Zeigler and Puckridge, 1995). In Arabidopsis, AtSTOP1

transcription is induced by low oxygen. Subsequently, it

contributes to low-oxygen tolerance by activating the

transcription of AtGDH1/2 and AtHsfA2 (Heat shock factor A2),

and a conserved mechanism that NtSTOP1 involved in hypoxia

tolerance has also been identified in tobacco (Enomoto et al., 2019).

Furthermore, AtSTOP1 enhances salt tolerance by transcriptionally

regulating several salt tolerance genes, including AtCIPK23, which

negatively regulates drought resistance by maintaining K+ transport

to maintain stomatal opening (Sadhukhan et al., 2019). AtCIPK23

also directly phosphorylates and activates the S-type anion channels

AtSLAC1 (Slow anion channel associated 1) and AtSLAH3 (SLAC1

homolog 3) to regulate the stomatal aperture (Maierhofer et al.,

2014). Additionally, AtSTOP1-mediated pH tolerance is involved in

the root response of plant-fungal communication between

Arabidopsis and Trichoderma (Pelagio-Flores et al., 2017).

The STOP1 homolog in pineapple (Ananas comosus) shows a

diurnal oscillation expression coinciding with the oscillation of

malate concentration in leaves and may be the key circadian

oscillator regulating CAM metabolism (Sharma et al., 2017).

Mutation of AtSTOP1 influences the transcript levels of many

genes, including AtPLT3 (Probable polyol transporter 3), AtCDPK2

(Calcium-dependent protein kinase 2), AtCAX7 (Calcium exchanger

7), AtNRAMP3, AtNIA1 (Nitrate reductase 1), AtMLO6 (Mildew

resistance locus O 6), AtGRF6 (Growth regulating factor 6),

AtCML10 (Calmodulin like 10), AtESR1 (Enhancer of shoot

regeneration 1), AtPP2C61 (Protein phosphatase 2C 61) and

AtSAUR54 (Small auxin upregulated RNA 54) (Sawaki et al., 2009;

Sadhukhan et al., 2019). DAP-seq data also showed that AtSTOP1

binds to the promoters of AtPLT3, AtCDPK2, AtCAX7, AtNRAMP3,

AtNIA1 and AtMLO6 (O'Malley et al., 2016). Further studies and

more evidence are needed to clarify whether STOP1 participates in

other biological processes through these downstream genes.
Regulation of STOP1 and STOP1-
like proteins

As a master transcription factor, the activity and protein levels

of STOP1 and STOP1-like proteins are regulated by complex

mechanisms at multiple levels, including transcriptional

regulation, post-transcriptional regulation, and post-translational

modifications. Transcript levels of AtSTOP1 and OsART1 are not

affected by low pH or Al stress, but low K+ and hypoxic stress

induce AtSTOP1 transcription in Arabidopsis (Enomoto et al.,

2019; Wang et al., 2021). In some plant species, such as sorghum

and rice bean, there exists transcriptional regulation of STOP1-like

genes in response to low pH, Al stress, or cadmium (Cd) stress
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(Table 4). In addition, the mRNA level of the STOP1 homolog in

pineapple showed a more than 3- fold diurnal oscillation within a

day, which coincided with the oscillation of malate concentration in

leaves (Sharma et al., 2017). Although the transcription of AtSTOP1

in Arabidopsis is not affected by low pH or Al stress, AtSTOP1 is

required for the expression of downstream genes such as AtALMT1

under Al stress (Iuchi et al., 2007). This suggests the existence of

some post-transcriptional regulatory mechanism that promotes the

expression of downstream genes by activating AtSTOP1 under Al

treatment. Recent studies revealed the mechanisms of RAE

(Regulation of AtALMT1 expression) genes in regulating STOP1

at the post-transcriptional level (Figure 3). The nuclear membrane

localized THO/TREX complex processes AtSTOP1mRNA with two

key members, AtRAE2/AtTEX1 and AtRAE3/AtHPR1. Mutation of

AtTEX1 or AtHPR1 decreases the protein level of AtSTOP1 in roots.

AtHPR1 affects AtSTOP1 mRNA export from the nucleus, while

AtTEX1 does not (Guo et al., 2020; Zhu et al., 2021).

The protein level of AtSTOP1 increases after Al treatment, while

the E3 ubiquitin ligase AtRAE1 interacts with and ubiquitinates

AtSTOP1, promoting its 26S proteasomal degradation (Zhang et al.,

2019). As a paralog of AtRAE1, AtRAH1 (RAE1 homolog 1) plays an

unequally redundant role in regulating AtSTOP1 stability (Fang et al.,

2021b). AtSTOP1 in turn promotes the transcription of AtRAE1/

AtRAH1, forming a negative feedback loop to prevent excessive

AtSTOP1 accumulation and over-activation of Al resistance (Zhang

et al., 2019; Fang et al., 2021b). Accumulation of AtSTOP1 under Al

treatment may result from protein modifications that prevent

AtSTOP1 from interacting with AtRAE1/AtRAH1 or inhibit its

ubiquitination. Given that inhibitors of PI (phosphatidylinositol)

signaling blocked nuclear localization of AtSTOP1 under Al stress,

other factors may contribute to the accumulation of AtSTOP1. Under

low Pi conditions, Fe and Al-promoted AtSTOP1 accumulation is

higher in the als3mutants, although the mechanism by which AtALS3/

AtSTAR1 inhibits AtSTOP1 accumulation remains unclear (Godon

et al., 2019; Wang et al., 2019). In tomato, SlRAE1 is also involved in

the ubiquitination and degradation of SlSTOP1, and SlSZP1 (STOP1-

interacting zinc finger protein 1) interacts with SlSTOP1 to protect it

from degradation by SlRAE1 (Zhang et al., 2022).

Reversible protein phosphorylation affects AtSTOP1-regulated

AtALMT1 transcription and malate secretion (Kobayashi et al.,

2007). In rye, a conserved phosphorylatable serine site in ScSTOP1

is vital for activating ScALMT1 transcription (Silva-Navas et al.,

2021). Mutation of AtCBL1 results in reduced expression of

AtALMT1, demonstrating that Ca2+ signaling may be involved in

AtSTOP1 phosphorylation via CBL–CIPK networks (Ligaba-Osena

et al., 2017). In addition, the AtMEKK1-AtMKK1/2-AtMPK4

cascade plays a role in AtSTOP1 phosphorylation. Al exposure

causes AtMPK4 to phosphorylate AtSTOP1, reducing its

interaction with AtRAE1 and thus contributing to the

stabilization and accumulation of AtSTOP1 (Zhou et al., 2023).

Furthermore, SUMOylation modifications stabilize AtSTOP1, and

blocking the SUMOylation of AtSTOP1 reduces AtSTOP1

accumulation. Mutations in the SUMO protease AtRAE5/AtESD4

affect the de-SUMOylation of AtSTOP1 and alter its association

with the promoters of different target genes (Fang et al., 2020).

Consistently, mutations in the SUMO E3 ligase AtSIZ1 reduce
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SUMOylation of AtSTOP1 and decrease the protein levels of

AtSTOP1 (Fang et al., 2021a; Xu et al., 2021).

In the nucleus, AtSTOP1 interacts with AtMED16 (Mediator 16),

a component of the transcriptional co-activation complex, and co-

regulates the expression of several downstream genes (Raya-Gonzalez

et al., 2021). While AtBZR1 (Brassinazole resistant 1) competitively

inhibits the activation of AtALMT1 expression by AtSTOP1 (Liu et al.,

2022). In sorghum, SbSTOP1d is self-interacting and interacts with

SbSTOP1b, suggesting that SbSTOP1s may function as homodimers

or heterodimers (Huang et al., 2018). The ability that STOP1 to

regulate the expression of different genes under different stress

conditions suggests that these environmental signals may activate or

modify STOP1 in various manners, or there are different kinds of

proteins that interact with STOP1 and regulate its promoter binding

preferences. Further studies are required to elucidate how these

interacting proteins affect the function of STOP1 and STOP1-like

proteins, and whether STOP1 and STOP1-like proteins undergo

different modifications in response to different environments.
Concluding remarks and
future perspectives

In addition to low pH and proton stress, acidic soils often have

many other coexisting factors that impair crop yields. With significant

advances in our understanding of the acid soil syndrome, researchers
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are becoming increasingly aware that although tolerance to low pH is a

prerequisite for plant growth in acid soils, STOP1 tolerance is not

limited to proton tolerance and Al resistance, but also includes

enhanced bioavailability of Pi and other nutrients, as well as

tolerance to other limiting factors. As a core transcription factor to

cope with acid soil syndrome, STOP1 is a node for the cross-talk of

multiple environmental signals. The phenomenon that STOP1

determines many different traits is a classic case of pleiotropy. An

evolutionarily effective strategy is using a limited number of genes to

perform more functions through combinations of transcriptional

regulation, mRNA processing, protein modification, and protein-

protein interaction. Because STOP1 has a role in resistance or

tolerance to many different stresses, applying STOP1 or STOP1-like

proteins in agricultural production is expected to improve crop

resistance to acid soil syndrome.

In this review, we summarized the biological functions of STOP1

and STOP1-like proteins, especially in the context of the various

constraints of acid soil syndrome. We hope this will provide

researchers with insights into exploiting STOP1 and STOP1-like

proteins, related signaling components and regulatory networks

through molecular breeding and biotechnology to improve crop

tolerance to acid soil syndrome, especially those plants that are not

well adapted to acid soils, such as alfalfa and soybean. Genome editing

is a powerful tool for improving crop varieties. By knocking in cis-

elements or high-throughput editing at the STOP1 promoter region

(Shen et al., 2023; Tian et al., 2023), STOP1 expression can be

environmentally induced or constitutively enhanced. The STOP1
TABLE 4 Expression induction of STOP1 and STOP1-like genes.

Species Gene Expression
induced by H+

Expression
induced by Al3+

Expression induced by
other stress Reference

Arabidopsis
thaliana

AtSTOP1 No No low K, low O2
(Iuchi et al., 2007; Enomoto et al.,

2019; Wang et al., 2021)

Oryza sativa
OsART1 No No ND (Yamaji et al., 2009)

OsART2 slightly Yes ND (Che et al., 2018)

Vigna
umbellata

VuSTOP1 Yes Yes Cd (Fan et al., 2015)

Secale cereale ScSTOP1 ND No ND (Silva-Navas et al., 2021)

Cajanus
cajan

CcSTOP1 ND No ND (Daspute et al., 2018)

Sorghum
bicolor

SbSTOP1a Yes Yes Cd

(Huang et al., 2018)
SbSTOP1b Yes Yes Cd

SbSTOP1c Yes Yes No

SbSTOP1d No Yes Cd

Triticum
aestivum

TaSTOP1-A No Yes ND

(Garcia-Oliveira et al., 2013)TaSTOP1-B Yes No ND

TaSTOP1-D No No ND

Glycine max

GmSTOP1-1 ND Yes ND

(Wu et al., 2018)GmSTOP1-2 ND Yes ND

GmSTOP1-3 ND Yes ND
ND, not described.
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protein also can be stabilized by point substitution through base

editing of phosphorylation sites (Tian et al., 2022). In addition, the

strength of the STOP1 effect can be fine-tuned by modulating

potential regulators of STOP1.

Although many regulators of STOP1 under Al stress have been

identified, STOP1 and STOP1-like proteins are also regulated by

multiple stress signals on acidic soils. Future studies of the regulatory

mechanisms of STOP1 may identify more upstream components in the

signaling pathway, determine how different receptors sense different

upstream signals, and investigate how downstream genes are precisely

regulated by STOP1 or STOP1-like proteins. It appears that there are

‘toomany’ genes regulated by STOP1 or STOP1-like proteins, and it will

also be possible to classify the main process in which STOP1 is involved

and to target specific downstream genes to improve a particular trait.

Although the function of STOP1 and STOP1-like proteins in Al

resistance has been extensively studied in many plant species, it is

unclear whether STOP1 and STOP1-like proteins play conserved roles
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in other biological processes. Further studies are needed to investigate

whether other processes regulated by STOP1 are conserved when plants

adapt to different living environments. In addition, STOP1 regulates

many stress-responsive genes but has a limited effect on certain

downstream genes. For some specific genes, transcriptional regulation

is not the dominant mode of regulation. Overall, STOP1 contributes

more to acid soil tolerance. The other functions of STOP1 are more

likely to play a supporting role in dealing with acid soil syndrome.

Therefore, we believe that genetic engineering of STOP1 and its

homologs is preferred for crops to counteract acidic soils.
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FIGURE 3

Schematic representation of the regulation of STOP1 in Arabidopsis. From upper left: Under most conditions, STOP1 is constitutively expressed in plants.
Plants can sense hypoxic stress and low K+ signals to activate STOP1 transcription. The mRNA of STOP1 is processed and transported by the THO/TREX
complex on the nuclear envelope. RAE3/HPR1 and RAE2/TEX1 are two key members of the complex, in which HPR1, but not TEX1, affects STOP1 mRNA
export from the nucleus. For the STOP1 protein, in addition to the PI signaling pathway, Al and Fe promote STOP1 nuclear accumulation, whereas ALS3/
STAR1 inhibits nuclear STOP1 accumulation. The MEKK1-MKK1/2-MPK4 cascade plays an important role in Al signaling. Al activates the kinase activity of
MPK4, which interacts with and phosphorylates STOP1, thereby stabilizing STOP1 by reducing its interaction with RAE1. Al3+ releases Ca2+ from the cell
wall via cation exchange, Ca2+ signaling followed by signal transduction may promote STOP1 phosphorylation via CBL/CIPK or CPKs signaling pathways,
and Al-induced ROS accumulation may modulate the oxidation of cysteine residues on STOP1. In the nucleus, the F-box proteins RAE1 and RAH1 are
components of the SCF-type E3 ligase complex that ubiquitinates STOP1 and facilitates its 26S proteasomal degradation. The SUMO E3 ligase SIZ1 and
the SUMO protease RAE5/ESD4 are involved in the SUMOylation and de-SUMOylation modifications of STOP1, regulating its stability and altering its
association with different target gene promoters. STOP1 interacts with MED16 to co-activate the transcription of downstream genes. Al, aluminum; Fe,
iron; K, Potassium; Pi, Phosphate; Ca, Calcium; H+, Proton; NH4

+, Ammonium; O2, Oxygen; ROS, Reactive oxygen species; TF, Transcription factor;
STOP1, Sensitive to proton rhizotoxicity 1; HPR1, Hyper-Recombination 1; TEX1, Transcription-Export 1; CBL, Calcineurin B-like; CIPK, CBL-interacting
protein kinase; CPK, Calcium-dependent protein kinase; MEKK1, MAPK/ERK kinase kinase 1; MKK1/2, MAP kinase kinase 1/2; MPK4, MAP kinase 4; RLCKs,
Receptor-like cytoplasmic kinases; PI, phosphatidylinositol; RAE1, Regulation of AtALMT1 expression; RAH1, RAE1 homolog 1; SUMO, Small ubiquitin-
related modifier; SIZ1, SAP and MIZ1 domain-containing ligase 1; ESD4, Early in short days 4; ALS3, Al-sensitive 3; STAR1, Sensitive to Al rhizotoxicity 1;
MED16, Mediator 16. Figure created using BioRender (https://biorender.com/).
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