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Blueberries are grown worldwide because of their high nutritional value;

however, manual picking is difficult, and expert pickers are scarce. To meet

the real needs of the market, picking robots that can identify the ripeness of

blueberries are increasingly being used to replace manual operators. However,

they struggle to accurately identify the ripeness of blueberries because of the

heavy shading between the fruits and the small size of the fruit. This makes it

difficult to obtain sufficient information on characteristics; and the disturbances

caused by environmental changes remain unsolved. Additionally, the picking

robot has limited computational power for running complex algorithms. To

address these issues, we propose a new YOLO-based algorithm to detect the

ripeness of blueberry fruits. The algorithm improves the structure of YOLOv5x.

We replaced the fully connected layer with a one-dimensional convolution and

also replaced the high-latitude convolution with a null convolution based on the

structure of CBAM, and finally obtained a lightweight CBAM structure with

efficient attention-guiding capability (Little-CBAM), which we embedded into

MobileNetv3 while replacing the original backbone structure with the improved

MobileNetv3. We expanded the original three-layer neck path by one to create a

larger-scale detection layer leading from the backbone network. We added a

multi-scale fusion module to the channel attention mechanism to build a multi-

method feature extractor (MSSENet) and then embedded the designed channel

attention module into the head network, which can significantly enhance the

feature representation capability of the small target detection network and the

anti-interference capability of the algorithm. Considering that these

improvements will significantly extend the training time of the algorithm, we

used EIOU_Loss instead of CIOU_Loss, whereas the k-means++ algorithm was

used to cluster the detection frames such that the generated predefined anchor

frames are better adapted to the scale of the blueberries. The algorithm in this

study achieved a final mAP of 78.3% on the PC terminal, which was 9% higher

than that of YOLOv5x, and the FPS was 2.1 times higher than that of YOLOv5x. By

translating the algorithm into a picking robot, the algorithm in this study ran at 47

FPS and achieved real-time detection well beyond that achieved manually.
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1 Introduction

Blueberries are some fruit with high flavor and nutritional value

and are loved all over the world, and as a result, blueberry

cultivation is spreading rapidly around the globe (Li et al., 2018).

Since the 21st century, China has been growing blueberries on a

large scale and is the leading blueberry grower in the Asia-Pacific

region (Li Y. D, et al., 2021). However, given the extreme difficulty

and workload of blueberry picking, it has led to a significant

reduction in efficiency. To address these issues, new automated

picking robots are being created to fill the production gap. More and

more detection algorithms are being created to enable these robots

to have the ability to accurately identify the ripeness of the

blueberries so that the robots can accurately pick the ripe fruit.

To alleviate manual pressure and labor costs while increasing

the efficiency of ripeness detection, some traditional machine vision

algorithms have been gradually introduced to detect fruit ripeness.

For example, Aquino et al. (2017) used mathematical morphology

with pixel classification to estimate the number of berries in a single

cluster of grapevines, which has high stability, but the images run

too slowly, which leads to a significant decrease in the real-time

performance of the algorithm. Zhang et al. (2020) proposed a

method based on multi-feature fusion with the support vector

machine method for fruit counting with an accuracy of 78.15%.

Liu et al. (2018) converted the image from RGB space to Y′CbCr
space by applying a visual detection algorithm with an elliptic

boundary model, and then introduced ordinary least squares (OLS)

to fit an implicit second-order polynomial of the elliptic boundary

model in Cr–Cb color space. Liu et al. (2019) proposed an apple

fruit detection algorithm based on color and shape features with a

recall of more than 85%. However, the robustness of the method is

poor. Tan et al. (2018) explored a method to identify and count

blueberry fruits based on different ripeness regions by applying the

direction histogram of oriented gradient (HOG) features and color

features to detect blueberry fruits, but this method had the problem

of ineffective recognition of obscured fruits and took longer.

Recently, ripening parameters of berries of wine and table grape

cultivars have been predicted by using NIR devices with promising

results (Ferrara et al., 2022a; Ferrara et al., 2022b), and these devices

could be mounted on picking robots.

Taken together, these machine learning-based algorithms do

have outstanding advantages over manual detection, but they still

have the problem of low detection accuracy or slow detection speed.

Given the realities of growing blueberries in clusters and the different

maturity of each blueberry in each cluster, the complex environment

in which blueberries are grown with serious background interference,

and the fact that each blueberry is stuck together and obscured by the

others. These situations can lead to traditional machine vision

algorithms detecting the wrong ripeness of blueberries or failing to

detect blueberries. Therefore, further attempts have been made to

introduce deep learning-based algorithms to detect fruit ripeness

(Tian et al., 2019; Cecotti et al., 2020; Kuznetsova et al., 2020; Aguiar

et al., 2021; Li H, et al., 2021; Lu et al., 2021; Wu et al., 2021; Zheng

et al., 2021; Hou et al., 2022; Li et al., 2022; Zheng et al., 2022). For

example, Zhu et al. (2020) proposed a faster R-CNN-based algorithm

for blueberry fruit detection and recognition that was able to identify
Frontiers in Plant Science 02
blueberries and distinguish their ripeness more accurately and

quickly under sunny conditions, but the algorithm was greatly

influenced by either the background or light and was not robust.

Yang et al. (2022) proposed a lightweight blueberry fruit detection

algorithm for multi-scale targets that incorporates a novel attention

mechanism. MacEachern et al. (2023) applied YOLOv4 to blueberry

ripeness detection and showed that the algorithm has high accuracy

for blueberry ripeness detection but given the large computational

effort of the YOLOv4 model, later migration to a small, embedded

device would lead to a significant reduction in algorithm speed. These

deep learning-based algorithms represent a quantum leap in both

accuracy and speed compared to traditional machine vision

algorithms. However, they are not perfect, and if installed on a

platform with good computing power, they can show their

performance advantages, but they still have a large number of

parameters, which makes it impossible to run these algorithms on

some low-power embedded platforms. Manufacturers of agricultural

automation equipment currently do not install computationally

powerful graphics cards or embedded devices on their equipment

in order to reduce the cost of manufacturing the equipment.

Therefore, considering the application prospects of our algorithm,

we need to reduce the amount of computation required during the

algorithm’s operation while improving its accuracy, thus making the

algorithm less demanding on the device’s computational power. At

the same time, there are many uncertainties in the field, such as

changes in light, cultivar growing habits and trellising systems,

weather, and air visibility, which can affect the algorithm’s

accuracy, so we also want the algorithm to be resistant to these

objective factors.
2 Materials and methods

2.1 Algorithm design

To achieve the lightweightness of the blueberry detection

algorithm and improve detection accuracy, this paper makes

various improvements based on the algorithm structure of

YOLOv5x. The final improved algorithm structure is shown in

Figure 1B, where Figure 1A shows the YOLOv5x algorithm. To

facilitate the description, we divide the algorithm into three parts:

backbone structure, neck structure, and head structure, and the

specific improvements are as follows:
1. For the backbone network part, the structure of

MobileNetv3 (Howard et al., 2019) is used in this paper

instead, considering that the original structure of YOLOv5x

is complex and computationally expensive. MobileNetv3

uses a variety of lightweight strategies and is able to greatly

reduce the computational cost of the algorithm. However,

after replacing the original backbone network with

MobileNetv3, the overall algorithm has shown a certain

decrease in its ability to focus on and extract valid

information. Therefore, this paper continues to

incorporate a lightweight attention mechanism called

Little-CBAM into the MobileNetv3 structure. Little-
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Fron
CBAM is an improvement of the CBAM (Woo et al., 2018)

structure that enhances the network’s ability to integrate

channel and spatial information and adjusts the attention

weights of target regions.

2. For the neck network, the original YOLOv5x of this part

was used eight times, 16 times, and 32 times downsampling

for the backbone network to obtain the feature layers of P3,

P4, and P5, respectively. The three lines above are shown in

Figures 1A, B. However, if the downsampling times are too

large, then the deeper feature maps in the model training

process will not be able to learn the feature information of

the small-sized blueberries. To solve this problem, we add a

four-time downsampling feature layer P2 between the

backbone network and the neck network, as shown by a

red line in Figure 1B.

3. For the head structure of YOLOv5x, this paper embeds an

improved SENet (Hu et al., 2018) attention mechanism

(MSSENet). This structure can enhance feature representation

in small target detection networks and anti-interference

capability in complex contexts.
After making these changes to the algorithm’s backbone, neck,

and head, the algorithm took longer to train, and the loss curve did
tiers in Plant Science 03
not fit for a long time. To solve these problems, the following

scheme is proposed in this paper:
1. For the algorithmic loss function, the Efficient Crossover Joint

Loss (EIOU_Loss) function is used to optimize the model’s

overall performance. Moreover, this loss function can reduce

the model training time and improve the final detection

accuracy compared with the original loss function.

2. We use the K-means++ algorithm (Arthur and Vassilvitskii,

2006) to cluster the dataset used for algorithm training so

that the generated pre-defined anchor frames are more

adapted to the scale size of blueberries, thus improving the

accuracy of target detection. In addition, it also reduces the

time required for model training.
2.2 Dataset collection

The aim of this study was to identify the ripeness of blueberries

grown in a natural environment, which is not only complex but also

highly susceptible to severe disturbances by either internal factors

(leaves, branching, size of clusters, etc.) or external factors (light,
A

B

FIGURE 1

Structural diagram of YOLOv5x and the algorithms in this paper. Where (A) represents the network structure of YOLOv5x and (B) represents the
network structure of the improved BlueberryYOLO.
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climatic conditions, etc.) (MacEachern et al., 2023). Second,

blueberry fruits are closely adhered to each other, and each

cluster usually contains blueberries of different maturity levels.

Since this paper focuses on analyzing the application of computer

vision algorithms to blueberries, the vision algorithms are distinguished

based on the differences in the appearance characteristics of different ripe

blueberries, such as color shades, hue saturation, and shape size. Based on

these features, we distinguished blueberries into the following three

categories: ripe, semi-ripe, and unripe, as shown in Figure 2. Ripe

blueberry color is dark purple, large volume, overall color is dark,

sugar content is about 15%, acidity is about pH 4.35, TSS is 12.1%;

semi-ripe blueberry color is red or lavender, small volume, bright color,

sugar content is about 9%, acidity is pH 3.95, TSS is 8.1%; immature

blueberry color is green, small volume, very bright color. The unripe

blueberries were green in color, small in size, and very bright in color,

with a sugar content of 3.8%, an acidity of pH 3.6, and a TSS of 6.8%. In

addition, the central role of the algorithm in this paper is to identify the

different ripeness of blueberries by the changes in color, morphology,

and volume.

The dataset used in this paper was expanded from the published

dataset in Reference (Li et al., 2022), with a total of 9,312 images.

The dataset was taken at Prince Blueberry Estate in Xinjian District,

Nanchang City, Jiangxi Province, with a cultivar of high irrigation

blueberry and a planting density of about 3,200 plants per hectare,

with a plant spacing of 1.0–1.2 m and a row spacing of 2.5 m. The

annual yield of each plant was about 1.5–2.5 kg.
2.3 Dataset annotation and processing

The images are annotated using the annotation tool labeling in the

format of the Pascal VOC dataset to produce an.xml annotation file.

Deep learning algorithms require a large amount of data to achieve

good detection results, and too few training images can lead to
Frontiers in Plant Science 04
overfitting of the model, so this paper performs data enhancement

operations on the 9,312 raw photos generated from direct camera shots

in Section 2.1. The data enhancement operations we employ specifically

include flipping, scaling, panning, rotating, adding random noise

combinations, and so on, and simultaneously transforming the

corresponding annotation files for each image. The data sets were

randomly divided into training (18,498 images), validation (2,642

images), and test (5,286 images). The distribution of the dataset by

type is shown in Table 1. In this table, we highlight several factors that

can interfere with the target detection algorithm, including light

intensity, the density of fruit distribution on each blueberry tree, and

the clarity of the camera when capturing images, among others. In the

category of light intensity, Backlighting indicates that there is no direct

sunlight on the fruit, Normal indicates that the light on the fruit is soft

and non-irritating, Strong indicates that the fruit is exposed to direct

light and the light intensity is strong. In the category of fruit density,

Very sparse indicates that the fruit is scattered, and Normal indicates

that the distribution of fruits is very tight, but the phenomenon that

adjacent fruits do not obscure each other is not severe. Tightly arranged

indicates that the distribution of fruits is tight, but the phenomenon

that adjacent fruits obscure each other is very serious. In the category of

fruit shot clarity, Very blurry indicates that the blueberry image in the

camera is very blurred. Partially blurred indicates that the blueberry

image in the camera is partially blurred but not deep, and Very clear

indicates that the blueberry image in the camera is very clear.
2.4 Training and experimental
comparison platform

The hardware and software used in this experiment were as

follows: Ubuntu 18.04, NVIDIA GeForce RTX 3070; operating

system: CentOS 7.6; CUDA version 11.2, CUDNN8.2.1, OpenCV

version 4.5.3, and deep learning framework: TensorFlow 2.5.
FIGURE 2

Diagram of the three ripeness levels of blueberries.
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2.5 Platform for practical application
of algorithms

The picking robot used in the algorithm in this study has the

appearance and the various components on this robot are shown in

Figure 3. The computing platform of the picking robot is a Jeston

Xavier NX, an embedded platform with many times less computing

power than the RTX3070 presented in Section 2.3.
3 Algorithm structure analysis

3.1 Introducing Little-CBAM
to MobileNetv3

Compared with the YOLO (Redmon and Farhadi, 2017;

Redmon and Farhadi, 2018) model, YOLOv5x has improved

speed and accuracy, but the model is still significant and

unsuitable for deployment on embedded devices with small video
Frontiers in Plant Science 05
memory and arms. Therefore, we replaced the modules CSP1_N

and CSP2_N in Figure 1Aa with C3Mobile. The structure of

C3Mobile is shown in Figure 1Bf, where the MobileNetv3-

Bottleneck is the basic unit that constitutes MobileNetv3.

MobileNetv3-Bottleneck uses deeply separable convolution. The

number of model parameters is significantly reduced compared to

conventional convolution without compromising the model’s

performance. The ratio of the decrease in the number of parameters is:

Din � k� k + Din � Dout

Din � k� k� Dout
=

1
Dout

+
1
k2

(1)

However, considering the complex background of the actual

blueberry plantation, the accuracy of blueberry detection will be

reduced to some extent after the YOLOv5x backbone network is

changed to MobileNetv3; therefore, we embed Little-CBAM on top

of the MobileNetv3 structure. The structure of the specific modified

MobileNetv3 is shown in Figure 1Bg. Little-CBAM was obtained by

improving CBAM. CBAM is an attention algorithm that uses a fully

connected layer to map the tandem channels and spaces of the

feature map, and the fully connected layer is a computationally

resource-intensive method. In contrast, using 7 × 7 convolutional

kernels for spatial feature extraction in spatial attention enhances

the perceptual field but also increases computational effort.

In the ECA algorithm, the closer the channels are to each other,

the higher the correlation between them; therefore, using a

convolution with a one-dimensional kernel instead of a fully

connected layer can significantly reduce the computational

parameters. In the literature (Yu et al., 2017), a null convolution

is proposed, which replaces the 7 × 7 convolution with a 3 × 3 null

convolution with a null rate of only 2. The final perceptual field was

the same, but the number of parameters was only 9/49 of the

original one. To achieve this effect, CBAM combines the above two

points and significantly reduces the number of parameters without

reducing accuracy. Figure 4 contains CBAM and the improved

Little-CBAM, where Figure 4A is the network structure of CBAM.

The improved structure is shown in Figure 4B, where FK
1D denotes a

one-dimensional convolution with a convolution kernel of k, and

F3�3
dilat denotes a 3 × 3 convolution with a void rate of 2.

The insertion of Little-CBAM into MobileNetv3-Bottleneck

introduces only a small number of parameters, but it enhances

the network’s ability to integrate channel and spatial information

and adjust the attention weights of the target region. Specifically, for

the MobileNetv3-Bottleneck, the first Ghost module expands the

number of channels, after which the insertion of Little-CBAM is the

most cost-effective.
FIGURE 3

Appearance of the picking robot and types of accessories.
TABLE 1 The quantities in each type of dataset.

Types Number

Light intensity Fruit density Fruit shot clarity

Backlighting Normal Strong Very
sparse Normal Tightly

arranged
Very
blurry

Partially
blurred

Very
clear

Training 18,498 3,453 9,576 5,469 2,878 9,945 5,675 2,676 8,767 7,055

Validation 2,642 756 1,323 563 645 1,565 432 544 1,543 555

Test 5,286 1,232 3,445 609 531 4210 545 756 3,879 651
fro
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3.2 Improved neck

Considering that blueberries appear entirely in bunches, the

number of targets to be detected in a single image is large, and the

scale of color variability is high. The original YOLOv5xmodel was poor

at detecting small targets because of the loss of small-target information

during the convolution and downsampling processes. This study
Frontiers in Plant Science 06
improved the sensitivity of the model to small targets by expanding

the shallow structure of the YOLOv5x backbone by one layer and

adding a new detection head at the detection end. Figure 5 shows the

improved neck structure. It consists of adding a convolutional layer and

upsampling after the 76 × 76 feature layer, and then fusing the two

upsampling feature layers with the 152 × 152 feature layer to obtain a

152 × 152 detection feature map for small target detection.
A

B

FIGURE 4

Structure of CBAM and improved CBAM (Little-CBAM). Where (A) is the network structure of CBAM and (B) is the network structure of the improved
Little-CBAM.
FIGURE 5

Improved neck structure of the YOLOv5x.
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3.3 Introduction and analysis of
the MSSENet structure

In this study, we designed SENet to generate a multi-scale fused

attention module (MSSENet) by constructing multi-scale fused

features and a multi-method feature extractor to enhance feature

representation in small target detection networks and prevent

interference from complex backgrounds. The structure of

MSSENet is inspired by (Zhu et al. 2022).

The next step of feature extraction processing is first performed

by integrating multiple scales of feature maps through different

scales of convolution kernels. The multi-scale feature fusion within

the convolutional layer allows the output feature map to combine

resolution and semantic information, providing a richer feature set

for the subsequent feature extractor.

The squeezing operation of SENet was subsequently improved to

obtain adaptive channel feature information. SENet was designed to

construct a feature extractor to obtain global features through global

averaging pooling operations. For small targets with little feature

information, focusing only on global features may result in a loss of

feature information, whereas the global maximum pooling operation

focuses more on local features. Therefore, this study introduces two

pooling methods for feature extraction that can better capture the

local feature information of small targets and enhance the feature

extraction capability of the attention mechanism in complex contexts.

Finally, the adaptive channel feature information generated by

the two pooling methods is summed and activated to generate

attention weight information, which is then weighted with the input

feature map to obtain the channel attention map. The Mish (Misra,

2019) activation function is used instead of the ReLU activation

function for the first full-connected dimensionality reduction

operation, which avoids the use of the ReLU activation function

to sparse out too many effective features and helps the module

obtain more non-linear relationships. The improved MSSENet

attention module is shown in Figure 1Bh, where “+” represents

features for summing operations and “×” represents features for

weighting operations. For the input feature X ∈ Rc × h × w, c is the

number of input channels, h is the input height, and w is the input

width. Then the operation of extracting features by convolution of

different sizes for the input features is

Xc = v3�3X + v5�5X + v7�7X (2)

where V is the convolution of the input features using different-

sized convolution kernels, and Xc is the output features convolved

with different-sized convolution kernels.

Two separate pooling operations are then performed to obtain

better channel feature information, with the original multi-scale

features from the previous step as input.

Xavg =
1

h� wo
h

i=1
o
w

j=1
Xc(i, j) (3)

Xmax ¼ MAXðXcði; jÞÞ (4)

w

Frontiers in Plant Science 07
ere: Xavg is the global average pooling operation and Xmax is the

global maximum pooling operation.

The channel attention vectors are generated by the following

equations: Xa for feature extraction on the global average pooling

branch and Xm for feature extraction on the global maximum pooling

branch. As the features were extracted, they were transformed into a

nonlinear space to complete the activation operation.

Xa = FC2(Mish(FC1(Xavg))) (6)

Xm = FC2(Mish(FC1(Xmax))) (7)

Xs = Sigmoid(Xa + Xm) (8)

where: the input is the multi-scale fusion feature from the previous

step; Sigmoid is the normalization function; FC is the fully connected

function; and Mish is the non-linear activation function.

Next, the calculated attention weights are weighted to the feature

map generated in the first step as the final channel attention feature map.

Xweight = Scale(Xc,Xs) (9)
3.4 The improved loss fuction

In this study, CIOU_Loss of the original model was replaced by

EIOU_Loss with a more accurate evaluation and faster

convergence, which can improve the overall performance of the

model and compensate to a certain extent for the increase in

training time and slower convergence caused by the addition of

the multiscale feature fusion module.

CIOU_Loss considers the overlap area, centroid distance, and aspect

ratio of the bounding box regression but ignores the true difference

between the width and height and their confidence levels, which hinders

the effectiveness of the model optimization. The EIOU_Loss penalty

term used in this study contains three components: the overlap loss

LIOU, the centroid distance loss Ldis, and the aspect loss Lasp. The first

two adopt the advantages of the method in CIOU_Loss, whereas the

aspect loss directly sets the optimization target to the minimum

difference between the width and height of the real and predicted

boxes, resulting in faster convergence. The formula is

LEIOU = LIOU + Ldis + Lasp

= 1 − I +
r2(b, bgt)

c2
+
r2(w,wgt)

c2w
+
r2(h, hgt)

c2h

(10)

where: cw and ch are the width and height of the minimum external

frame covering the real frame and the predicted frame.
3.5 Using K-means++ clustering algorithm

The original anchor frame size of the YOLOv5x model is based

on the clustering of the labeled target frame of the COCO dataset,

which is different from the fault target size of the transmission line;
frontiersin.org
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therefore, the direct use of the model affects the detection

performance of the model. The steps are as follows:

(1) A randomly selected sample target frame is used as the

initial cluster center, and the minimum intersection over union

(IOU) distance A(x) between the remaining sample frames and the

current cluster center is calculated as

A(x) = 1 − I(x,c) (11)

(2) The probability O(x) of each insulator sample frame being

selected as the next cluster center is calculated, and the next cluster

center is selected using the roulette wheel method.

O(x) =
A(x)2

o
x∈X

A(x)2
(12)

where X is the total sample of target marker frames.

(3) Steps (1) and (2) are repeated until K clusters are selected.

(4) The distance from each sample x to the K cluster centers in

the dataset is calculated, the sample is assigned to the class

corresponding to the cluster center with the smallest distance, the

cluster centers for each class are re-calculated as shown in Equation

(13), and the update of the classification and cluster centers is

repeated until the anchor box size remains the same.

cl =
1
clj j ox∈cl

x (13)

where: l = 1, ····, K; K is the number of anchor frames of different

sizes, the value of which is determined by the number of anchor

frames in the detection model. Since the detection model in this

paper contains four inspection feature maps, each of which

corresponds to three anchor frames.

After anchor frame optimization, the models of the four inspection

heads correspond to the 152 × 152, 76 × 76, 38 × 38 and 19 × 19 feature

maps and corresponding anchor frames in Table 2.
4 Evaluation indicators

In this study, the performance of the target detection model was

verified using the metrics of precision (P), recall (R), mean average
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precision (mAP), and frames per second (FPS), expressed as

follows:

P =
TP

TP + FP
(14)

R =
TP

FN + TP
(15)

AP =
Z 1

0
P(r)dr (16)

mAP =
o
k

i=1
APi

N
(17)

FPS =
1
tavg

(18)

where TP and FP are the numbers of accurately and incorrectly

identified samples, respectively; FN is the number of unidentified

samples; accuracy P is the probability that a detected sample is

correctly predicted; recall R denotes the probability that a certain

category of samples is detected; N denotes the number of categories

set by the model; N = 3 corresponds to the three maturity levels of

blueberries; and tavg is the average time required to detect a picture.

The mAP is the average accuracy of the algorithm in identifying

blueberries of three maturity levels, which can represent the

comprehensive accuracy of the algorithm, so in the subsequent

comparison experiments we mainly compare the magnitude of this

parameter to derive the strength of the comprehensive accuracy of

the algorithm.
5 Results and discussion

5.1 Ablation experiments

The YOLOv5x algorithm was benchmarked by adding each of

the improvements mentioned in the study to evaluate the

contribution of each improvement to mAP and real-time
TABLE 2 The corresponding anchor frames.

Types of targets 152 ×152 76 ×76 38 ×38 19×19

Ripe blueberries

(13,39) (35,53) (120,19) (276,56)

(13,44) (41,60) (181,39) (272,104)

(46,9) (65,46) (54,157) (399,82)

Semi-ripe blueberries

(11,33) (38,51) (125,34) (265,53)

(17,32) (42,55) (167,45) (261,113)

(40,13) (73,45) (67,134) (387,113)

Unripe blueberries

(15,24) (41,49) (132,25) (259,67)

(22,29) (52,60) (155,51) (249,153)

(29,15) (75,46) (87,123) (369,134)
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performance. Tests were conducted using a test set from the dataset

used in this study.

From Table 3, Experiment 2 shows a more than twofold

increase in speed compared to Experiment 1 after using the

MobileNetv3 lightweight network as the backbone feature

extraction network, at the cost of an 86% decrease in accuracy.

Experiment 5 showed a slight decrease in accuracy compared to

Experiment 1 but a significant increase in speed, which suggests that

we have achieved a lightweighting of the algorithm. Experiment 3

showed no significant decrease in speed compared to Experiment 1

after adding an extra layer to the neck structure of the algorithm,

but at the same time a more significant increase in accuracy.

Compared with Experiment 1, Experiment 4 showed that the

overall speed of the algorithm did not decrease significantly after

MSSENet was embedded in the head network; however, the

recognition accuracy improved significantly. Experiment 13 is the

proposed algorithm, which has a significant improvement in both

accuracy and speed compared to Experiment 1. This shows that the

improvements in our algorithm have had a significant effect to

some extent.

Compared with Table 4, the computation and model size of this

algorithm are only one-sixth of YOLOv5x and are close to

YOLOv5s, which achieves light weighting of the algorithm;
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however, the accuracy is significantly better than that of

other algorithms.
5.2 Ablation experiments

To verify the effectiveness of the backbone network lightweighting

combined with attention mechanism improvement, comparison

experiments were conducted to embed different attention mechanisms

in the backbone network. Table 5 shows the final experimental results. In

Experiments 2 and 3, we found thatmAP, R, and P improved to a certain

extent, but FPS decreased significantly, which proves that the idea of

embedding the attention mechanism in MobileNetv3 is valid. By

comparing Experiments 2 and 4, we found that mAP, R, and P

improved to a certain extent, and FPS only decreased slightly,

indicating that embedding a small amount of CBAM in MobileNetv3

can significantly improve the accuracy of the algorithm while

maintaining its speed. By comparing Experiments 3 and 4, we found

that the mAP, R, and P of the two algorithms were essentially the same,

but with a significant speed-up. By comparing Experiments 1 and 4, we

found that the modified algorithm has only a slight decrease in accuracy

and a significant increase in speed, which initially demonstrates the

effectiveness of embedding Little-CBAM in MobileNetv3.
TABLE 3 Ablation Experiments for YOLOv5x.

Methods MobileNetv3 Little-CBAM Improved Neck MSSENet mAP (%) FPS

1. YOLOv5x 69.3% 40.41

2 ✓ 58.1% 99.54

3 ✓ 71.3% 35.12

4 ✓ 72.1% 35.45

5 ✓ ✓ 65.6% 95.13

6 ✓ ✓ 62.5% 94.14

7 ✓ ✓ 65.3% 95.43

8 ✓ ✓ 75.4% 27.54

9 ✓ ✓ ✓ 65.8% 88.39

10 ✓ ✓ ✓ 71.2% 86.43

11 ✓ ✓ ✓ 76.5% 89.44

12. BlueberryYOLO ✓ ✓ ✓ ✓ 78.4% 83.64
frontier
Where “✓” symbol represents the improvement of the structure of the ordinate corresponding to this symbol.
TABLE 4 Performance comparison of different networks.

Type of algorithm mAP (%) R (%) FPS FLOPS Params (MB)

YOLOv5x 67.3% 68.2% 40.41 205.7 86.7

YOLOv5s 53.1% 54.8% 89.75 16.5 7.2

YOLOv5m 58.1% 59.4% 71.84 49.0 21.2

YOLOv5l 64.5% 65.1% 60.63 109.3 46.5

BlueberryYOLO 78.3% 75.9% 83.64 31.3 13.1
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5.3 Verifying the role of MSSENet

To verify the superior performance of the MSSENet proposed in

this study, we added it to the head structure of YOLOv5x separately

from other commonly used attention mechanisms. The final

experimental results are listed in Table 6, from which we can

observe that the values of P, mAP, and R for the MSSENet

structure embedded in the head network significantly exceed the

effects of embedding other attention mechanisms. This

phenomenon indicates that the MSSENet proposed in this study

has a considerably higher accuracy improvement for blueberry

detection than the other attention mechanisms.
5.4 Validity of loss function improvements

Two different models were used to train and detect blueberry

images, where Model A was BlueberryYOLO with a loss function of

CIOU_Loss and Model B was BlueberryYOLO with a loss function

of EIOU_Loss. The initial learning rate was set to 0.001, and the

weight was decreased to 0.0005. The training process lasted for

approximately 2,000 batches (epochs), and stochastic gradient

descent was used as an optimization function to train the models.

Considering that the role of the loss function in the training

process of different algorithms is mainly in the early stages of model

training, we focused on the loss value curves of the first 1,000

batches. A comparison of the loss value curves of different models is

shown in Figure 6. Model A is in a constant state with large

oscillations. Compared to Model A, Model B has a larger initial

loss value thanModel A owing to the EIOU_Loss splitting the width

and height losses. However, Model B shows a better decrease rate

and convergence ability than Model A after approximately 50

iterations, which confirms that the EIOU_Loss helps accelerate
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the decrease rate and shorten the convergence time of the model.

The final loss value of Model B after convergence was 2.12%, which

is significantly lower than that of Model A. This demonstrates that

the model with the adjusted loss function can achieve improved

training and detection results.
5.5 Comparison of detection performance
of different algorithms

We have demonstrated the effectiveness and advantages of each

part of the proposed algorithm in Sections 5.1–5.4, and in this

section we demonstrate the overall performance of our algorithm by

comparing it with other popular and advanced target detection

algorithms to demonstrate the comprehensive performance of our

algorithm. The data are listed in Table 7, from which we can

conclude that the accuracy of Algorithm 7 is higher than that of all

the other algorithms. In terms of speed, Algorithm 7 was slightly

slower than Algorithm 5, but Algorithm 5 was significantly less

accurate than Algorithm 7. Therefore, for balance, the overall

performance of Algorithm 7 is significantly better than that of

Algorithm 5.

The proposed algorithm was primarily used for blueberry

ripeness detection in outdoor fields, and the strength of the

algorithm’s immunity to changes in objective factors, such as the

environment, must be considered. This section demonstrates

the immunity of the proposed algorithm to changes in three

objective factors: changes in light, the sharpness of the photographed

fruit, and fruit density. The test results are presented in Figure 7. From

Figure 7A, the other algorithms have more or less false or missed

detections, but the proposed algorithm does not, and each detection

result has a high confidence level. From Figure 7B, the proposed

algorithm can also effectively apply the interference caused by image
TABLE 5 Different attention mechanisms embedded in the backbone network.

Types of algorithms mAP (%) R (%) P (%) FPS

1. YOLOv5x 69.3% 68.2% 71.3% 40.41

2. +MobileNetv3 58.1% 61.3% 59.6% 99.54

3. +MobileNetv3+CBAM 66.1% 68.3% 67.3% 80.43

4. +MobileNetv3+Little-CBAM 65.6% 67.4% 66.6% 95.13
TABLE 6 Head networks embedded in multiple attention mechanisms.

Attention mechanisms added P (%) mAP (%) R (%)

Not added 71.3% 69.3% 68.2%

+SENet 72.3% 70.3% 69.1%

+CBAM (Woo et al., 2018) 72.5% 69.6% 69.2%

+ECA (Wang et al., 2020) 73.1% 71.1% 70.2%

+CA (Hou et al., 2021) 72.5% 70.1% 69.2%

+SOCA (Dai et al., 2019) 73.3% 70.4% 69.3%

+MSSENet 74.4% 72.1% 71.4%
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sharpness, and the detection results are generally much better than

those of the other algorithms. In Figure 7C, the proposed algorithm

shows the best resistance to interference when dealing with mutual

occlusion between blueberries. The above analysis shows that the

algorithm can reasonably cope with interference caused by

environmental changes.
5.6 Validation of practicality

The above experimental results on a PC suggest that the

proposed algorithm has considerably good application potential.

However, experiments are required to verify whether the algorithms

are stable on a platform with low computing power, such as a

picking robot. The main control computer of the QIZHI MANI

robot uses the new Jetson Xavier NX computing unit

from NVIDIA.

The final experimental results are shown in Table 8. +TensorRT

appearing in the table refers to the application of the algorithm to

the TensorRT framework for acceleration. The main role of the

TensorRT framework is to accelerate the algorithm by significantly

invoking the computational power of the hardware while essentially

not losing the accuracy of the algorithm. All experiments in Section

5.6 apply the TensorRT framework acceleration to the YOLO family

of algorithms (YOLOv3, YOLOv4, YOLOv4-Tiny, YOLOv5x, and

BlueberryYOLO). We find that the mAP, R, and P in this table are

only slightly decreased compared to Table 7. This shows that the

migration of the algorithm in this paper to the picking robot does
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not affect the accuracy of the algorithm. We continue to observe the

FPS of the seven algorithms and find that the algorithm in this

paper runs at a frame rate of 47 FPS, which indicates that our

algorithm is able to run quickly on the picking robot. We find that

the mAP, R, and P in this table are only slightly decreased compared

to Table 7. This shows that the migration of the algorithm in this

paper to the picking robot does not affect the accuracy of the

algorithm. We also find that the values of mAP, R, and P for this

paper’s algorithm are higher than the accuracy of the other six

algorithms, which proves that our algorithm has the highest

combined accuracy relative to the other algorithms. We continue

to observe the FPS of the seven algorithms and find that the

algorithm in this paper runs at a frame rate that surpasses all

algorithms except YOLOv4-Tiny, reaching 47.03 FPS, but the mAP,

R, and P of the algorithm in this paper are much higher than those

of the other six algorithms, and the performance of the algorithm in

this paper is higher than that of YOLOv4-Tiny from the perspective

of comprehensive performance. In summary, the algorithm in this

paper is more stable and faster on the picking robot than the other

six algorithms.

Although the immunity of the algorithm in this paper was

initially discussed in Section 5.5, we do not know whether the

performance of the algorithm changes after migrating it to a picking

robot due to the change in the hardware environment. Therefore,

we selected the corresponding set of images from the dataset of this

paper to test the immunity of the algorithm applied to the picking

robot. Table 9 shows the distribution of the number of test sets used

in this experiment; Table 10 shows the experimental results data for
FIGURE 6

Loss value curves of different comparison models.
TABLE 7 Comprehensive performance comparison of multiple algorithms.

Method mAP (%) R (%) P (%) FPS

1. Faster R-CNN (Ren et al., 2015) 59.9% 61.4% 53.4% 8.11

2. SSD (Liu et al., 2016) 58.7% 54.7% 61.4% 26.71

3. YOLOv3 69.3% 65.8% 72.1% 22.61

4. YOLOv4 (Bochkovskiy et al., 2020) 74.5% 72.3% 76.5% 20.13

5. YOLOv4-Tiny 52.1% 56.1% 49.4% 108

6. YOLOv5x 69.3% 68.2% 71.3% 40

7. BlueberryYOLO 78.3% 75.9% 79.3% 83.64
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interference immunity; and Figure 8 shows the line graph drawn

from the data in Table 10. Combining the data in Table 10 and

Figures 8A–C, we migrated all seven algorithms to the picking robot

and ran them under the effect of three disturbance factors, and the

final accuracy of this algorithm surpassed the other six algorithms,
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which indicates that this algorithm has the strongest anti-

interference ability against all three disturbance factors when run

on the picking robot. Figure 8D shows the trend of the accuracy of

this algorithm for three different disturbance factors, from which we

can find that the sensitivity of the accuracy of this algorithm to the
FIGURE 7

Multiple algorithms for immunity to environmental changes. (A) represents multiple algorithms for immunity to environmental changes. Aa
represents backlighting and Ab represents front lighting. (B) represents multiple algorithms for blueberry image clarity immunity. Ba represents clear
lighting, Bb represents general blurring, and Bc represents severe blurring. (C) represents multiple algorithms for immunity to interference between
fruits when there is severe occlusion between them.
TABLE 9 The test set used in this section of the immunity experiment.

Types Number

Light intensity Fruit density Fruit shot clarity

Backlighting Normal Strong Very
sparse Normal Tightly

arranged
Very
blurry

Partially
blurred

Very
clear

Test 1,717 401 1,113 203 211 1,311 195 273 1,233 211
fro
TABLE 8 Comprehensive performance comparison of multiple algorithms.

Method mAP (%) R (%) P (%) FPS

1. Faster R-CNN 58.9% 61.2% 52.8% 0.25

2. SSD 58.3% 54.5% 60.9% 2.52

3. YOLOv3 (+TensorRT) 68.3% 65.4% 71.6% 27.12

4. YOLOv4 (+TensorRT) 73.5% 71.8% 76.3% 20.03

5. YOLOv4-Tiny (+TensorRT) 51.1% 55.1% 49.3% 48.97

6. YOLOv5x (+TensorRT) 68.8% 68.1% 70.8% 30.39

7. BlueberryYOLO (+TensorRT) 77.1% 75.7% 78.9% 47.06
ntier
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density of fruit distribution will be higher than the other two

disturbance factors.

In analyzing the results, we need to use the column of highbush

blueberries from Nanchang in Table 12 as the control group

because the dataset used for training the algorithm in this paper

is from the dataset in Table 1, which is the highbush blueberries

collected from a blueberry farm in Nanchang, Jiangxi Province.
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First, we observe the three columns of Nanchang in Table 12

separately, and we find that the accuracy of the algorithm does

decrease when the recognition species of blueberry are different

from the one used in the algorithm training. For example, the

accuracy of the algorithm in this paper decreases from 79.6% to

77.2% and 77.8%, respectively, but the decrease is the smallest

compared with the other six algorithms. Therefore, this indicates to
TABLE 10 Experimental results data of interference immunity of multiple algorithms.

Method

Light intensity (mAP) Fruit density (mAP) Fruit shot clarity (mAP)

Backlighting Normal Strong Very
sparse Normal Tightly

arranged
Very
blurry

Partially
blurred

Very
clear

1. Faster R-
CNN

51.4% 58.6% 54.1% 65.8% 61.6% 53.6% 50.8% 54.7% 57.7%

2. SSD 50.7% 59.3% 53.1% 64.3% 59.5% 52.5% 49.9% 54.1% 59.7%

3. YOLOv3 62.1% 70.0% 65.3% 68.5% 64.4% 61.5% 60.8% 65.1% 70.6%

4. YOLOv4 66.9% 74.4% 69.5% 76.4% 74.1% 64.3% 65.5% 69.5% 75.8%

5. YOLOv4-
Tiny

48.4% 52.3% 49.3% 57.2% 53.2% 43.7% 46.9% 51.8% 52.9%

6. YOLOv5x 65.9% 69.3% 66.5% 71.9% 68.2% 60.1% 64.3% 68.7% 71.1%

7.
BlueberryYOLO

74.1% 76.5% 78.3% 82.0% 76.5% 73.3% 73.8% 75.1% 78.4%
fro
A B

C D

FIGURE 8

A line graph of experimental results on interference immunity of multiple algorithms (A–C) indicates the accuracy trends of multiple algorithms
under the action of three different disturbance factors, respectively. For example, when observing the blue curve in (D), 1 means Backlighting, while
2 means Normal, and 3 means Strong. When observing the green curve (D), 1 means Very blurry, while 2 means Partially blurred, and 3 means Very
clear. Considering that the training data set of the algorithm is from one region and only one cultivar of blueberry, we need to collect some
blueberries from different regions and different cultivars of blueberries as the test set to further test the migration and applicability of the algorithm.
To complete the experiment, three cultivars of blueberry were collected from three cities, namely Nanchang, Jiangxi Province, Hangzhou, Zhejiang
Province, and Kunming, Yunnan Province, as test sets, namely Highbush blueberry, Lowbush blueberry, and Rabbiteye blueberry. The number
distribution is shown in Table 11, and the test result data are shown in Table 12.
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some extent that the algorithms in this paper have better migration

and adaptability to the recognition of different cultivars of

blueberries. Secondly, we compare the highbush blueberries in

Nanchang, Hangzhou, and Yunnan, and we can find that when

the origin of the blueberries used for detection is different from the

origin of the blueberries used in the training of the algorithm, the

detection accuracy of the algorithm also decreases to some extent.

For example, the accuracy of the algorithm in this paper decreases

from 79.6% to 78.7% and 77.8%, respectively, but the decrease is

minimal compared with the other six algorithms. The accuracy of

this algorithm decreases from 79.6% to 78.7% and 77.8%,

respectively. Therefore, to a certain extent, this experimental

result can show that the algorithm in this paper has some

migration and adaptability when dealing with blueberries in

different cities and climates.

To examine the practical applicability and transferability of the

algorithm to other fruits, we collected 2,000 images each of pitaya

(Red Pitaya), grape (Kyoho grape), and strawberry (Red

Strawberry) fruit datasets from the same origin (Nanchang) as the

blueberry training set used in this paper, and then made these

images into the dataset used for the final algorithm training after the

data enhancement method described in Section 2.2. The specific

number distribution of these datasets is shown in Table 13. We

trained each of the seven algorithms directly on the above datasets

to obtain recognition models for different fruits, and the final
Frontiers in Plant Science 14
detection results are shown in Table 14. The detection results are

shown in Figure 9.

By analyzing Table 14, we can see that our algorithm has achieved

a good level of AP, R, and P, surpassing the other six algorithms. Our

algorithm performs better at detecting grapes compared to dragon

fruit and strawberries, while its detection performance for

strawberries is the worst. The main reason is that the picking robot

only needs to recognize a whole bunch of grapes instead of individual

grapes when picking and locating them, and there is also a relatively

large gap between each bunch of grapes during the actual picking

process. However, strawberries are heavily obscured by leaves during

their growth, which to some extent affects the accuracy of the

algorithm. Overall, our algorithm has demonstrated good

performance and algorithm transferability in recognizing different

cultivars of fruits. The ninth figure shows the detection results of

seven algorithms on three different fruits. It can be seen from this

figure that the algorithm proposed in this paper has no obvious

missing detection or false detection, and the confidence level of each

detected target is higher than that of other algorithms.
6 Conclusion

In this study, we propose a BlueberryYOLO-based blueberry

ripeness detection algorithm that is suitable for running on a
TABLE 12 Various algorithms to identify mAP results of multiple blueberry cultivars in multiple locations.

Method
KunMing NanChang HangZhou

Highbush Lowbush Rabbiteye Highbush Lowbush Rabbiteye Highbush Lowbush Rabbiteye

1. Faster R-CNN 55.5% 53.4% 51.9% 61.7% 57.1% 55.2% 57.5% 55.3% 52.9%

2. SSD 54.7% 52.9% 52.1% 60.1% 56.5% 54.3% 56.8% 54.7% 53.5%

3. YOLOv3 66.5% 63.7% 60.1% 69.5% 65.1% 62.3% 67.1% 62.9% 59.7%

4. YOLOv4 69.2% 63.5% 66.4% 74.3% 68.8% 70.8% 70.1% 65.9% 63.2%

5. YOLOv4-Tiny 53.1% 45.7% 46.1% 56.6% 50.9% 51.4% 51.7% 43.8% 45.7%

6. YOLOv5x 64.3% 58.5% 57.4% 69.9% 63.1% 62.7% 65.3% 59.8% 58.9%

7. BlueberryYOLO 78.7% 75.7% 74.8% 79.6% 77.2% 76.9% 77.8% 75.6% 75.8%
f

TABLE 11 Blueberry test sets for different regions and different species.

Types
KunMing NanChang HangZhou

Highbush Lowbush Rabbiteye Highbush Lowbush Rabbiteye Highbush Lowbush Rabbiteye

Test 1,311 1,230 1,453 1,434 1,331 1,503 1,453 1,342 1,591
TABLE 13 Number distribution of the dataset for three different cultivars of fruits.

Fruit cultivars Number Train Validation Test

Dragon fruit 26,201 18,347 2,612 5,242

Grape 26,315 18,421 2,631 5,263

Strawberry 25,902 18,132 2,590 5,180
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blueberry picking robot. The experiment result shows that

MobileNetv3 introduces a Little-CBAM structure, replaces the

original backbone structure, enables the algorithm to have a

stronger focus on blueberries, and significantly reduces the

computational effort of the algorithm. This paper extends the

original structure with a layer of feature fusion structure, which

enables the algorithm to have a stronger feature extraction

capability for small targets. We embedded a new attention

mechanism, MSSENet, which can significantly enhance the
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feature representation capability of a small target detection

network and the anti-interference capability of the algorithm. Our

algorithm has a final mAP of 78.4% on the PC terminal, which far

exceeds other advanced algorithms. When the algorithm was

transferred to the picking robot, it was able to run at a frame rate

of 47.06 FPS with no significant change in accuracy, achieving real-

time operation. Also, our algorithm has good transferability and

applicability, and the algorithm in this paper has the possibility of

being used on other fruits as well.
TABLE 14 Multiple algorithms for different fruit detection accuracy.

Method FPS
Pitaya fruit Grape Strawberry

AP (%) R (%) P (%) AP (%) R (%) P (%) AP (%) R (%) P (%)

1. Faster R-CNN 0.24 61.2% 63.1% 55.1% 63.3% 65.3% 58.8% 56.8% 51.3% 51.1%

2. SSD 2.49 60.1% 57.5% 62.2% 63.8% 59.9% 64.0% 56.7% 52.3% 55.1%

3. YOLOv3 27.10 70.1% 67.7% 74.1% 73.4% 70.0% 76.5% 68.3% 67.5% 69.3%

4. YOLOv4 20.02 76.2% 73.3% 78.9% 79.1% 76.5% 80.3% 73.1% 71.3% 75.7%

5. YOLOv4-Tiny 49.01 54.9% 58.3% 53.6% 57.3% 60.1% 56.3% 48.2% 45.2% 46.1%

6. YOLOv5x 30.39 71.3% 75.3% 73.2% 76.3% 74.8% 73.2% 67.4% 65.3% 68.5%

7. BlueberryYOLO 47.10 82.3% 79.4% 80.3% 84.7% 82.1% 84.1% 73.5% 74.7% 76.1%
frontie
A B C

FIGURE 9

Multiple algorithms for immunity to environmental changes. (A) represents multiple algorithms for the detection effect of dragon fruit, (B) represents
multiple algorithms for the detection effect of grapes, and (C) represents multiple algorithms for the detection effect of strawberries.
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