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The great success of deep learning in the field of computer vision provides a

development opportunity for intelligent information extraction of remote

sensing images. In the field of agriculture, a large number of deep

convolutional neural networks have been applied to crop spatial distribution

recognition. In this paper, crop mapping is defined as a semantic segmentation

problem, and amulti-scale feature fusion semantic segmentation model MSSNet

is proposed for crop recognition, aiming at the key problem that multi-scale

neural networks can learn multiple features under different sensitivity fields to

improve classification accuracy and fine-grained image classification. Firstly, the

network uses multi-branch asymmetric convolution and dilated convolution.

Each branch concatenates conventional convolution with convolution nuclei of

different sizes with dilated convolution with different expansion coefficients.

Then, the features extracted from each branch are spliced to achieve multi-scale

feature fusion. Finally, a skip connection is used to combine low-level features

from the shallow network with abstract features from the deep network to

further enrich the semantic information. In the experiment of crop classification

using Sentinel-2 remote sensing image, it was found that the method made full

use of spectral and spatial characteristics of crop, achieved good recognition

effect. The output crop classification mapping was better in plot segmentation

and edge characterization of ground objects. This study can provide a good

reference for high-precision crop mapping and field plot extraction, and at the

same time, avoid excessive data acquisition and processing.

KEYWORDS

remote sensing, crop classification, deep learning, convolutional neural network, multi-
scale feature
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1 Introduction

With the rapid development of remote sensing technology, the

quality and updating speed of remote sensing data have been

significantly improved, and multi-source remote sensing data has

been widely applied in agriculture, forestry, Marine, environmental

protection and other fields (Sun, 2020). Remote sensing image

classification has always been a very active research topic in the

application of remote sensing technology, which refers to the use of

remote sensing data to make land use or land cover maps

(Luo, 2011).

At present, the application based on artificial intelligence model

and algorithm has become very common. Machine learning and

deep learning are the methods to realize artificial intelligence. With

the continuous innovation of deep learning, the field of computer

vision has developed rapidly in the past few years and made

breakthroughs constantly (Hopfield, 1982; Bengio and Delalleau,

2011). The development of computer vision is driven by the

innovation of algorithms, the increase in the amount of visual

data and the improvement of computing power. In image

classification, target detection and location, image segmentation

and other tasks, deep learning algorithms surpass traditional

statistical methods on a large number of benchmarks, and even

exceed human beings in image and target recognition (Bengio,

2009; LeCun et al., 2015).

In the field of agriculture, using remote sensing data to classify

crops is an important research content. Timely and accurate

acquisition of spatial distribution and planting area of crops by

utilizing spatio-temporal scale advantages of remote sensing images

is of great significance for ensuring food security and promoting

sustainable agricultural development (Kussul et al., 2017). High

resolution remote sensing image has the characteristics of high

background complexity, rich detail information and diversified

spatial structure, so the classification accuracy is often low when

the traditional machine learning classification algorithm is applied

to the classification of high resolution remote sensing image. In

recent years, many researchers have tried to build semantic

segmentation network through deep learning algorithm and

applied it in pixel-level ground object fine classification. Remote

sensing image classification based on artificial neural network has

become a development trend (Zhong et al., 2018; Rustowicz

et al., 2019).

For traditional machine learning models and popular deep

learning models, the architecture design of the model itself and

super-parameter fine-tuning determine the feature extraction

capability of the model, and the strength of the feature extraction

capability is a decisive factor affecting the model performance. The

high efficiency of deep learning algorithm is reflected in its

independent dependence on highly complex feature engineering,

and its high performance is reflected in its powerful feature

extraction ability. Therefore, how to enhance the feature extraction

ability of the algorithm is the essential problem of deep learning

model architecture design (Kawaguchi et al., 2017).

Multi-scale refers to the sampling processing of signals with

different granularity. In deep learning algorithm, it means that the

model learns different features at different scales, such as fine
Frontiers in Plant Science 02
features and rough features, as well as the combination of the two

features. This method has been proved to effectively improve the

performance of the model. The idea of multi-scale feature fusion

technology is to extract image features under different sensory

fields. At present, there are mainly two types of multi-scale

feature network design paradigms, one is skip connection

architecture based on deep convolutional neural network

(DCNN), such as UNet, VNet (Milletari et al., 2016), FCN series

(Long et al., 2015), RefineNet (Lin et al., 2017), etc. This kind of

network is characterized by the use of pre-training weights or

DCNN (represented by residual network) in the coding stage, and

the acceptance of low-level features through skip connections in the

decoding stage, and the fusion of low-level and abstract features, so

as to achieve multi-scale feature extraction. The other type adopts

parallel multi-branch structure design, such as PSPNet (Zhao et al.,

2017), GoogleNet, DeepLab series (Chen et al., 2017; Chen et al.,

2018; Chen et al., 2018), etc., which is characterized by using hollow

convolution or convolution kernel of various sizes to extract

features from different receptor fields, and finally merging

multiple channels to form multi-scale features.

Multi-scale feature fusion network is widely used in computer

vision tasks such as target detection and image classification.

Varadarajan et al. (2021) designed an object detection network

composed of 22 convolution layers. By using multi-scale feature

fusion technology, the network can well identify objects of different

sizes and shapes from images. Sang et al. (2022) proposed a target

tracking network MTTNet based on multi-scale global retrieval and

spatial-temporal consistency matching, and used spatial pyramid

pool to solve the problem of multi-scale feature extraction. The

experimental results show that the network has stable performance

and can effectively perform long-term target tracking tasks. Wu

et al. (2022) integrated the hierarchical pyramid pooling module

into the full convolutional neural network, and the improved

network was able to collect multi-scale context information. The

good performance of the network was verified in the robot object

grabbing experiment. In the study of fine-grained image

classification, Liu et al (Liu et al., 2021). fused the attention

module with multi-scale feature expression in order to distinguish

the subtle differences between the subcategories of the main

category. The improved network can learn a list of accurate

feature maps. Xie et al. (0000) proposed a multi-scale densely

connected convolutional neural network MS-DenseNet when

studying hyperspectral image classification. By learning multi-

scale patches around each pixel, they made full use of multi-scale

information. Wang et al. (2022) proposed a multi-scale

convolutional neural network point cloud filtering algorithm

based on attention mechanism to solve the problem of low

accuracy of traditional filtering methods when processing lidar

data, combining channel and spatial attention module with multi-

scale convolution kernel. The lidar point cloud feature maps output

by the algorithm at different scales can adjust the weights of each

channel layer and different spatial regions adaptively, so that the

network pays extra attention to important information, thus

improving the classification performance of the model.

In recent years, many deep semantic segmentation networks

using multi-scale feature fusion methods have been applied to pixel
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level classification of remote sensing images or scene classification

of remote sensing images. A large number of research results show

that it is an effective method to obtain better image classification

results. When conducting large-scale land cover classification, Gao

et al. (2021) found that the traditional sliding window convolutional

neural network has a large computational overhead and the

classification results are not precise enough. To solve this

problem, a new object-oriented deep learning framework was

proposed, which uses residual networks to learn features on

different adjacent scales and achieves a balance between weak

semantics and strong features. When studying the classification of

complex remote sensing scenes, Bi et al. (2021) found that the

complex spatial arrangement and object size changes in large-scale

aerial images were challenging for classification models. In order to

enhance the feature expression ability of remote sensing scenes, a

multi-scale expanded convolution operator was designed. To solve

the “small sample” problem of hyperspectral image classification,

Gong et al. (2021) designed a lightweight multi-scale attention

pyramid pooling network MSPN, whose core components included

a multi-scale three-dimensional CNN module and a squeezing

excitation attention module. The network learns and fuses deeper

spatial spectral features with fewer training samples, and verifies

MSPN’s good performance on publicly available hyperspectral data

sets. Liao et al. (2022) developed multi-scale object-driven

convolutional neural network multi-OCNNs, which can capture

the depth and context information contained in the reference

samples, and has achieved good results in land cover classification

based on multi-source high-resolution images such as SPOT-6,

Gaofen-2 and ALOS.

In summary, a large number of deep learning models represented

by convolutional neural networks have been applied to intelligent

information extraction tasks of remote sensing images. However,

there are few researches on exploiting the potential of multi-spectral

remote sensing in crop mapping by using multi-scale feature fusion

semantic segmentation model. Models that use pre-trained networks

combined with multiple jump connections to achieve feature fusion

tend to be deeper, resulting in larger model parameters and a

significant increase in computational overhead. Skipping

connections can only alleviate the problem of single feature size to

a certain extent, and the requirements of fine-grained segmentation

cannot be met in the initial stage of training, resulting in insufficient

segmentation results. In order to solve this problem, this paper

proposes a semantic segmentation model with residual network as

the backbone and receiving field module for multi-scale and multi-

scale feature fusion. The performance of the model was evaluated in

the experiment of crop classification based on Sentinel-2 high-

resolution remote sensing image.

2 Multi-scale feature extraction
method based on deep convolutional
neural network

On the premise of effectively alleviating the problem of gradient

disappearance, the residuals network (ResNet) improves the

performance of the model by adding considerable depth. In
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addition to the common residuals network of 18 layers, 34 layers

and 50 layers, there are ResNet-101 and ResNet-152 at a deeper

level. A modest increase in the depth of the network is beneficial to

the performance of the model, and a large number of experiments

have shown that changing the width of the network can achieve the

same purpose. Multi-scale feature extraction modules based on

parallel multi-branch structure design have been proposed one after

another. In this chapter, several important convolutional modules

are described in detail.
2.1 Inception

The design concept of Inception is to use convolution kernels of

different sizes to realize the perception of multi-level features, and

finally fusion to obtain better representation of images. Inception

module is the core component of the GoogleNet network. From

Inception V1 to Inception V4, each version is the optimization of

the previous version, with the number of parameters decreasing and

the running speed and accuracy gradually improving. The different

versions of the Inception model structure are shown in Figure 1.

Inception module realizes multi-scale feature space superposition

through parallel multi-branch operations and uses intensive

operations to maintain model sparsity. Xception to Inception - V3

is improved, and put forward the depth of Separable convolution

(Depthwise Separable Convolutions), Inception - V3 will channel is

divided into four groups respectively carry out 1 x 1 convolution

computation, Xception performs a 1 × 1 convolution calculation for

each channel’s feature graph and concatenates the feature forces.

Completely decouple channel and spatial dependencies. Xception has

the same number of parameters as Inception-V3, but with better

performance and more efficient use of network parameters, as shown

in Figure 2 for its structure.
2.2 Atrous spatial pyramid pooling

Atrous Spatial Pyramid Pooling (ASPP) uses dilated

convolution with different dilation coefficients to extract multi-

scale features. Dilated convolutions (Yu and Koltun, 2016) add

dilation into the standard convolutions to increase the field of

perception (See Figure 3).

The calculation process of dilated convolution is shown in the

following formula, where Hin and Hout respectively represent the

height of the input and output feature graphs, and Win and Wout

respectively represent the width of the input and output feature

graphs.

Hout =
Hin + 2� padding½0� − atrous½0� � (kernel½0� − 1) − 1

stride½0�
+ 1 (1)

Wout =
Win + 2� padding½1� − atrous½1� � (kernel½1� − 1) − 1

stride½1�
+ 1 (2)
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Some semantic segmentation algorithms based on full

convolutional neural networks, such as FCN-8S and FCN-16S,

need continuous up-sampling in order to achieve the same

resolution of input and output images. However, this process

cannot recover the loss of detail information caused by previous

pooling. Dilated convolution can reduce such loss to a certain extent.

ASPP module first appeared in the semantic segmentation

algorithm DeepLab V2, consisting of 3 × 3 convolution of four

different expansion coefficients. Subsequently, ASPP was applied to

many image classifications tasks as an independent module (Yuan

et al., 2019; Liu et al., 2021; Pedrayes et al., 2021). The branch

structure inside ASPP is not invariable, and designers often adopt

different parameter configurations according to different application

scenarios. Figure 4 shows an ASPP Block containing four branches.

By setting four different dilation, the module is capable of feature

extraction from four different scales.

ASPP uses filters with multiple sampling rates and effective field

of view to detect the incoming convolutional feature map, so as to

capture objects and image context information at multiple scales,

keep image resolution unchanged, obtain more intensive feature

response, and better restore the details of the original image.
2.3 Receptive field block

Receptive Field Block (RFB) refers to the design concept of

Inception. In each branch structure, conventional convolution of
Frontiers in Plant Science 04
convolution kernel of specific size is first used, then dilated

convolution is added, and multi-scale features are extracted by

group convolution. Dilated convolution increases receptive field.

The RFB module considers the relationship between the receptive

field center and the target region to enhance the feature recognition

and robustness (Liu et al., 2018). The structure of RFB is shown in

Figure 5. The extracted multi-scale features are fused and input to

the next layer by adding 1 × 1 convolution and identity shortcut

connection. RFB is a lightweight feature extraction module, which

can be conveniently configured in convolutional neural networks.

Especially in some target detection tasks, RFB has brought

significant performance gains to detection networks (Li et al.,

2019; Liu et al., 2019; Yuan et al., 2021).
3 Multi-scale feature fusion
network-MSSNet

3.1 Study area

The study area is Yunshan Farm and 850 Farm located in Hulin

City, Heilongjiang Province. The longitude range is 132°35 ‘21

“~132°51’ 46” E, and the latitude range is 45°47 ‘21 “~45°58’ 11” N.

Located in the famous Sanjiang Plain, this area is a temperate

continental monsoon climate with an effective accumulated

temperature of 2501°C. 80% of the cultivated land is low-wet land
D

A B

C

FIGURE 1

Different versions of the Inception module architecture schematic. (A) Inception V1; (B) Inception V2; (C) Inception V3; (D) Inception V4.
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with fertile soil and abundant water resources. It mainly grows corn,

rice and soybeans, and is an important commercial grain base in

China. The location and scope of the research area are shown

in Figure 6.

The remote sensing data uses the high-resolution multi-spectral

image of Sentinel-2 satellite developed by ESA. Sentinel-2 is divided

into 2A and 2B satellites with a revisit period of 5 days. Sentinel-2

can cover 13 spectral bands and provide multi-spectral images with

spatial resolution of 10 meters, 20 meters and 60 meters (Verrelst

et al., 2012). Widely used in agricultural resources monitoring and

crop yield estimation, geological survey, land use dynamic

monitoring and other fields. Sentinel-2 remote sensing data used

in this paper is Level-1C data that was imaged on July 28, 2020, and

is derived from Sentinel Hub. Sen2cor 2.11 is used to preprocess the

data. Firstly, radiometric calibration and atmospheric correction

were carried out for multi-spectral images to eliminate radiation

errors caused by atmospheric scattering, etc. Then SNAP 9.0 and

ENVI 5.3 platforms were used to generate reflectance Level 2A data

at the bottom of the atmosphere. Finally, the resolution of the

resampling remote sensing image was 10 meters, and the study area

was about 423 square kilometers.
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3.2 Features extraction and training
set construction

In this study, based on Sentinel-2 multispectral images, we

designed 12 features (Table 1), including blue (band 2), green (band

3), red (band 4), visible light and near infrared (band 5-band 8a), short

wave and infrared (band 11-band 12). The other two features are

Normalized Differential Vegetation Index (NDVI) and Enhanced

Vegetation Index (EVI). Table 1 shows the calculation methods of

the two planting cover index data. NIR in the formula is band 8.

Among different vegetation indexes, NDVI and EVI are important

measurement parameters of surface vegetation cover and vegetation

growth (Immitzer et al., 2016; Huang et al., 2019), which have been

proved to be helpful to improve the classification accuracy (Ferrant

et al., 2017; Silveira et al., 2017; Belgiu and Csillik, 2018). The average

reflectance spectra of each type of crop are shown in Figure 7. Principal

Components Analysis (PCA) is used to extract the first three principal

components of the image after principal component transformation as

characteristic variables to participate in the classification.

The training set consists of 216 plots, including 50 plots of corn

field, 86 plots of rice field and 80 plots of soybean field, as shown in

Figure 8. The marks show the geographical locations of the real land

cover sample areas extracted from the study area. The data of these

plots were obtained through agricultural census and field survey,

which collected a series of ground survey data. Including precise

GPS coordinates of plots and crop types, pixel (sample) is the basic

unit used for classification. Table 2 lists crop types and the number

of each type of sample in the training set.
3.3 Comparison of backbone

Backbone is a model containing visual representation capability

generated by pre-training upstream data, which is a part of deep

learning model. Therefore, Backbone’s feature extraction capability

directly affects the performance of the algorithm. This paper selects

three different backbone networks, ResNet18, VGG19 and

ResNet50, as feature extraction models of MSSNet. In the first

experiment, T-distributed Random neighbor Embedding (t-SNE)

was used to analyze the crop-specific spatial heterogeneity of the
FIGURE 2

Perform the 3 × 3 convolution on each channel of the 1×1 convolution.
A B C

FIGURE 3

Atrous convolution increases the receptive field without losing information. (A) atrous_rate=1; (B) atrous_rate=2; (C) atrous_rate=4.
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FIGURE 4

An ASPP Block capable of extracting four scale features.
FIGURE 5

The architecture of RFB.
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original Sentinel-2 data and the data processed by the deep learning

model, so as to measure the feature extraction capability of different

backbone. Then, 2000 samples each of crop are randomly selected,

the original features and extracted features corresponding to these

samples are nonlinearly projected to a 2-D plane for visualization

using t-SNE. As shown in Figure 9, it is shown that the separability

of features extracted by different backbone is significantly better

than that of original features among different crop categories. In

addition, compared with ResNet18 and VGG19, features extracted

by ResNet50 are more separable and samples of the same crop

category are more clustered. Therefore, ResNet50 is selected as the

backbone network in this paper.
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3.4 MSSNet architecture

Inspired by the above multi-scale feature extraction modules,

we proposed a semantic Segmentation network MSSNet (Multi

Scale Segmentation Net) for fine classification of crops in

agricultural areas. This network is based on residual network,

receptive field module and skip connection. The architecture is

shown in Figure 10, and the core contents are summarized

as follows:
• The pre-trained residual network (ResNet50) is used as the

backbone network to receive global visual features.
FIGURE 6

Study area with its RGB image composite derived from Sentinel-2 imagery.
TABLE 1 Features designed in this study.

Band Description Central wavelength(nm) Spatial resolution(m)

band 2 Blue 490 10

band 3 Green 560 10

band 4 Red 665 10

band 5 Vegetation Red Edge 705 10

band 6 Vegetation Red Edge 740 10

band 7 Vegetation Red Edge 783 10

band 8 NIR 842 10

band 8a Vegetation Red Edge 865 10

band 11 SWIR 1610 10

band 12 SWIR 2190 10

NDVI
NIR − R
NIR + R

– 10

EVI 2:5*
NIR − R

NIR + 6R − 7:5B + 1
– 10
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Fron
• Embedded receptive field module (RFB) for multi-scale

feature extraction and integration.

• Use skip connection to concatenate low-level and high-level

features with the same resolution.
The Input of MSSNet model is set as 256 × 256 × 3, and the

backbone network ResNet50 is composed of 5 stages. We select

the 39th convolutional layer (activation_39) located at Stage 3
tiers in Plant Science 08
as the output layer, and the size of the feature map is 16 × 16 ×

256. The RFB module consists of four branches, and the identity

mapping (arc) directly outputs 16 × 16 × 256. The second

branch consists of a 3 × 3 conventional convolution and a

dilated convolution with a dilation coefficient of 1, and the

output feature map is 16 × 16 × 256. The third and

fourth branches are both composed of two 3 × 3 conventional

convolution and a dilated convolution. The dilation coefficients
FIGURE 8

The ground truth used for model training and the effect of partial sample area zoomed.
FIGURE 7

Mean reflectance spectral of each crop.
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of the dilated convolution are different. Since the dilated

convolution does not change the parameter number, the

output of both branches is 16 × 16 × 256. RFB uses a 3 × 3

convolution to fuse the features extracted from the second to

the fourth branches, and outputs the feature graph 16 × 16 ×

768. At this time, the feature graph is added to the output of the

identity map, and the final output of RFB is 16 × 16 × 768. After

that, the feature dimension is reduced to 512, and the output

feature graph is 16×16×512 for three consecutive 3 × 3

convolution. After the first quadruple up-sampling operation,
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the spatial resolution of the image is expanded to four times the

original one, and the feature graph is 64 × 64 × 512. Considering

the importance of course-scale features for semantic

segmentation of fine-grained images, we fused low-level

features with high-level features, and used a skip connection

to achieve this in MSSNet. The convolutional layer activation_9

was located at Stage 0 of ResNet50, and its output was 64 × 64 ×

64. The skip connection fuses 64 × 64 × 512 of the first up-

sampling feature with 64 × 64 × 64 × 64 of the lower-level

features, and outputs 64 × 64 × 576. After three 3 × 3

convolutions, the feature dimension is reduced to 256, and

the spatial resolution of the image is restored to 256 × 256 by a

second quad up-sampling. Finally, the probability that the

output pixels of four 3 × 3 convolution layers and one

convolutional layer using Softmax activation function belong

to a certain class is obtained.

In this paper, Python language is used to implement the

MSSNet semantic segmentation network based on Keras API
D

A B

C

FIGURE 9

Two-dimensional plane projection of high-dimensional features learned by different backbone based on t-SNE. (A) original feature. (B) features
extracted by ResNet18. (C) features extracted by VGG19. (D) features extracted by ResNet50.
TABLE 2 The number of training dataset per crop class.

Class Label color Samples size

Corn ▬ 94842

Rice ▬ 76964

Soybean ▬ 82615
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(Tensorflow as the back-end), and the network is used to mine

spatial features and spectral features from multi-spectral data sets

to achieve semantic segmentation. As shown in Figure 11,

the reconstructed multispectral data was reduced from 12

features to 3 features by PCA, and then pixel-level classification

results were output by ResNet50, receptive field module and

continuous upsampling.
4 Experiment setting

4.1 Classification results and
accuracy evaluation

In this paper, four deep learning semantic segmentation

networks, including MSSNet, are applied to this classification

task, and the experimental setup is shown in Figure 12. UNet++

is a deeply supervised semantic segmentation network where

subnetworks of encoder and decoder are connected to each other

through a series of nested dense jump paths, and PSPNet and

DeepLab V2 are deep learning models for intensive prediction

tasks. In the process of model training, the hyperparameters are

also configured in the same configuration. The optimizer Adam

has a learing rate of 0.001, iteration times (epoch) of 120, and

batch size of 16. Input image resolution is set to 256 × 256,

channel number C = 3, and is composed of the first three

components after principal component transformation of

Sentinel-2 image. Therefore, the input image size of the model

is (256,256,3). In order to meet the architecture design of
Frontiers in Plant Science 10
MSSNet, samples need to be extracted from image data. After

rearrangement and normalization, the data enhancement

strategy was used in the training process.

In order to quantitatively and accurately assess the influence

of different classifiers on crop extraction accuracy, an area of

about 9 square kilometers in the research area is selected as the

test set, as shown in Figure 13. The marked part is the test set,

and the red box is the research area. 61 plots are marked in the

test set, including 24 corn fields, 11 paddy fields and 26 soybean

fields. The corresponding test samples are 35,368, 9711 and

24,933 respectively.

We evaluate the performance of the classifier using Mean

Intersection over Union (MIoU), overall accuracy (OA), and the

Kappa coefficient shown by the confusion matrix, which is the most

commonly used metric for semantic segmentation tasks. MIoU

calculates the IOU (the intersection of the real label and the

predicted result) for each class separately, and then averages the

IOU for all classes. MIoU is the standard accuracy measure. Among

them, the overall accuracy can reflect the overall performance of the

classifier. Each classification algorithm is trained five times

repeatedly, that is, the same classification algorithm will make five

predictions on the test set. The combined statistical results of the

repeatedly generated confusion matrix are shown in Table 3. The

crop classification diagram generated by different classification

algorithms is shown in Figure 14.

Overall accuracy (OA) refers to the ratio between the total

number of correctly classified samples of all categories and the total

ground truth value. As can be seen from Table 3, among the four

semantic segmentation algorithms, the multi-scale feature fusion
FIGURE 10

The architecture of MSSNet, ResNet50 and RFB are core components.
FIGURE 11

Semantic segmentation diagram of MSSNet, intermediate feature mapping represents features extracted at different levels.
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network MSSNet proposed by us achieves higher classification

accuracy. The overall accuracy is 8%, 3.87% and 1.21% higher

than UNet++, PSPNet and DeepLab V2, respectively. The average

classification accuracy of corn and rice reached 90%, but the

classification accuracy of soybean was relatively low, and there

was obvious misclassification between corn and soybean. MSSNet

has the highest MIoU, which means that the model has the best

segmentation for various categories, in addition, through qualitative

analysis of the classification map, it can be seen that MSSNet is

obviously superior to the other three algorithms in the detail

characterization ability of image segmentation. The boundary of

the block is clearer, the classification results of the block interior are

more continuous (blue circular area in Figure 14, and it can extract

the small block area more accurately (blue oval area in Figure 14).

These performance gains are due to the multi-scale feature

extraction and multi-level feature fusion capabilities of the multi-

RFB module. Specifically, the convolutional kernel and cavity

convolution of different sizes of the RFB module extract rich

multi-scale features. The classification results of UNet++ and

PSPNet are relatively rough and significantly weaker than the

other two algorithms in terms of image details. There are large

pixel blocks on the classification map, and the segmentation results

cannot restore the details of the input image, which is also the main

reason for their low classification accuracy.
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4.2 Traditional machine learning
classification algorithm

Traditional machine learning classifiers such as random forest

(RF) and support vector machine (SVM) have been widely applied

to classification tasks with their good performance. In this study, we

compared four traditional machine learning classification

algorithms on the same data set, which are RF, SVM, kernel SVM

and XGBoost. RF adopts an integration algorithm with high

accuracy and can maintain accuracy even if there is a large

amount of missing data. Over-fitting does not occur easily owing

to randomly selected samples’ characteristics and some features’

random extraction in the training process (Cutler et al., 2004).

Support vector machine (SVM), first proposed by Corinna Cortes

and Vapnik et al. in 1995, is a statistical theory specifically for small

samples (Vapnik, 1995). Its unique advantage lies in dealing with

small samples, nonlinear, and high-dimensional data problems, and

many scholars have applied it to remote sensing image

classification tasks.

XGBoost is an open source machine learning project,

which effectively implements GBDT algorithm with a lot of

improvements, and has a wide range of applications in computer

vision tasks such as image classification and object extraction. We

use the “random search” method to optimize the main
FIGURE 12

Experimental design.
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hyperparameters of the model, and select the best combination of

hyperparameters from the candidate values according to the

classification accuracy of each model on the test set. The

optimization results are shown in Table 4. The bold characters in

the candidate values represent the optimal parameters. Among

these traditional machine learning classification algorithms,

XGBoost has the best performance with 81.78% OA, Kernel SVM,

RF and SVM 81.43%, 81.42% and 78.56%, respectively. According

to the statistical data in Tables 3, 4, the classification accuracy of the

deep learning algorithm is better than that of the traditional

machine learning algorithm on the whole. Even the classification

accuracy of the rough FCN-32S model is slightly higher than that of

XGBoost, while the highest classification accuracy of MSSNet is

90.68%, which is obviously higher than that of the traditional

machine learning classifier. Figure 15 and Figure 16 show the

crop classification in the study area of XGBoost and

MSSNet, respectively.
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5 Discussion and conclusion

Crop classification is the basis of large-scale crop acreage

estimation. Currently, advanced Earth observation technology

can identify the spatial distribution of crops on the plot scale. In

this study, Sentinel-2 multi-spectral image with a single time

phase and deep learning algorithm were used to make an

attempt on the task of crop fine classification. In this paper, a

multi-scale feature potential representation network MSSNet is

proposed. Using ResNet50 as the backbone network, the

network uses convolution kernel and void convolution of

different sizes in the multi-scale feature module, which can

frequently merge the features of different scale branches, and

then learn more accurate feature maps to assist classification

decision. In the experiment, we compared 4 traditional machine

learning classification algorithms with 4 deep learning

algorithms including MSSNet, and the classification results
TABLE 3 Classification accuracies of different algorithms, bold values show the best performance.

Class UNet++
Mean ± SD

PSPNet
Mean ± SD

DeepLab V2
Mean ± SD

MSSNet
Mean ± SD

Corn 91.13 ± 0.69% 91.64 ± 1.26% 92.55 ± 2.36% 92.41 ± 1.68%

Rice 90.26 ± 1.42% 91.06 ± 1.88% 91.38 ± 2.35% 91.58 ± 2.46%

Soybean 80.41 ± 2.31% 86.44 ± 1.95% 79.28 ± 2.48% 88.19 ± 4.30%

OA (%) 82.68 ± 1.46 86.90 ± 1.15 89.56 ± 1.89 90.77 ± 1.31

MIoU×100 74.24 ± 0.60 74.78 ± 0.37 75.82 ± 2.91 76.59 ± 0.21

Kappa × 100 74.96 ± 2.16 81.13 ± 1.21 79.85 ± 2.78 83.53 ± 2.29
The bold values mean the highest classification accuracy.
FIGURE 13

The test set is located in the study area and covers only one training sample.
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TABLE 4 Comparison of traditional machine learning classifiers.

Classifier Hyperparameters OA Kappa

Random
Forest

n_estimators: 30, 50, 100, 200, 300

81.42% 73.58%
max_depth: 5, 10, 20, 30, None

min_samples_split: 3, 5, 10, 30, 100

min_samples_leaf: 1, 3, 5, 7, 10

SVM
C: 0.01, 0.05, 0.1, 0.5, 1, 5, 10, 100

78.56% 69.55%
Kernel: “linear”

Kernel SVM

C: 0.01, 0.05, 0.1, 0.5, 1, 5, 10, 100

81.43% 73.40%Kernel: “rbf”

Gamma:0.1, 0.2, 0.3, 0.4, 0.5, 0.6, “auto”

XGBoost

learning _rate: 0.01, 0.02, 0.05, 0.1, 0.2

81.78% 74.07%

gamma:0.05, 0.1, 0.2, 0.5, 0.7, 1

max_depth:5, 7, 9, 15, 17, 21, 25

min_child_weight:1, 5, 7, 9, 11

subsamples:0.5, 0.6, 0.8, 1

(Continued)
F
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FIGURE 14

The segmentation result of each algorithm. (A) Sentinel-2 MSI image; (B) The ground truth; (C) UNet++; (D) PSPNet; (E) DeepLab V2; (F) MSSNet.
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show that the deep learning algorithm has obvious advantages,

especially the algorithm we proposed has obvious improvement

compared with other commonly used classification algorithms.

Existing studies have shown that the best time for crop

identification is between week 11 and 20 during the growing

period (Xu et al., 2021), In this paper, Sentinel-2 images from

the 14th week of crop growth were used to explore the

application potential of single phase remote sensing in crop

classification. Temporal, spectral and spatial characteristics are

the basis of crop classification based on remote sensing

technology. The method of crop extraction by using time

series image has become an important method to extract crop

planting structure by making full use of the characteristics of

crop seasonal rhythm. However, it is often difficult to obtain

image data of large range and long time series. In this study, a

high classification accuracy is achieved by using single-phase

optical images with only spectrum-space features. The selection

of input features has an important impact on the performance
Frontiers in Plant Science 14
of the model. Since NDVI and EVI can distinguish the

phenological differences of different crops, these two artificial

features have been introduced into crop classification

experiments in large numbers. This practice was followed in

feature design in this paper. 12 features such as blue, green, red,

near-infrared band, normalized vegetation index and enhanced

vegetation index were selected as key features for crop

identification. The distribution of the importance of input

features is closely related to the model structure, and the

distinction of subtle differences between categories is the key

to fine-grained image classification. Specifically, the feature

extraction ability of the model for local spatial features

determines the degree of refinement of classification results.

In this paper, a multi-scale feature fusion module is designed in

semantic segmentation model based on void convolution

technology. By combining feature maps of different scales, the

expression of ground object details is enhanced on the premise

of ensuring classification accuracy. At the same time, in object
TABLE 4 Continued

Classifier Hyperparameters OA Kappa

colsample_bytree:0.5, 0.6, 0.8, 1

reg_labda:0.01, 0.1, 1

reg_alpha:0, 0.1, 0.3, 0.5, 1

MSSNet - 90.68% 86.75%
front
The bold values mean the highest classification accuracy.
FIGURE 15

Crop classification in the study area using XGBoost algorithm.
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detection and semantic segmentation tasks, model performance

is highly dependent on features extracted by backbone.

Therefore, we believe that it is very necessary to analyze input

features when designing deep learning models.
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