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Dioscorea sect. Stenophora (Dioscoreaceae) comprises about 30 species that

are distributed in the temperate and subtropical regions of the Northern

Hemisphere. Despite being evolutionarily “primitive” and medically valuable,

genomic resources and molecular studies of this section are still scarce. Here,

we conducted low-coverage whole genome sequencing of 11 Stenophora

species/subspecies to retrieve their plastome information (whole plastome

characteristics, plastome-divergent hotspots, plastome-derived SSRs, etc.) and

polymorphic nuclear SSRs, as well as performed comparative plastome and

phylogenetic analyses within this section. The plastomes of Stenophora species/

subspecies ranged from 153,691 bp (D. zingiberensis) to 154,149 bp (D.

biformifolia) in length, and they all contained the same 114 unique genes. All

these plastomes were highly conserved in gene structure, gene order and GC

content, although variations at the IR/SC borders contributed to the whole

length differences among them. The number of plastome-derived SSRs among

Stenophora species/subspecies varied from 74 (D. futschauensis) to 93 (D.

zingiberensis), with A/T found to be the most frequent one. Seven highly

variable regions and 12 polymorphic nuclear SSRs were identified in this

section, thereby providing important information for further taxonomical,

phylogenetic and population genetic studies. Phylogenomic analyses based on

whole plastome sequences and 80 common protein coding genes strongly

supported D. biformifolia and D. banzhuana constituted the successive sister

species to the remaining sampled species, which could be furtherly divided into

three clades. Overall, this study provided a new perspective for plastome
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evolution of Stenophora, and proved the role of plastome phylogenomic in

improving the phylogenetic resolution in this section. These results also provided

an important reference for the protection and utilization of this economically

important section.
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1 Introduction

Dioscorea is the largest genus in the family Dioscoreaceae with

over 600 species, which contains about ten major clades:

Stenophora, New World I, New World II, African, Mediterranean,

New World III, Compound Leaved, Malagasy, Shannicorea and

Enantiophyllum (Viruel et al., 2016; Couto et al., 2018; Viruel et al.,

2018). Among them, Stenophora, the subject of our study, coincides

with the section Stenophora Uline circumscribed by Burkill (1960),

and contains about 30 species disjunctively distributed in the

Northern Hemisphere (Gao et al., 2008; Vinogradova et al.,

2022). The sect. Stenophora likely originated in Himalayas-

Hengduan Mountains, China, and is the most basal clade of

Dioscorea, differing from the rest of this genus by having

rhizomes, monosulcate pollen and a diploid chromosome number

(x = 10) (Wilkin et al., 2005; Gao et al., 2008; Hsu et al., 2013; Viruel

et al., 2016; Couto et al., 2018; Noda et al., 2020). Plant species in

this section are reported to have great medicinal values. In

particular, the rhizomes of D. nipponica and D. zingiberensis are

extensively used to extract diosgenin, which is an important

precursor for the synthesis of steroid drugs in the pharmaceutical

industry (Gong et al., 2011; Cheng et al., 2021). The immense

evolutionary and medicinal value of Stenophora species has also

brought new challenges to their conservation and sustainable use.

One major concern is that the increasing demands for naturally

growing plants has threaten their wild populations and genetic

variations (Das et al., 2013; Sun et al., 2017). For example, D.

nipponica has been listed as a secondary-level endangered plant

species in China, as its wild resource is facing extinction (Fu, 1992;

Chen et al., 2007). Another concern is the misidentification and

misuse of Stenophora species, as they are similar in morphological

characteristics and local names. Therefore, accurate and rapid

identification of Stenophora species (e.g., molecular markers) is

urgently required.

Previous studies of Stenophora have concentrated on external

morphology, cytology, pollen morphology and phytochemistry (Pei

et al., 1979; Huang et al., 2010). Morphological and embryological

features have been shown to be important for systematics and

species identification of Stenophora, and could divide this section

into several subclades (e.g., Titova and Torshilova, 2015;

Vinogradova et al., 2022), however, it is still difficult to find clear

gaps of morphological variations among closely related species

(Noda et al., 2020). Moreover, although previous molecular-based
02
studies have accelerated species identification and phylogenetic

inference of Stenophora, the plastid loci used (e.g., atpB, matK,

rbcL) always showed low discriminatory power (Gao et al., 2008;

Noda et al., 2020). For example, Gao et al. (2008) revealed that D.

nipponica was sister to D. althaeoides, and D. nipponica ssp.

rosthornii was not related to these two species, but their

interspecific relationships receive weak bootstrap support.

Evidently more effective molecular markers are needed to solve

the remaining phylogenetic dilemma.

Plastomes of land plants generally have a quadripartite circular

structure, with a pair of inverted repeats (IRs) separated by a large

single-copy (LSC) region and a small single-copy (SSC) region,

ranging from 100 to 200 kb in length (Raubeson and Jansen, 2005;

Jansen and Ruhlman, 2012; Olejniczak et al., 2016; Lu et al., 2023).

Due to many advantages such as highly conserved structure, usually

uniparental inheritance, absence of recombination, and large copy

numbers, plastome sequences have been widely used for accurate

species identification and phylogenetic inferences, especially at low

taxonomic levels (Gitzendanner et al., 2018; Yang et al., 2022).

Furthermore, comparative plastome genomics could provide

essential information for plastome evolution, such as gene loss

and IR boundary shifts, and can develop mutational hotspots,

which may contribute to species discrimination, phylogenetic, and

population genetic studies (Lu et al., 2021; Yang et al., 2022). In sect.

Stenophora, although some representative plastomes have been

sporadically released, previous studies mainly focused on the

plastome characteristics of single species (e.g., Wu et al., 2016;

Zhou et al., 2016), or performed comparative and phylogenetic

analyses only based on a small number of plastomes (e.g., Zhao

et al., 2018; Xia et al., 2019). Thus, it is necessary to provide more

genomic resources for further understanding the plastome

evolution and phylogeny of Stenophora.

With the rapid development of next generation sequencing

(NGS) technologies, it is cheap and fast to obtain low-coverage

(~0.1–10×) of the whole genome sequencing data (or called genome

skimming data), which could provide sufficient data for complete

plastome assemblies (Straub et al., 2012; Twyford and Ness, 2017;

Jin et al., 2020). Besides, the assembled nuclear scaffolds from low-

coverage whole genome sequencing data could be used for mining

polymorphic nuclear SSRs (nSSRs) (e.g., Liu et al., 2018; Xia et al.,

2018; Lu et al., 2022). Here, we performed low-coverage whole

genome shotgun sequencing for 11 Stenophora species/subspecies

(i.e., D. banzhuana Pei & Ting, D. biformifolia Pei & Ting, D.
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collettii Hook.f., D. deltoidea Wall., D. futschauensis Uline ex

R.Knuth, D. gracillima Miq., D. nipponica Makino, D. nipponica

subsp. rosthorni (Prain & Burkill) C.T.Ting, D. spongiosa J.Q.Xi,

M.Mizuno & W.L.Zhao, D. tokoro Makino, D. zingiberensis

C.H.Wright). Using this data, we aimed to i) present the

complete and annotated plastome sequences of these 11

Stenophora species/subspecies, and assess plastome structural

evolution of them; ii) identify plastomic SSRs and mutational

hotspot regions (plastome-derived markers); iii) develop

polymorphic nSSRs based on assembled nuclear scaffolds of

Stenophora species/subspecies; and iv) conduct phylogenetic

analyses of these species/subspecies using plastome data. Overall,

this study will not only provide a valuable resource for species

identification and phylogenetic studies of Stenophora, but also be

useful for conservation and utilization of this economically

important section.
2 Materials and methods

2.1 Plant materials, DNA extraction and
genomic sequencing

Fresh leaves of 11 Stenophora species/subspecies, i.e., D.

banzhuana, D. biformifolia, D. collettii, D. deltoidea, D.

futschauensis, D. gracillima, D. nipponica, D. nipponica subsp.

rosthorni, D. spongiosa, D. tokoro, D. zingiberensis, were field-

collected and dried with silica-gel. The voucher specimens were

deposited at Herbarium of Institute of Botany, Jiangsu Province and

Chinese Academy of Sciences (NAS) [details about sampling

information can be found in Gao et al. (2008)]. For each species/

subspecies, genomic DNA was extracted from silica gel-dried leaves

using DNAsecure Plant Kit (Tiangen Biotech, Beijing, China),

following the manufacturer’s protocol. DNA concentration and

integrity were measured by Agilent 2100 BioAnalyzer and agarose

gel electrophoresis. Paired-end library with insert size of 350 bp was

constructed for each species/subspecies by using the Genomic DNA

Sample Prep, and then sequenced on the Illumina HiSeqTM 4000

platform (Illumina, San Diego, California, USA) according to the

paired-end 2 × 150 bp protocol. Library construction, genome

sequencing and raw data filtering were conducted by Novogene

Bioinformatics Technology Co., Ltd., Beijing, China.
2.2 Plastome assembly and annotation

After removing library barcodes and filtering low-quality data,

the clean reads (about 4 Gb per sample) were used for de novo

assembly of whole plastome sequences using GetOrganelle v.1.7.6

(Jin et al., 2020), with the default parameters as suggested by its

authors. All the assembly graphs were subsequently visually

inspected using Bandage v.0.8.1 (Wick et al., 2015). Initial

annotations of all newly assembled plastomes were performed

with MAFFT v.7 plugin (Katoh and Standley, 2013) in Geneious

Prime® 2022.0.1 (https://www.geneious.com) by aligning them to

two closely related and previously published plastomes, i.e., D.
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aspersa (NC_039807) and D. collettii (NC_037717), and

transferring reference annotations to these newly assembled

plastomes. Then, the initial annotations were checked and

adjusted manually to confirm the accuracy of exon/intron

boundaries and start/stop codon locations. All newly generated

plastome sequences were deposited in GenBank (accession

numbers: OQ525992-OQ526002). High-resolution circular

plastome maps of these 11 Stenophora species/subspecies were

generated using the web-based tool OrganellarGenomeDRAW

(OGDRAW) v.1.3.1 (Greiner et al., 2019).
2.3 Whole plastome comparison within
sect. Stenophora

To visualize sequence similarity of plastomes within sect.

Stenophora, all 11 newly sequenced plastomes and one plastome

of D. villosa (NC_034686) were aligned using the global alignment

program LAGAN (Brudno et al., 2003), and visualized in VISTA

browser (Frazer et al., 2004), taking annotations of D. villosa

plastome as reference. To further illustrate the IR expansions and

contractions among Stenophora plastomes, the four junctions

between two invert repeats (IRs) and large/small single copy

(LSC/SSC) regions were identified and compared by Repeat

Finder plugin as implemented in Geneious Prime® 2022.0.1

(https://www.geneious.com/plugins/repeat-finder/).
2.4 Identification of mutational hotspots
and plastome-derived SSRs

To identify mutational hotspot regions for PCR-based

identification of Stenophora species and subspecies, a total of 12

plastomes (one plastome per species/subspecies, Table 1) were first

aligned using the MAFFT v.7 plugin (Katoh and Standley, 2013) in

Geneious Prime® 2022.0.1. Then, protein coding sequences (CDS),

intergenic spacer regions (IGS), introns and tRNAs, with aligned

length > 200 bp and the total number of mutations > 0 were

extracted from the alignment matrix of these 12 plastome

sequences. Finally, the nucleotide diversity (p) of these regions

was calculated in DnaSP v.6.12.03 (Rozas et al., 2017). In addition,

the MISA-web application (Beier et al., 2017) was employed to

screen SSRs across the 12 Stenophora plastomes, with thresholds

(minimum numbers) of 10, 5, 4, 3, 3, and 3 repeat units for mono-,

di-, tri-, tetra-, penta-, and hexa-nucleotide SSRs, respectively.
2.5 Development of polymorphic
nuclear SSRs

To develop polymorphic nuclear SSRs in sect. Stenophora, low-

coverage whole genome sequence reads of these 11 species/

subspecies were aligned to the reference genome sequence of D.

zingiberensis (Cheng et al., 2021) to remove mitochondria and

plastome reads, using BWA-MEM v.0.7.17 (Li, 2013). Aligned

files were then sorted using SAMtools v.1.9 (Li et al., 2009). The
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resultant Binary Alignment/Map (BAM) data (only containing

nuclear reads) were de novo assembled into scaffolds using a de

Bruijn graph-based assembly program, SOAPdenovo v.1.0.4 (Xie

et al., 2014). Based on these nuclear scaffolds, the potential

polymorphic nuclear SSRs were identified using CandiSSR (Xia

et al., 2016), with default parameters.
2.6 Phylogenetic analyses

Phylogenetic relationships among the 12 species/subspecies of

sect. Stenophora (Table 1) were inferred based on two datasets: (1)

whole plastome sequences and (2) 80 shared protein coding genes,

taking D. aspersa (NC_039807) and D. alata (NC_039707) as

outgroups. For the latter dataset, three partitioning scenarios: (1)

unpartitioned scenarios; (2) partitioned by each gene and intergenic

region; and (3) partitioned by codon position were employed. Both

whole plastome sequences and protein coding sequences were

aligned using the MAFFT v.7 plugin (Katoh and Standley, 2013)

in Geneious Prime® 2022.0.1. The best nucleotide substitution

model was determined by the Akaike Information Criterion

(AIC) in jModelTest v2.1.4 (Darriba et al., 2012), and the GTR +

G substitution model was selected for both datasets. Maximum

likelihood (ML) analyses were performed using RAxML v.8.2.12

(Stamatakis, 2014) available in the CIPRES Science Gateway v.3.3

(http://www.phylo.org/portal2/). Clade support values were

estimated by 1000 bootstrap replicates. Bayesian inference (BI)

analyses were conducted on MrBayes v.3.2.7 (Ronquist et al.,

2012), which consists of two independent runs of 1 × 106

generations, with four independent Markov chain Monte Carlo

(MCMC) chains (i.e., one cold and three heated) each, and a

sampling frequency of 1000 generations. The first 200 trees were

discarded as ‘burn-in’, and the remaining trees were used to
Frontiers in Plant Science 04
construct a majority-rule consensus tree and estimate posterior

probabilities (PPs).
3 Results and discussion

3.1 Plastome characteristics

The whole length of these Stenophora plastomes ranged from

153,691 bp (D. zingiberensis) to 154,149 bp (D. biformifolia)

(Figure 1; Table 1). All these plastomes shared the typical

quadripartite structure of angiosperm plastomes, with a pair of IR

regions (25,508–25,822 bp) separated by the LSC (83,129–84,145

bp) and SSC (18,657–18,959 bp) regions. The length variation of

Dioscorea plastomes is a very common phenomenon (Zhao et al.,

2018; Xia et al., 2019), which is often caused by the expansion and

contraction of the IR regions (see details below). These Stenophora

plastomes have the same overall GC content (37.20%), higher than

that in LSC (35.00–35.10%) and SSC (31.2%) regions, but lower

than that in IR regions (43.29–43.0%) (Table 1), possibly influenced

by the high GC content (55.3%) of the four ribosomal RNA

(rRNA) sequences.

All these Stenophora plastomes encoded the same 114 unique

genes, including 80 protein-coding genes (PCGs), 30 transfer RNA

(tRNA) genes, and four rRNA genes. Nineteen unique genes (seven

PCGs, eight tRNA genes, and all four rRNA) were duplicated in the

IRs, giving a total of 133 genes (Figure 1; Table S1). Among these

unique genes, nine PCGs (i.e., atpF, petB, petD, ndhA, ndhB, rpoC1,

rpl2, rpl16, and rps16) and six tRNAs (trnK-UUU, trnG-UCC, trnL-

UAA, trnV-UAC, trnI-GAU and trnA-UGC) possessed a single

intron, while three PCGs (ycf3, rps12 and clpP) contained two

introns (Figure 1; Table S1). The rps12 gene consists of three exons

that were trans-spliced together: exon 1 was located in the LSC
TABLE 1 The basic features of 11 Stenophora plastomes newly generated in this study.

Species/Subspecies
Length (bp) GC content

(%)

Number of genes

Total LSC SSC IR PCGs Total CDS tRNA rRNA Duplicated

Dioscorea banzhuana 153,989 84,004 18,959 25,513 79,071 37.20% 133 87 38 8 19

Dioscorea biformifolia 154,149 84,145 18,856 25,574 78,729 37.20% 133 87 38 8 19

Dioscorea collettii 153,746 83,903 18,657 25,593 78,867 37.20% 133 87 38 8 19

Dioscorea deltoidea 153,947 83,969 18,920 25,529 78,771 37.20% 133 87 38 8 19

Dioscorea futschauensis 153,948 83,981 18,909 25,529 78,759 37.20% 133 87 38 8 19

Dioscorea gracillima 153,996 83,970 18,908 25,559 78,777 37.20% 133 87 38 8 19

Dioscorea nipponica 153,885 83,950 18,919 25,508 78,780 37.20% 133 87 38 8 19

Dioscorea nipponica subsp.
rosthornii

153,916 83,981 18,919 25,508 78,780 37.20% 133 87 38 8 19

Dioscorea spongiosa 153,947 83,969 18,920 25,529 78,771 37.20% 133 87 38 8 19

Dioscorea tokoro 153,946 83,968 18,920 25,529 78,765 37.20% 133 87 38 8 19

Dioscorea villosa 153,974 83,920 18,902 25,576 78,720 37.20% 133 87 38 8 19

Dioscorea zingiberensis 153,691 83,129 18,918 25,822 78,867 37.20% 133 87 38 8 19
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region, while exons 2 and 3 were proximal and located in the IR

regions (Figure 1; Table S1). Furthermore, all Stenophora plastomes

reported in this study harbored the complete rps16 gene, contrary to

previous studies indicating the entire loss of rps16 gene in several

clades of Dioscorea (Jansen et al., 2007; Lu et al., 2023). To further

improve our understanding of rps16 gene evolution in Dioscorea, a

ML phylogenetic tree was reconstructed (with the same method

above) based on whole plastome sequences of 42 Dioscorea species,

using Trichopus zeylanicus and Tacca leontopetaloides as outgroups.

Phylogenetic result showed that rps16 gene was lost in all other

Dioscorea clades except Stenophora, suggesting a single loss of this

gene within Dioscorea (Figure S1). Since Stenophora and the rest of

the genus diverged about 48.3 (47.6–49.1) million years ago (Mya)

(Viruel et al., 2016), the gene loss mentioned above may have

occurred in sync with this divergence event, implying that the loss

of rps16 gene may have occurred about 48.3 Mya.
3.2 Comparative plastome analyses
of Stenophora

Comprehensive comparison of 12 Stenophora plastomes

revealed a high degree of overall sequence similarity and

collinearity within this section (Figure 2). Similar to previous

monocot plastome studies (e.g., Asaf et al., 2017; Lu et al., 2017;
Frontiers in Plant Science 05
Lu et al., 2021; Lu et al., 2022), our mVISTA analysis demonstrated

that IRs exhibited a lower level of sequence divergence compared

with LSC and SSC regions (Figure 2). This could be attributed to

copy correction between IR sequences by gene conversion, and the

abundance of conserved rRNA genes in the IRs (Khakhlova and

Bock, 2006). In addition, the protein-coding regions were found to

be more conserved than non-coding regions (including intergenic

spacers and introns), which were likely to be subject to natural

selection (Shaw et al., 2007; Lu et al., 2022).

Despite the similarity of plastome sequences, and the

conservation of gene content and linear order of genes, the 12

Stenophora plastomes exhibited obvious differences at the IR/SC

borders (Figure 3). For example, the ndhF gene crossed the SSC/IRa

border in D. collettii and D. zingiberensis, while it was completely

included in the SSC region in the other 10 species (Figure 3). The

IRb region extended 238 bp into the rps19 gene in D. zingiberensis,

much deeper than those extended into all other species (2–22 bp),

and further extended 280–296 bp into the ycf1 gene. IR expansion

into rps19 gene has also been observed in other sections in the genus

Dioscorea, e.g., Opsophyton, Testudinaria, Enantiophyllum (Zhao

et al., 2018; Lu et al., 2023), suggesting that this phenomenon may

be an ancestral symplesiomorphy of the genus Dioscorea. In

addition, the trnH gene was totally located within the IR region

and duplicated in all these species, 142–378 bp away from its

proximal IR/SC border.
FIGURE 1

The plastome map of Stenophora species/subspecies. Thick lines on the outer complete circle identify the inverted repeat regions (IRa and IRb).
Genes shown on the outside of the circle are transcribed clockwise, while genes inside are transcribed counter-clockwise. Genes are color coded
according to their functional groups. GC/AT content is displayed by darker/lighter grey bars in the inner ring.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1196176
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Hu et al. 10.3389/fpls.2023.1196176
FIGURE 3

Comparison of IR/SC junctions among 12 Stenophora plastomes. * previously published plastome sequence.
FIGURE 2

Sequence identity plots among Stenophora plastomes, with D. villosa (NC_034686) as a reference. Annotated genes are shown along the top. Gray
arrows above the alignment indicates genes with their orientation. The vertical scale represents the percent identity between 50% and 100%.
Genome regions are color coded as exon, intron, and conserved non-coding sequences (CNS). * previously published plastome sequence.
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3.3 Plastome-derived hotspot regions and
SSRs for Stenophora

Morphology-based species identification in sect. Stenophora has

always been difficult, because it is challenging to find clear gaps of

morphological variations among closely related species (Kawabe

et al., 1997; Wilkin et al., 2005; Gao et al., 2008). In this case,

barcoding has been performed for this section using nuclear gene

phosphoglucose isomerase (PGI) and plastid DNA (matK, rbcL and

trnL-F) regions (Kawabe et al., 1997; Gao et al., 2008). However,

these markers are today considered intermediately variable regions

(Shaw et al., 2014), and always showed low species discriminatory

power and poor phylogenetic resolution (Gao et al., 2008; Noda

et al., 2020). Therefore, we here used these plastome sequences to

develop novel genetic markers (hypervariable regions) for

taxonomic and phylogenetic analysis of Stenophora. A total of

130 regions (58 CDS, 53 IGS, 13 introns, five tRNAs and one

rRNA) was eventually extracted to calculate the nucleotide

diversity, and the p values ranged from 0.01% (rrn16) to 3.36%

(ndhD–ccsA) (Figure 4). Six IGS regions (i.e., ndhD-ccsA, petA-psbJ,

trnL-rpl32, psbZ-trnG, trnD-trnY and rpl32-ndhF), and rps16 intron

sequence were the top seven highly variable regions (p > 1.00%)

(Figure 4), which could be served as section-specific molecular

markers for future identification, conservation and utilization of

Stenophora species.

Plastome-derived SSRs (chloroplast SSRs, cpSSRs) are scattered

in the plastomes across different plant taxa, and have been widely

used in population genetic studies and breeding programs (Jiménez,

2010; Chmielewski et al., 2015; Hazra et al., 2021; Ping et al., 2021).

In this study, the MISA analysis identified a total of 960 SSRs across

the 12 Stenophora plastomes. The number of SSRs for each

plastome ranged from 74 (D. futschauensis) to 93 (D.

zingiberensis). Mononucleotide repeats were predominant, with

numbers ranging from 35 (D. collettii) to 50 (D. biformifolia),

followed by dinucleotides ranging from 14 (D. banzhuana) to 18

(D. villosa), and tetranucleotides (10 in D. collettii and 9 in the other

11 plastomes), while trinucleotides (4–6 per plastome),

pentanucleotides (0–5 per plastome) and hexanucleotides (3 per

plastome) were relatively few in Stenophora plastomes (Figure 5;

Table S2). The most common motifs were A/T and AT/TA for

mono- and dinucleotides, accounting for 46.75%–68.76% and
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17.20%–22.97% of the total SSRs in Stenophora plastomes,

respectively, which may lead to the AT richness of the Stenophora

plastomes (Figure 5; Table S2). These results were also consistent

with the previous findings that plastome-based SSRs are largely

composed of short polyadenine (polyA) and polythymine (polyT)

repeats, while rarely contained tandem guanine (G) and cytosine

(C) repeats (Kuang et al., 2011; Lu et al., 2022). In addition, several

potential species-specific SSRs were identified in the present study.

For example, AGC/CTG and AAGTAT/ACTTAT were only

observed in D. collettii and D. biformifolia, respectively, but not

appeared in the other 10 species/subspecies. Both AATAG/ATTCT

and AATAT/ATATT were only presented in D. nipponica and its

subspecies, while absence in other 10 species (Figure 5; Table S2).

Clearly, these SSRs could be developed as effective molecular

markers for species identification.
3.4 Polymorphic nuclear SSRs of
Stenophora

Unlike plastome-derived SSRs with a certain degree of

conservatism and usually uniparental inheritance, nuclear SSR

markers are co-dominant and generally highly polymorphic, thus

can complement plastome-derived SSR analysis in plants (Aecyo

et al., 2021). In this study, based on the multiple assembled nuclear

scaffolds of 11 newly sequenced Stenophora species/subspecies, a

total of 12 polymorphic nSSRs (including six dinucleotides and six

trinucleotides) were determined within this section by using

CandiSSR (Table S3). Among these polymorphic nSSRs, nSSR_7

could divide these Stenophora species/subspecies into five groups,

while four nSSRs (i.e., nSSR_1, nSSR_2, nSSR_5, nSSR_6) and seven

nSSRs (i.e., nSSR_3, nSSR_4, nSSR_8, nSSR_9, nSSR_10, nSSR_11,

nSSR_12) could divide them into four and three groups,

respectively (Table S3). Apparently, these polymorphic nSSRs

would be useful for species identification and conservation of this

section, especially in the population genetic context.
3.5 Phylogenetic relationships
within Stenophora

Previous phylogenetic studies have laid an important foundation

for the phylogeny and classification of Stenophora species, however the

selected loci (e.g., atpB,matK, rbcL and trnL-F) unfortunately could not

provide sufficient information for elucidating the phylogenetic and

evolutionary relationships among them (Gao et al., 2008; Viruel et al.,

2016; Noda et al., 2020). Recently, plastome sequences have been

extensively used for phylogenetic analyses, especially in addressing

unresolved relationship at low taxonomic levels (Carbonell-Caballero

et al., 2015; Li et al., 2017). In this study, two datasets including the

complete plastome sequences and 80 commonly present protein-

coding genes of 12 Stenophora species/subspecies were used to

perform phylogenetic analyses, with D. aspersa and D. alata as

outgroups. Both ML and BI analyses of these two datasets (including

different partitioning scenarios on protein-coding genes) yielded the

same topology, with moderate to high bootstrap support values (BS =
FIGURE 4

Nucleotide variability (p) values of 130 regions (58 CDS, 53 IGS, 13
introns, five tRNAs and one rRNA) extracted from the alignment
matrix of 12 Stenophora plastome sequences.
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65–100) andmaximal posterior probability support values (PP = 1.0) at

each node (Figure 6). The topology strongly supported D. biformifolia

and D. banzhuana constituted the successive sister species to the rest.

The remaining 10 sampled species/subspecies within this section could

be further divided into three clades. Clade I contained four species, in

which D. futschauensis was sister to the clade of D. tokoro + (D.

deltoidea + D. spongiosa). Clade II, i.e., (D. nipponica + D. nipponica

subsp. rosthornii) + D. zingiberensis, and clade III, i.e., (D. gracillima +

D. villosa) + D. collettii were sister to each other, and jointly sister to

Clade I (Figure 6). Contrary to previous hypothesis that D. nipponica

ssp. rosthornii was not related to D. nipponica (Gao et al., 2008), our

study strongly supported the monophyly of D. nipponica and D.

nipponica ssp. rosthornii, which was consistent to the taxonomic

treatments of this species in Flora of China (Ting et al., 2000).

Although our analyses have demonstrated the power of

plastome phylogenetics to improve the resolutions of phylogenetic

relationships in sect. Stenophora, this study was conducted based on

insufficient taxa sampling, thus could not establish a complete

picture of phylogenetic relationships within this section. Also

considering that hybridization and polyploidization has been

reported within this section (Qin and Zhang, 1985), plastome
FIGURE 5

Plastome-derived SSRs in the 12 Stenophora species/subspecies.
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FIGURE 6

Phylogenetic relationships of 12 Stenophora species/subspecies
inferred from Maximum likelihood (ML) and Bayesian inference (BI)
methods, according to complete plastome sequences. Numbers
above the lines represent ML bootstrap values and BI posterior
probabilities. Phylogenetic trees based on 80 commonly present
protein-coding genes with different partitioning scenarios are
completely consistent with this topology.
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data could not accurately capture hybridizat ion and

polyploidization events, as plastome is usually uniparentally

inherited, and acts as a linked single locus (Birky, 1995; Stull

et al., 2015). Thus, moving beyond the plastomes and analyzing

multilocus nuclear DNA sequence data with more extensive

sampling is necessary in the future, to explore the phylogenetic

and biogeographic hypotheses of sect. Stenophora.
4 Conclusions

In this study, we first assembled and annotated the complete

plastomes of 11 D. sect. Stenophora species/subspecies, based on

low-coverage whole genome sequencing data. Together with

previously published plastome sequence of D. villosa, we then

provided comparative plastome analyses within this section. All

sampled Stenophora plastomes (153,691–154,149 bp) shared the

same gene content, gene order and GC content. The rps16 gene

was lost in all other Dioscorea clades except Stenophora, which

may have occurred about 48.3 Mya. A total of 960 plastome-

derived SSRs and seven plastomic mutational hotspots were

identified in Stenophora. Besides, we also successfully developed

12 polymorphic nuclear SSRs within this section, based on

multiple assembled nuclear scaffolds. Phylogenetic analyses

strongly supported that D. biformifolia and D. banzhuana

constituted the successive sister species to the rest, which can be

furtherly divided into three clades. Overall, the data obtained here

will not only contribute to our understanding of plastome

evolution of Stenophora, but also aid in the conservation and

utilization of their genetic resources.
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