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Introduction: To document the successional processes of shrub-herb

communities after large-scale human disturbance, and understand how

changing environmental conditions affect species replacement in semi-humid

hilly areas.

Methods: Utilizing the established permanent plots in the hilly area of Taihang

Mountain, we evaluated temporal patterns of vegetation and soil following grass-

to-shrub succession.

Results and Discussion: Along secondary succession, Vitex negundo var.

heterophylla gradually dominated in dry sunny slope and shared the

dominance with Leptodermis oblonga in shaded slope. Herbaceous dominant

species in shrub-herb communities switched from Themeda japonica,

Bothriochloa ischaemum, Artemisia sacrorum, and Cleistogenes chinensis in

1986 census to B. ischaemum and A. sacrorum in 2008 census, but herb was no

longer dominant in 2020 census. As succession progresses, species dominance

increased while richness decreased generally, and herb cover and aboveground

biomass decreased, whereas shrub height, cover, and aboveground biomass

increased significantly. Soil organic matter (SOM), total nitrogen (TN), total

phosphorus (TP), and total potassium (TK) in topsoil increased significantly

while pH declined by 1.04 units over the past three decades. Plant

communities transitioned from perennial herbs to shrub-herb and then shrub

communities, and V. negundo var. heterophylla dominated in the succession of

shrub-herb communities. Climate and soil properties, combined with plant

attributes, together drive post-disturbance secondary succession. From a

management perspective, the tight coupling between vegetation and soil

under local climatic conditions should be considered to improve the fragile

ecosystem in the hilly area of Taihang Mountain.

KEYWORDS

Vitex negundo var. heterophylla, secondary succession, community structure, soil
property, Taihang Mountain
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1 Introduction

Semi-humid ecosystems (precipitation 400-800 mm yr-1) cover

about 6% of the global land area and provide crucial ecosystem

services for human society (Calvo et al., 2002a; Wang et al., 2014).

However, during several decades prior to the 1970s, large-scale

human disturbances, such as deforestation, overgrazing, and

excessive reclamation, have severely destroyed tree-dominated

ecosystems and converted it into shrub-herb communities (Calvo

et al., 2002b; Baudena et al., 2020). Even at deteriorated state, these

shrub-herb communities provide at least partial ecosystem

functions of primary forests and serve as biodiversity refuges, but

their successional trajectories, especially in semi-humid hilly areas,

depend on a variety of factors related to climate, topography, soils,

and so on (Chua et al., 2013; Lai et al., 2020).

The successional trajectory of shrub-herb communities

following disturbance is likely to vary widely across landscape,

even among those with similar disturbance histories (Norden et al.,

2015). Changing environmental conditions, such as temperature

(Dodson and Root, 2013), precipitation (José Vidal-Macua et al.,

2017; Liu et al., 2022), topography (Boukili and Chazdon, 2017),

and soil properties (Engelbrecht et al., 2007; Liu et al., 2022), often

influence community reassembly processes and alter its functions

composition (Norden et al., 2015). For semi-humid areas, expected

increase in drought may promotes leaf abscission (Nepstad et al.,

2007), retards plant growth (José Vidal-Macua et al., 2017), and

potentially shifts community composition over time (Baudena et al.,

2020; Liu et al., 2022). In particular, severe drought combined with

high temperature can potentially impede vegetation post-recovery

via alterations in growth pattern (Dodson and Root, 2013; Liu et al.,

2022), or even lead to the eventual replacement of established

forests by drought-tolerant shrubs communities (José Vidal-

Macua et al., 2017; Baudena et al., 2020). In addition, topographic

heterogeneity can drive shifts in soil microclimate environments,

which may potentially affect community structure, composition,

and dynamics (Das et al., 2015; Sanaphre-Villanueva et al., 2016;

José Vidal-Macua et al., 2017; Jucker et al., 2018). Plant response to

these environmental fluctuations generally varies among climatic

regions, functional groups, and ecosystems (Chang and Turner,

2019), so accurately understanding vegetation successional

processes will assist in disentangling the mechanisms that drive

variability in these ecosystems, and enhance community resilience

to climatic change.

The Taihang Mountains run from north to south in northern

China, and form a natural boundary between Loess Plateau and

North China Plain (Yang et al., 2006). The original vegetation of the

region was of broadleaved deciduous forest, but large-scale

deforestation (e.g., cutting, tilling, logging, grazing, and so on)

before the 1970s has severely destroyed and turned it into

degraded shrub-herb community (Pérez-Devesa et al., 2008; Liu

et al., 2012; Sun et al., 2014). Starting from 1980s, a series of

vegetation restoration projects, such as afforestation, banning

grazing, and returning slope cropland forest or grassland, were

implemented to control soil erosion, reduce ecological degradation,

and promote vegetation recovery (Liu et al., 2014; Guo et al., 2021).

In addition, annual mean air temperature across the study area
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exhibited a gradually increasing trend (Liu et al., 2023). Therefore,

studies on species composition and community structure of

shrublands on time-scales can help explore plant defense

responses to natural stresses, predict the potential direction of

vegetation succession, and inform appropriate environmental

management strategies (Xie and Tang, 2017).

To contribute to a better understanding the succession

processes of shrub-herb communities under climate changes, we

established permanent plots in the hilly area of Taihang Mountain,

China, and monitored vegetation changes in relation to various

environmental conditions. Vegetation and soil census was

conducted in 1986 followed by a re-census in 2008 and again in

2020 to address the following issues: (1) quantify how vegetation

and soil shifts during secondary succession; (2) examine which

factors are closely related to the changes in community structure;

and (3) elucidate the physio-morphological adaptations of Vitex

negundo var. heterophylla to environmental changes during

vegetation succession.
2 Materials and methods

2.1 Site description

This study was conducted in Niujiazhuang Catchment of

middle Taihang Mountain, China (114°15′50″ E, 37°52′44″ N).

Elevation ranges from 247 to 1040 m a.s.l. and slope varies from 20

to 45°. The climate is temperate continental monsoon, with warm

summers and cool winters. Annual precipitation (1962-2020)

averages 519 mm, ranging from 200 to 1129 mm, with 74%

falling between June and September (Liu et al., 2023). The

monthly mean air temperature (1962-2020) was -3.07°C in

January and 26.8°C in July (Liu et al., 2023). The study site had a

total area of 9.3 km2 and was located in an area of lowland hills with

a relatively steep slope.

The soil parent materials in the area are mainly granite, granite

porphyry, limestone, sandstone, and shale. Soils in the area are

highly-weathered mountainous cinnamon soils (classified as

Ustalf), mainly derived from gneissic granitoid, and partly come

from limestone and shale (Liu et al., 2014). These soils are deep and

well drained on north slopes but skeletal on south slopes, with

limited organic matter and low water holding capacity.

Vegetation in the area is a mosaic of shrubs, herbs, plantation,

deciduous and coniferous forests, and agricultural crops. Shrub-herb

community originated by natural regeneration after the destruction of

original forest vegetation, of which the dominant species Leptodermis

oblonga is accustomed to growing in shaded slope, whereasV. negundo

var. heterophylla and Ziziphus jujuba var. spinosa prefer dry sunny

slope (Liu et al., 2014). As affected by climate related environmental

change, V. negundo var. heterophylla gradually spread northward to

occupy available ecological niches for L. oblonga. Natural grasslands are

commonly found on gentle north-facing slopes, after 30 years of

natural regeneration, grassland in the area has undergone species

replacement, such as Bothriochloa ischaemum and Artemisia

sacrorum are still dominant today, while Themeda japonica and

Cleistogenes chinensis occur sporadically, but Pennisetum
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centrasiaticum and Achnatherum extremiorientale were no longer

present in 2020 census. Robinia pseudoacacia used to be a common

tree species in afforestation programs, and was widely planted on

Taihang Mountain from 1980s, but now are sparsely distributed in this

area and experienced extensive invasion ofV. negundo var. heterophylla

through natural succession (Liu et al., 2014).
2.2 Field study

In 1986, 144 2 m × 2 m permanent plots were established along 42

30-m long transects (parallel to the slope) to monitor the post-

disturbance succession processes of shrub-herb communities. These

plots are stratified to capture changes in aspect, slope position, and soil

type across the sites and to obtain a reasonable representation of the

entire range (valley to ridge). Within each of these plots, we conducted

vegetation and soil census in both 1986 and 2008, and in 2020, all plots

recorded were grouped by vegetation type and geographic location and

then were classified into V. negundo var. heterophylla shrubland (VS),

L. oblonga shrubland (LS), R. pseudoacacia plantation (RP), and

grassland (G). Finally, a total of 34 plots (8 VS, 8 LS, 8 RP, and 10

G) with expanded area up to 16 m2 were selected for re-census.

In each plot, the height, cover, and number of each shrub or

herb species, and cover and aboveground biomass of all shrubs or

herbs were recorded, and topographical factors such as elevation,

slope gradient, slope aspect, and slope position, were also recorded

for each sampling plot. The aboveground biomass of shrubs and

herbs were collected within neighboring areas of each plot. The

plant samples were oven-dried at 80°C for at least 72 hours to a

constant weight, and then dry matter were weighed to determine

total biomass. After biomass harvesting, three soil samples (0-20

cm) in each plot were collected along the transect of neighboring

areas using a 5 cm diameter soil auger, all visible soil organisms,

stones, and plant debris were removed, and the soils were sieved

using a 2 mm sieve before laboratory analysis.
2.3 Soil chemical properties

Soil pH was measured in a soil/water ratio of 1:2.5 using a pH

meter (Bao, 2000), soil organic matter (SOM) was analyzed using

the Walkley-Black method (Nelson and Sommers, 1996), total

nitrogen (TN) was determined by the Kjeldahl method (Bremner,

1996), total phosphorus (TP) was digested by perchloric acid and

determined by the molybdate colorimetric method (O’Halloran and

Cade-Menun, 2006), and total potassium (TK) were analyzed by

flame atomic absorption spectrophotometer.
2.4 Data analysis

To account for the variation in community structure in terms of

vegetation type and environmental conditions, all data collected

were classified into four groups (VS, LS, RP, and G), and the

differences in community compositions and soil properties were

compared among plots and across the three census period.
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In each plot, the importance value (IV) was calculated as the

sum of relative cover, relative height, and relative frequency for

herbs and shrubs (Do et al., 2019). Shannon-Wiener diversity index

(H, H=-Spilnpi, piis the proportion of individuals found in species

i), species richness index (S, the number of species), and Simpson’s

dominance index (D, D = 1–Spi2) were used to assess the changes in
species diversity during succession.

Analysis of variance (ANOVA) and least significant difference

(LSD) multiple range tested at an alpha-level of 0.05 were used to

compare the difference in species diversity (S, D, and H),

community structure (height, cover, and aboveground biomass),

and soil properties (SOM, TN, TP, and TK) for the entire 0-20 cm

soil layer across plots for census interval.

There is only one weather station in the study area and we could

not obtain meteorological data for each plot, we used the equations

of Guo (1994) and Yang et al. (2006) for the Taihang Mountains to

estimate precipitation and temperature at each sampling plot.

P = 519:23 + 151:62� (E=1000) − 43:26� (E=1000)2 (1)

T = 15:4 − 0:628� (L − 34:7) − 0:522� (E=100) (2)

where P (mm) is precipitation, E (m) is elevation, T (°C) is

annual average air temperature, L (°) is latitude. Since the study area

is a small watershed, the latitudinal differences between sampling

plots and weather station are small, we ignored the influence of

latitude on temperature.

Multivariate analysis was performed through CANOCO 5 to

identify the relationship between environmental variables (climate,

topography, and soil properties) and vegetation growth, and

examine which factors are closely related to the changes in

community structure. At first, detrended correspondence analysis

(DCA) was conducted to determine whether to use linear or

unimodal numerical methods, and the length of the first DCA

ordination axis we obtained was lower than 3 SD (Table 1),

indicating that linear model with redundancy analysis (RDA) was

the most appropriate ordination method for direct gradient

analysis. Accordingly, a final set of nine environmental

(precipitation, temperature, slope aspect, slope position, pH,

SOM, TN, TP, and TK) and nine vegetation variables (S, D, H,

shrub height, shrub cover, shrub biomass, herb height, herb cover,

and herb biomass) were selected to construct RDA analysis.
3 Results

3.1 Species diversity

Along secondary succession, V. negundo var. heterophylla was

the species with greatest important value in VS, RP, and G, and

shared the dominance with L. oblonga in LS (Figure 1). Herbaceous

dominant species in shrub-herb communities switched from T.

japonica, B. ischaemum, A. sacrorum, and C. chinensis in 1986

census to B. ischaemum and A. sacrorum in 2008 census, but herb

was no longer dominant in 2020 census (Figure 1).

There was no significant difference in diversity (H) of VS, RP,

and G among three census periods (p > 0.05) (Figure 2). Species
frontiersin.org
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richness (S) generally decreased while dominance (D) increased

over the 34-year time period (p< 0.05) (Figure 2).
3.2 Community structure

Along secondary succession, shrub height in VS, LS, and RP

significantly increased (p< 0.05), whereas herb height remained

stable (Figure 3). Shrub cover significantly increased after 34 years

of vegetation recovery, whereas herb cover in VS and RP
Frontiers in Plant Science 04
significantly decreased (p< 0.05) (Figure 4). Shrub aboveground

biomass significantly increased with succession, whereas herb

aboveground biomass in VS, LS, and RP significantly decreased

(p< 0.05) (Figure 5). Plant communities transitioned from perennial

herbs to shrub-herb and then shrub communities.

In 2020, community mean height, cover, and aboveground

biomass were 2.19m, 97.2%, and 15.7 Mg ha-1, whereas the

values of V. negundo var. heterophylla were 2.37m, 78.0%, and

17.9 Mg ha-1, respectively (Figures 3–5). V. negundo var.

heterophylla was the most dominant species in the hilly area of

Taihang Mountain.
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FIGURE 1

Changes in importance values of major species with secondary succession. AE, Achnatherum extremiorientale; AHI, Arthraxon hispidus; AHE,
Artemisia hedinii; AR, Allium ramosum; AS, Artemisia sacrorum; AT, Adenophora tetraphylla; BI, Bothriochloa ischaemum; CA, Chenopodium album;
CC, Cleistogenes chinensis; CH, Carex humilis; CT, Cynanchum thesioides; DC, Dianthus chinensis; DI, Dendranthema indicum; EP, Euphorbia
pekinensis; FO, Festuca ovina; IP, Ixeris polycephala; LB, Lespedeza bicolor; LO, Leptodermis oblonga; PC, Pennisetum centrasiaticum; PR, Patrinia
rupestris; RC, Rubia cordifolia; SA, Scorzonera austriaca; SC, Salsola collina; SV, Setaria viridis; TJ, Themeda japonica; VN, Vitex negundo var.
heterophylla; ZJ, Ziziphus jujuba var. spinosa.
TABLE 1 Redundancy analysis of shrubland from 1986 to 2008.

Axes 1 2 3 4

Lengths of gradient (Checked by DCA) 1.50 0.57 0.31 0.37

RDA

Eigenvalues 0.2238 0.0306 0.0226 0.0078

Explained variation (cumulative) 22.38 25.44 27.69 28.47

Pseudo-canonical correlation 0.6918 0.5184 0.6783 0.3784

Explained fitted variation (cumulative) 77.46 88.06 95.87 98.57
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Changes in species diversity of shrub-herb communities with succession. Different letters indicate significant differences between census years at p<
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Changes in height of shrub-herb communities with succession. Different letters indicate significant differences between census years at p< 0.05
according to ANOVA.
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3.3 Soil property

Soil pH in topsoil declined significantly over the past three

decades (p< 0.05), from 7.64 in 1986 to 6.60 in 2020, with a net

decrease of about 1.04 units (Figure 6). Long-term secondary

succession increased SOM content in topsoil, on average, by

37.0% (Figure 7). From 1986 to 2020, Surface TN and TP

contents in VS, LS, and G increased significantly (p< 0.05), while

in RP, the changes tended to be gradual (Figure 7). Surface TK

content increased quickly during the first 20 years of vegetation

restoration and tended to be stable thereafter (Figure 7).
3.4 Effects of environmental variables

RDA analysis showed that there was a strong correlation

between vegetation and environmental variables, with pseudo-

canonical correlation of 0.692 on the first axis and 0.518 on the

second axis (Table 1). The cumulative percentage variance of

vegetation-environment relations of the first and second axis were

77.5 (eigenvalue 0.224) and 88.1% (eigenvalue 0.031), respectively

(Table 1). The RDA results also indicated that temperature, TP, TK,

and precipitation were the most important factors for

community structure, contributing respectively 39.1 (p<0.01), 18.9

(p<0.01), 8.3 (p<0.05), and 7.7% (p<0.05) of the total variation

(Figure 8, Table 2).
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4 Discussion

V. negundo var. heterophylla is a highly water-consuming

plant (Si et al., 2020), how did it become the most dominant

species in semi-humid climate zone? Wang et al. (2017) and Zhu

et al. (2016) reported that V. negundo var. heterophylla possesses a

functionally dimorphic root system, which allows it to use both

shallow and deep soil water, or even ground water (Moreira et al.,

2003; Damascos et al., 2005). In addition, Du et al. (2010) and

Zhang (2007) pointed out the sprouting time of V. negundo var.

heterophylla could vary with environmental conditions, they

sprouted new leaves in mid-April at mild-moderate drought

while in early May at severe drought, but almost stagnant

growth at extreme drought. Notably, Yan et al. (2000) found

that the numerous epidermal hairs of V. negundo var. heterophylla

could shielded most stomata and formed a relatively independent

system for reducing water transpiration. Therefore, the high

degree of morphological plasticity, conservative light utilization

strategy, and strong recovery ability after disturbance make V.

negundo var. heterophylla a widely predominant species in warm-

temperate regions (Li et al., 2017).

Aboveground biomass accumulation increased during

secondary succession (Figure 5) (Castro and Freitas, 2009; Enes

et al., 2020; Ma and Wang, 2020). Averaged over all plots, the

aboveground biomass of shrubland increased over 5 times

(Figure 5), similar to the results of Yang et al. (2017) and Petrie
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Changes in cover of shrub-herb communities with succession. Different letters indicate significant differences between census years at p< 0.05
according to ANOVA.
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et al. (2015). Despite differences in vegetation type, secondary

shrublands following disturbance are substantial carbon sinks and

that this capacity to store carbon increases with succession

(Adhikari and White, 2016; Kong et al., 2022). In addition,

previous studies reported species-rich stands had higher carbon

stocks than stands with low richness (Chen et al., 2018; Liu et al.,

2018), and Chen et al. (2018) proposed high plant diversity
Frontiers in Plant Science 07
increased above- and belowground biomass as well as the

resistance of productivity to climate extremes. While, in our

study, the relationship between aboveground biomass and species

diversity weakened with succession (Figures 2 and 5), Potter and

Woodall (2014) and Marin-Spiotta et al. (2007) also obtained

similar results. This demonstrated that a limited number of

species well-adapted to the local conditions promoted vegetation
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Changes in aboveground biomass of shrub-herb communities with succession. Different letters indicate significant differences between census years
at p< 0.05 according to ANOVA.
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recovery and accumulated biomass in semi-humid areas (El-Sheikh,

2005; Potter and Woodall, 2014).

Soil pH in the hilly area of Taihang Mountain declined

significantly over the past three decades, with an overall decrease

of 1.04 units, similar to those reported by Yang et al. (2012) and

Zhang et al. (2022) for China’s soils. Soil acidification is the result of

atmospheric deposition, plant growth, and soil forming processes

(Ritter et al., 2003; De Schrijver et al., 2006; Hong et al., 2018).

Undoubtedly, atmospheric deposition reduced soil pH (De

Schrijver et al., 2012; Yang et al., 2015). Whereas, plant

metabolism could neutralize soil pH (Ovington, 1953; De

Schrijver et al., 2012; Chen et al., 2019), and the minerals/ions

released from granite and gneiss through weathering could buffer

soil acidification (Rhoades and Binkley, 1996; Drohan and Sharpe,

1997). However, soil pH in our study area declined significantly.

Limited precipitation may contribute to the absence of soil animals

and microorganisms, which retard litter decomposition and

mineral weathering, and consequently result in soil acidification

(Shu et al., 2019).

Despite the relatively decrease of soil pH, soil nutrients in

topsoil accumulated gradually as succession progresses. We found

SOM content increased on average by 37% from 1986 to 2020

(Figure 7), Piche and Kelting (2015) and Sokolowska et al. (2020)

obtained similar results. This suggested that organic matter inputs

exceeded decomposition outputs over time of secondary succession

(Nadal-Romero et al., 2016; Sokolowska et al., 2020). As with SOM,

TN content in topsoil significantly increased, similar to the

observations of Deng et al. (2014) and Segura et al. (2020). The
Frontiers in Plant Science 08
apparent increase in topsoil TN could be attributed to the release of

N from plant residues (Johnson et al., 2016), the return of N from

subsoil (Smal et al., 2019), and atmospheric N deposition

(Falkengren-Grerup et al., 2006). Similar to SOM and TN, TP
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FIGURE 8

Redundancy analysis (RDA) of environmental and vegetation
variables from 1986 to 2020. Prec, precipitation; Temp,
temperature; Aspe, slope aspect; Posi, slope position; SOM, soil
organic matter; TN, total N; TP, total P; TK, total K; S, species
richness index; D, Simpson’s dominance index; H, Shannon-Wiener’s
index; ShrH, shrub height; ShrC, shrub cover; ShrB, shrub biomass;
HerH, herb height; HerC, herb cover; HerB, herb biomass.
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and TK contents in the top 20 cm of soil increased progressively

with shrub age, this agreed with the results of Du et al. (2007). The

commonly observed increase in topsoil P may be achieved by

atmospheric P deposition (Cao et al., 2011) and P translocation

from depth in the soil profile to the surface soil (Sullivan et al.,

2019). Similarly, high levels of K in the 0-20 cm soil may come from

the K uptake by roots from deeper soil layers to the topsoil (Segura

et al., 2020). Consequently, vegetation succession in the hilly area of

Taihang Mountain significantly increased most of the measured soil

parameters, and consequently improved soil quality.

Climate varied with altitude results in different vegetation and

soil, and soil, in turn, influences plant growth (Miki and Kondoh,

2002; Du et al., 2014). Among the environmental variables,

temperature, TP, TK, and precipitation were important factors in

explaining variations in community structure of Taihang Mountain.

Several reports indicated that precipitation and temperature were the

most important factors influencing plant growth, community

structure and function (Yang et al., 2006; Nunes et al., 2019; Zhou

et al., 2019). For example, Zhou and Zhang (1996) reported that

widespread drought driven by high temperatures or low

precipitations could lead to substantial forest decline, or

replacement of drought-vulnerable with drought-tolerant species

(Falk et al., 2019). As temperature rise and water availability

decreases (Liu et al., 2023), the more drought-tolerant V. negundo

var. heterophylla becomes the most dominant species in the hilly area

of Taihang Mountain. As expected, vegetation recovery generally

improved soil quality, in turn, soil properties also determine plant

community composition (Zhang et al., 2006; Zhao et al., 2017). The

increased soil nutrients, in particular P and K, could facilitate shrub

vegetation restoration in this region. Thus, to improve and restore the

fragile ecological ecosystem in the hilly area of TaihangMountain, we

should consider the tight coupling between vegetation and soil under

local climatic conditions.
5 Conclusion

Along secondary succession, V. negundo var. heterophylla

gradually dominated in dry sunny slope and shared the
Frontiers in Plant Science 09
dominance with L. oblonga in shaded slope. Herbaceous

dominant species in shrub-herb communities switched from T.

japonica, B. ischaemum, A. sacrorum, and C. chinensis in 1986

census to B. ischaemum and A. sacrorum in 2008 census, but herb

was no longer dominant in 2020 census. As succession progresses,

species dominance increased while richness decreased generally,

and herb cover and aboveground biomass decreased, whereas shrub

height, cover, and aboveground biomass increased significantly.

Long-term secondary succession increased topsoil SOM, TN, TP,

and TK significantly while declined pH by 1.04 units. Plant

communities transitioned from perennial herbs to shrub-herb and

then shrub communities, and V. negundo var. heterophylla

dominated in succession of shrub-herb communities. Climate and

soil properties, combined with plant attributes, together drive

vegetation post-recovery.
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