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Genome-wide identification and
analysis of glyceraldehyde-3-
phosphate dehydrogenase family
reveals the role of GmGAPDH14
to improve salt tolerance in
soybean (Glycine max L.)

Xunchao Zhao, Jie Wang, Ning Xia, Yuewen Qu, Yuhang Zhan,
Weili Teng, Haiyan Li, Wenbin Li, Yongguang Li*, Xue Zhao*

and Yingpeng Han*

Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean
Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University,
Harbin, China
Introduction: Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is an

essential key enzyme in the glycolytic pathway and plays an important role in

stress responses. Although GAPDH family genes have been found in different

plant species, the determination of their gene family analysis and their functional

roles in soybean are still unknown.

Methods: In this study, gene sequence and expression data were obtained using

online tools, and systematic evolution, expression profile analysis, and qRT-PCR

analysis were conducted.

Results and Discussion: Here a total of 16 GmGAPDH genes were identified on

nine chromosomes, which were classified into three clusters. Additionally, all

GmGAPDH genes harbor two highly conserved domains, including Gp_dh_N

(PF00044) and Gp_dh_C (PF02800). The qRTPCR analysis also showed that

most GmGAPDH genes significantly responded to multiple abiotic stresses,

including NaHCO3, polyethylene glycol, cold, and salt. Among them,

GmGAPDH14 was extraordinarily induced by salt stress. The GmGAPDH14

gene was cloned and overexpressed through soybean hair roots. The

overexpressed transgenic soybean plants of the GmGAPDH14 gene have also

shown better growth than that of control plants. Moreover, the overexpressed

transgenic plants of GmGAPDH14 gene had higher activities of superoxide

dismutase but lower malonaldehyde (MDA) content than those of control

plants under salt stress. Meanwhile, a total of four haplotypes were found for

the GmGAPDH14 gene, and haplotypes 2, 3, and 4 were beneficial for the
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tolerance of soybean to salt stress. These results suggest that the GmGAPDH14

gene might be involved in the process of soybean tolerance to salt stress. The

results of this study will be valuable in understanding the role of GAPDH genes in

the abiotic stress response of soybean.
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Introduction

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a key

enzyme in the glycolytic metabolic pathway, which widely exists in

biological cells (Zhang et al., 2019). GAPDHs catalyzed

glyceraldehyde-3-phosphate to form 1,3-biphosphoglycerate in

the presence of NAD+ and inorganic phosphate (Sirover, 2011).

The major functions of the GAPDH gene refer to immune response

(Henry et al., 2015), expression regulation (Zhang et al., 2017), and

autophagy (Colell et al., 2007).

In plants, GAPDH genes are involved in glycolytic or

photosynthetic pathways (Plaxton, 1996). Meanwhile, GAPDH

genes can be divided into three categories according to their

functions in cells (Guo et al., 2012; Guo et al., 2014). In

chloroplasts, NADP-specific GAPDHs (GAPA/B) were involved

in photosynthetic CO2 fixation. In the cytoplasm, NAD-dependent

GAPDH (GAPC) converted glyceraldehyde-3-P (Ga3P) to 1,3-

bisphosphoglycerate. In plastids, GAPCp isoforms may be

involved in glycolytic energy production. Moreover, all GAPDH

proteins contained highly conserved domains, including the

Gp_dh_N (PF00044) and Gp_dh_C (PF02800) domains (Jiao

et al., 2011; Zeng et al., 2016; Miao et al., 2019). It was also found

that some GAPDHs also contained CP12 (PF02672) domain.

To date, a series of GAPDH genes have been cloned and

characterized, including Arabidopsis thaliana (Guo et al., 2014),

Oryza sativa (Lim et al., 2021), Zea may (Bustos et al., 2007), and

Cucumis sativus (Chaturvedi et al., 2016). Based on subcellular

localization, it has been proven that GAPDH was divided into

cytosolic (Cy) and plastic (P) isoforms (Miao et al., 2019; Wei et al.,

2022). In A. thaliana, GAPDH genes distributed in different

subcellular compartments: GAPC1 and GAPC2 were located in

the cytosol, and the rest of the GAPDH genes were located in

plastids (Rius et al., 2008; Anoman et al., 2015). Some researchers

have revealed that GAPCs can regulate the accumulation of oil

content in seeds (Guo et al., 2014). The seed oil content was reduced

by 3% when GAPDH was knocked out of the cytoplasm in A.

thaliana, suggesting that cytosolic GAPDH was vital for regulating

the content of seed oil (Guo et al., 2014). Furthermore, the plastidic

GAPCp has been shown to be involved in starch metabolism

(Muñoz-Bertomeu et al., 2009). In soybean, the knockdown of

GAPC1 decreased the nodule nitrogenase activity without affecting

the nodule weight (Ke et al., 2022). Moreover, the key role of

GAPDH genes in plant growth and development and responses to
02
abiotic stresses has been extensively confirmed, including heat (Kim

et al., 2020), cold (Liu et al., 2017), salinity (Cho et al., 2014), and

drought (Li et al., 2019). Previous studies have shown that the

overexpression of PsGAPDH can increased salt tolerance in potato

(Jeong et al., 2001). In Arabidopsis, the overexpression of TaGApC

gene from Chinese spring Triticum aestivum displayed improved

drought tolerance by decreasing the reactive oxygen species (ROS)

levels (Zhang et al., 2020). Furthermore, it was also found that

salicylic acid restrains the GAPDH activity in vitro (Pokotylo

et al., 2020).

Soybean was the main oil crop in the world (Holle and Damme,

2015). However, the yield and the quality of soybean were often

affected by abiotic stresses such as low temperature, drought, and

salinization (Feng et al., 2020). Therefore, it was significant to study

the salt resistance mechanism of soybean and excavate the stress-

resistant genes for improving the yield and quality of soybean.

Although GAPDHs have been characterized and analyzed in many

plant species, the characterization of the GAPDH gene family in

soybean is still limited, and it is unknown how GAPDH regulates

the molecular mechanism of salt stress in soybean.

Although most studies have described the biological and

physiological functions of the GAPDH gene, few research were

known in terms of the functional divergence of the GAPDH gene

family in soybean. In this study, 16 of the GAPDH gene members in

soybean were identified, and their phylogenetic relationships, gene

structure, chromosomal localization, and stress responses were

analyzed. Furthermore, the function of GmGAPDH14 gene in

soybean tolerance to salt stress was tentatively verified, indicating

the important role of GmGAPDH14 gene in salt stress.
Materials and methods

Identification of the GAPDH gene
family in soybean

To identify the GAPDH gene sequence of soybean, systematic

BLASTP was conducted against the soybean reference genome

database (https://www.soybase.org/) and the Phytozome database

(https://phytozome-next.jgi.doe.gov/) using the published

Arabidopsis GAPDH as alignment sequence. The screening

threshold was set to E-value (<10−10), and the protein length was

greater than 200 aa. The candidate GAPDH genes were determined
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by SMART (http://smart.embl-heidelberg.de) and Pfam (http://

pfam.xfam.org/) software with both Gp_dh_N and Gp_dh_C

domains. The open reading frame length was obtained from the

Phytozome database. The molecular weight and the isoelectric point

values were downloaded from the ExPASy (Artimo et al., 2012)

software (https://web.expasy.org/protparam/). CELLO 2.5 (Yu

et al., 2004) was used to predict subcellular localization.
Phylogeny, gene structure, and
conserved domain analysis

The protein sequences of GAPDHs from soybean (Glycine

max), maize (Zea mays), rice (O. sativa), and Arabidopsis (A.

thaliana) were used to construct a phylogenetic tree using the

neighbor-joining method and bootstrap test set at 1,000 replications

through the MEGA7.0 software (Kumar et al., 2016). The exon/

intron structures of GmGAPDHs were demonstrated at the GSDS

online server (Hu et al., 2015). The coding and genomic sequences

of GmGAPDH were collected from the Phytozome database. The

conserved domains of GAPDH were determined by SMART

(http://smart.embl-heidelberg.de) (Letunic et al., 2015) and Pfam

(http://pfam.xfam.org/) (Finn et al., 2016) software, including

Gp_dh_N and Gp_dh_C domains, and the structure of GAPDH

proteins was visualized using the IBS 6.0 software (Liu et al., 2015).
Promoter analysis of GmGAPDHs

To investigate the critical cis-acting elements in the promoter of

GmGAPDH genes, the sequence at 2.0 kb upstream of the position

of the ATG codon in these genes was obtained from the Phytozome

database (https://phytozome-next.jgi.doe.gov/).The plant CARE

database was used to predict the cis-acting regulatory elements,

including motifs related to plant growth and development, plant

hormone responses, and abiotic and biotic stress responses.
Expression analysis of GmGAPDHs during
soybean development and response to
abiotic stresses

The expression patterns of soybeanGmGAPDHs at different tissues

were obtained using the Phytozome database. The heat maps were

generated by cluster analysis with the TBtools software (Chen et al.,

2020), and the expression data were log2-transformed. To explore the

expression patterns of GmGAPDHs in seeds at different developmental

stages, soybean seeds (DN50) were collected at 10, 20, 30, and 40 days

after flowering (DAF), and the total RNA extraction of each sample was

performed to analyze the expression patterns of GmGAPDHs under

abiotic stresses, including cold, salt, NaHCO3, and drought. Briefly,

soybeans (DN50) were grown in a plant incubator. There were two

different plant cultivation methods used: (a) for low temperature

treatment, seeds of soybean were sown in soil and vermiculite (v:v/1:1)

and (b) for the salinity, NaHCO3, and drought treatments, soybeans

were grown in a hydroponic culture, and the growth conditionwas 24°C
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and a 16-h/8-h (day/night) daily photoperiod cycle. Second-trifoliolate-

stage seedlings of uniform growthwere subjected to cold treatment with

a low temperature of 4°C, salt treatment with 150 mM salt, drought

treatment with 20% polyethylene glycol (PEG, 6,000 g/M), and alkali

treatmentwith100mMNaHCO3.Thesoybean leaveswere sampledat0,

6, 12, and 24 h after the treatments. The sample total RNAwas extracted

using Trizol reagent (Invitrogen). The expressions ofGmGAPDH genes

in soybean seed samples at 10 DAF were used as a calibrator. The

expressions ofGmGAPDH genes in soybean samples at 0 hwere used as

a calibrator. GmACTIN4 (GenBank accession no. AF049106) was used

as an internal reference.Quantitative real-timeRT-PCR(qRT-PCR)was

conducted using the CFX Connect TMreal-time system (BIO-RAD)

with SYBRSelectMasterMixRT-PCR (SYBRGreen, TOYOBO,Osaka,

Japan). Three biological replicates with three technical replicates were

applied to each sample. The expression levels of GmGAPDHs were

calculated using the 2–DDct method (Hong et al., 2010), and all primers

used for the expression analysis were listed in Supplementary Table S1.
Agrobacterium-mediated transformation of
GmGAPDH14 soybean hairy roots

Soybean cultivar DN50 was used for the Agrobacterium

rhizogenes strain K599 transformation in soybean hypocotyls. The

cDNA of GmGAPDH14 was directly ligated into the vector

pCambia3300 . The recombinant plasmid and empty

pCambia3300 vector (EV) were transferred into Agrobacterium

rhizogenes strain K599 and then injected into the hypocotyls

following a previous report (Kereszt et al., 2007; Yu et al., 2021).

The transgenic plants were identified by PCR amplification, and the

non-transgenic hairy roots in the seedlings were removed.
Detection of physiological indicators after
salt treatments

The hairy root soybean plants were grown in Hoagland nutrient

solution, and the growth chamber was set at a 16/8-h light–dark

daily photoperiodic cycle. The transgenic plants were treated with 0

and 150 mM salt for 3 days (d), respectively.

The leaves of overexpression GmGAPDH14 (OE-GmGAPDH14)

and EV seedlings were analyzed tomeasure physiological indicators. The

measurements of superoxide dismutase (SOD) and malonaldehyde

(MDA) were conducted according to corresponding assay kit

protocols (Cominbio, Suzhou, China). All measurements were

obtained with three biological replicates.
Prediction and haplotype analysis
of GmGAPDH14 gene for soybean
salt resistance

A total of 131 soybean germplasms were collected and grown in

Harbin for 2 consecutive years (2019–2020). All accessions were

treated with 0 and 150 mM salt. The relative swelling rate was

obtained according to Zhang’s method (Zhang et al., 2014).
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According to genomic re-sequencing data, the SNPs in genomic

regions including the promoter, 5′UTRs, exon, intron, and 3′UTRs
of GmGAPDH14 gene were analyzed in 131 soybean lines using the

generalized linear model (GLM) method as conducted with Tassel

version 5.0 software (Bradbury et al., 2017).
Statistical analysis

The statistical significance was evaluated using Student’s t-test

as performed with the SPSS 22.0 software. The significance levels

were *p < 0.05 and **p < 0.01. The standard deviation (mean ± SD)

was calculated with at least three biological replicates.
Results

Characterization of the GAPDH gene
families of soybean

To identify the GAPDH gene family of soybean, GAPDH genes

were selected by BLASTp tool with Arabidopsis as the alignment
Frontiers in Plant Science 04
sequence. A total of 16 GAPDH genes (GmGAPDH1–

GmGAPDH16) were retrieved (Supplementary Table S2). The

full-length CDS sequences of GmGAPDH1–GmGAPDH16 varied

from 786 to 1,362 bp. The isoelectric points of GmGAPDHs ranged

from 6.54 to 8.71, and the molecular weight of GmGAPDHs ranged

from 28.2 to 48.4 kDa (Supplementary Table S2).

To understand the evolutionary relationship of GmGAPDHs in

soybean, the amino acid sequences of GmGAPDHs from A.

thaliana (seven), Z. mays (12), and O. sativa (seven) were

obtained from the NCBI database (https://www.ncbi.nlm.nih.gov/

), and a phylogenetic tree was built. The phylogenetic tree indicated

that the GAPDH proteins of soybean were clearly divided into three

clusters (I–III) (Figure 1A). Cluster I, consisting of GmGAPDH4–6,

GmGAPDH8–10, and GmGAPDH14–15, corresponded with

cytosol isoforms containing AtGAPC proteins. Cluster II,

including GmGAPDH2 and GmGAPDH12, corresponded with

plastid isoforms containing AtGAPCp1 and AtGAPCp2 proteins.

Cluster III, covering GmGAPDH1/3/7/11/13/16, corresponded

with AtGAPA1, AtGAPA2, and AtGAPB proteins (Figure 1A).
Exon/intron structure and the conserved
domain of soybean GAPDH genes

The structures of soybean GAPDH genes were characterized

with the GSDS software. As shown in Figure 1, cluster II

(GmGAPDH2 and GmGAPDH12) had the largest number of

exons, including 12 exons. The exon number of cluster I ranged

between 10 (GmGAPDH10) and 12 (GmGAPDH14); the remaining

GmGAPDHs contained nine exons. The exon number of cluster III

ranged from five to nine, and only GmGAPDH3/7 had nine exons;

the remaining GmGAPDHs had five exons (Figure 1B).

The conserved domains analysis for 16 GmGAPDHs indicated

that the GmGAPDHs revealed a multiple-domain protein,

including Gp_dh_N (PF00044) and Gp_dh_C (PF02800)

domains (Figure 1B). The Gp_dh_N domain (INGFGRIGR) and

Gp_dh_C (GAAKAV) sequences were identified as highly

conserved in the GmGAPDHs (Supplementary Figures S1, S2). A

conserved active site (PS00071: ASCTTNCL) was found in most

GmGAPDHs, except for GmGAPDH1 and GmGAPDH13

(Supplementary Figure S1). The similarity of the gene structure

and conserved domains of soybean GAPDH genes implies that they

have undergone gene duplication during evolution.
Analysis of regulatory elements in the
promoter of GmGAPDHs

To obtain the cis-elements of GmGAPDHs, sequencing of 2,000

bp upstream of all GmGAPDHs gene was performed based on the

PlantCARE software. As shown in Figure 2A, a total of 22 cis-

elements were found with plant growth and development,

phytohormone-responsive, and abiotic and biotic stresses in the

upstreams of 16 GmGAPDH genes. The ERE and ARE cis-elements

were found with almost all GmGAPDH genes. The GCN4_motif

(endosperm expression) elements were discovered in GmGAPDH6-
A

B

FIGURE 1

(A) Phylogenetic tree construction of GAPDH proteins from soybean (G.
max), maize (Z. mays), Arabidopsis (A. thaliana), and rice (O. sativa). The
phylogenetic tree was constructed through the neighbor-joining
method based on MEGA7.0. The different colors of the rings represent
different subfamilies: red, blue, and green represent clusters I, II, and III,
respectively. (B) Exon–intron structure and domain analysis of
GmGAPDHs of soybean. The untranslated region, exon, and intron are
represented with blue, pink, and gray, respectively. Different-colored
boxes were represented using different signal peptides.
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7 and GmGAPDH9-11 . Meanwhile, GmGAPDH15 and

GmGAPDH14 were analyzed only involving AuxRR-core (auxin-

responsive) and GC-motif (anoxic-specific inducibility) elements,

respectively. It was noteworthy that there were five GmGAPDHs

that harbored low temperature responsiveness (LTR) elements

while five GmGAPDHs contained MBS (drought-responsive)

elements. In addition, O2 site (gliadin metabolic regulatory),

CCGTCC box (specific activation), and CAT box (meristem

expression) were found in the GmGAPDHs gene. TC-rich repeats

(defense and stress responsiveness), GC motif (involved in anoxic-

specific inducibility), and WUNmotif (mechanical injury response)

elements were observed in six, one, and 10 GmGAPDH genes,

respectively (Figure 2B). These results showed that the GAPDH

family may play an important role in growth and development and

response to environmental stress in soybean.
Synteny analysis of GmGAPDHs

To further characterize duplicated events within the soybean

genome, a synteny analysis of GmGAPDH genes was performed. As

shown in Figure 3A, theGmGAPDH genes were scattered on nine of

the 20 soybean chromosomes. The nine soybean chromosomes

distributed one to three GmGAPDH genes (Figure 3A). The

replication relationship with the soybean GAPDH genes was
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analyzed. A total of 10 duplicated gene pairs were identified

within the soybean (Figure 3A). Meanwhile, a synteny analysis

was conducted from G. max and A. thaliana. As shown in

Figure 3B, GmGAPDHs had a replication relationship with

AtGAPDHs, including nine replication relationship pairs between

G. max and A. thaliana (GmGAPDH1/AtGAPC1, GmGAPDH10/

AtGAPC2, GmGAPDH11/AtGAPA2, GmGAPDH11/AtGAPA1,

GmGAPDH11/AtGAPA2, GAPDH13/AtGAPC1, GAPDH14/

AtGAPC2, GAPDH16/AtGAPA1, and GAPDH16/AtGAPC1)

(Figure 3B). The duplicated genes showed their common genomic

origin and maybe functional similarity.
Expression profiles of soybean GAPDHs in
diverse tissues and developmental stages

To determine the expression pattern of soybean GAPDH genes

in different development phases, we retrieved the high-throughput

sequencing data of the Phytozome database and conducted an

expression analysis. As demonstrated in Figure 4, the expression

of GmGAPDHs was revealed in diverse tissues. GmGAPDH4, 5, 8, 9,

and 14 were found to have a higher expression in different tissues.

Meanwhile, the GmGAPDH1, GmGAPDH6, and GmGAPDH15

genes were feebly expressed in nine different tissues. Moreover,

GmGAPDH3, 7, 11, and 16 were expressed only in the shoot apical
A

B

FIGURE 2

Analysis of cis-elements in the promoter of GAPDH genes. (A) Number of cis-elements in the 2.0-kb promoter region upstream of GmGAPDH
genes. (B) Statistical analysis for the total number of GmGAPDH genes; the black box corresponds to the total number of cis-elements, and the red
dot corresponds to the number of GmGAPDH genes.
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meristem and leaf tissues. GmGAPDH2 and GmGAPDH12 were

especially expressed only in nodules (Figure 4A). Moreover, the

expression of GmGAPDHs during the development of soybean seed

is shown in Figure 4B (10 to 40 DAF). The expression levels of

GmGAPDH4, GmGAPDH5, GmGAPDH9, and GmGAPDH11 were

found to be upregulated in seeds at 20 DAF. The expression of the

GmGAPDH8 and GmGAPDH14 genes was significantly

upregulated in seeds at 30 DAF.
Expression profiles of GmGAPDH genes
under abiotic stresses

To confirm the role of GmGAPDH gene responses to various

abiotic stresses, the transcription level of 16 GmGAPDH genes under

NaHCO3 (100 mM), PEG (20%), Cold (4°C), and Slat (150 mM)

stresses was determined by qRT-PCR. Under simulated alkali stress

using NaHCO3, GmGAPDH 4, 5, 8, 10, 12, and 14 were extraordinarily

upregulated (more than six folds) and peaked at 6 and 12 h,

respectively (Figure 5A). After simulated drought stress using PEG,

GmGAPDH14 was upregulated by more than 20 folds in 24 h after the

treatment. In comparison, the expression of GmGAPDH16

significantly decreased in 6, 12, and 24 h, respectively (Figure 5B). In

response to cold treatment, most of GmGAPDHs had upregulated

expression, especially GmGAPDH4, which had a significantly higher

level of expression at 24 h (Figure 5C). Furthermore, the GmGAPDH

genes were shown to have a higher expression level at different

timepoints of cold stress. The expression levels of GmGAPDHs were

different under simulated salt stress with salt (Figure 5D). The
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GmGAPDH14 gene was shown to have the highest expression level

at 6, 12, and 24, which was upregulated by more than 150 folds than

that at 24 h. Meanwhile, the GmGAPDH4 gene exhibited a higher

expression level at 6 and 12 h (20 and 40 folds). In contrast to other

stresses, the whole expression of GmGAPDHs under NaHCO3 stress

was found to be relatively low (Figure 5A). Remarkably, the expression

of GmGAPDH14 was sharply induced under salt stress, indicating that

this gene might play a role in salt stress resistance.
Overexpression of GmGAPDH14 improved
the tolerance to salt stress

To deeply illustrate howGmGAPDH14 genes respond to salt stress,

hairy roots with Agrobacterium rhizogenes K599 containing

pCambia3300-GmGAPDH14 plasmid or the pCambia3300 empty

vector were transformed. Eight soybeans were proven through the

PCR method to be positive transgenic. Furthermore, it was found that

the effect of overexpression ofGmGAPDH14 is such that it can regulate

soybean hair roots in response to salt tolerance. Furthermore, 2-week

soybean positive lines, involving 0 or 150 mM salt for 3 days,

were transferred.

Previous studies showed that plant GAPDHs are involved in

functions such as response to oxidative stress (Guo et al., 2012).

Hence, the overexpression of GmGAPDH14 may further increase

the antioxidant level under salt stress in this study. Therefore, the

SOD activity and the MDA content were tested in soybeans positive

transgenic at 3 d after 150 mM salt treatment. After 3 d of 150 mM

salt stress, the overexpression of GmGAPDH14 was exhibited to
A

B

FIGURE 3

Syntenic analysis of GmGAPDH family genes. (A) Chromosome location and duplication of GmGAPDH genes on soybean genome. (B) Syntenic
analysis of GAPDHs with the corresponding genes in G max and A thaliana.
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enhance the resistance to salt stress than those of the control

(transformed by pCambia3300 EV) (Figures 6A, B). As shown in

Figure 6, the OE-GmGAPDH14 lines had a higher activity of SOD

than that of the EV lines (Figure 6C). The above-mentioned results

showed that GmGAPDH14 could participate in regulating the ROS

level. The MDA content showed that the contents of the OE-

GmGAPDH14 lines were significantly lower than that of the EV

lines after the salt treatment (Figure 6D).
Haplotype analysis of GmGAPDH14 gene
for salt stress

To further confirm the potential effects of GmGAPDH14 gene

for salt stress, gene-based association analysis was applied through

the GLM method. A total of five SNPs in the GmGAPDH14 gene

were identified among 131 lines (Supplementary Table S3). All the

five SNPs were significantly associated with salt stress, and they

were located in the exon, intron, UTR region, and upstream regions

of the GmGAPDH14 gene, respectively (Table 1). Four haplotypes

of the GmGAPDH14 gene were defined by the five SNPs.

Haplotypes 2, 3, and 4 were composed of the combination of

TAG, TTT, and AAT alleles and were beneficial for the salt

tolerance of soybean. The carriers of haplotype 1 were composed

of a combination of AAG alleles which tended to be sensitive to salt

stress (Figure 7, Supplementary Figure S3). The difference of salt
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tolerance between the carriers of two haplotypes reached a very

significant level.
Discussion

GAPDH is a pivotal enzyme in the glycolytic pathway. Previous

studies have exhibited that GAPDHs play a crucial role in plant growth

and response to various stresses (Guo et al., 2012; Liu et al., 2017; Kim

et al., 2020). In this study, the candidate genes of soybean GAPDH

family were identified, which were proven to regulate plant growth and

stress. AlthoughGmGAPDH genes have been analyzed in many plants,

including Arabidopsis (Guo et al., 2014; Kim et al., 2020), potato (Liu

et al., 2017), wheat (Li et al., 2019), and rice (Wang et al., 2021),

nevertheless, finite information was found about the GAPDH

molecular function of soybean.

In the present study, a total of 16 GmGAPDH genes were

identified from the soybean genome. The phylogenetic analysis can

clearly prove the evolutionary relationships between soybean

GAPDH and those of other species. The result showed that 16

GAPDHs were segmented into three clusters based on their

different subcellular locations. Previous studies showed that the

different GAPDHs can target various regions (Rius et al., 2008;

Muñoz-Bertomeu et al., 2009). For cluster I, eight GmGAPDHs

isoforms were located on the cytosol of Arabidopsis GAPCs; for

cluster II, two GmGAPDHs isoforms were located on the
A

B

FIGURE 4

Expression levels of GmGAPDH genes during different tissue and developmental stages. (A) The expression profile analyses of soybean GAPDH genes
were characterized in different tissues. The expressions of different tissues were displayed in heat maps. The color scale indicates the log2 expression
level, the red circles indicate the high transcription levels, and the blue circles indicate the low transcription levels. (B) Relative expression level of
GmGAPDHs in different developing seeds at 10, 20, 30, and 40 days after flowering in soybean (DN50). The expression of GmGAPDHs in developing
seeds at 10 DAF was used as the internal reference. Student’s t-test was carried out to determine the significance levels (*P < 0.05, **P < 0.01).
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chloroplast; and for cluster III, six GmGAPDHs isoforms were

located on the plastid (Figure 1) (Vescovi et al., 2013; Anoman et al.,

2015; Marri et al., 2015). The result showed that the three distinct

types of GmGAPDHs can implement corresponding functions in

plants. Gene duplication was the key mechanism for the creation of

unique evolutionary innovations, which mainly include segmental

and tandem duplications (Jiao et al., 2011). The previous studies

showed that a family gene will show a highly conserved duplication

style in various species (Innan and Kondrashov, 2010). In this

study, most of the GmGAPDH genes were found to carry out

segmental duplication in the soybean genome (Figure 3). The result

of this study indicated that soybean GAPDH did not maintain a

conserved duplication. These duplicated genes proved a common

genomic source and performed similar functions, and segmental

duplication was advantageous to extend of GAPDH genes family

in soybean.

In this study, to reveal the response of soybean GAPDHs to abiotic

stresses, the expression pattern of GAPDH genes was tested via qRT-

PCR analysis. The promoter sequences of the soybean GAPDHs

involved a number of cis-elements—for example, ERE, ARE, and

LTR (Figure 2). According to this result, NaHCO3, PEG, cold stress,

and salt stress can significantly induce GmGAPDHs expression

(Figure 5). AtGAPC was found to interact with phospholipase Dd
(PLDd), transmit H2O2 signaling under drought stress, and increase

the seed oil content (Guo et al., 2012; Kim et al., 2020). In wheat,

GAPDH12 was found to be remarkably upregulated under salt, cold,

high temperature, and drought stresses (Zeng et al., 2016). The

overexpression of GAPC3 can improve salt tolerance in rice (Zhang

et al., 2011). In Arabidopsis, the overexpression of TaGAPC1 enhanced
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the tolerance to drought stress (Zhang et al., 2019). In potato, StGAPC1,

StGAPC2, and StGAPC3 were found to be cold-induced in the tubers

(Liu et al., 2017). In Arabidopsis, the overexpression of GAPC

improved its heat tolerance (Kim et al., 2020). In this study,

GAPDH12 was found to be strongly under NaHCO3 stress at 12 h.

In PEG stress,GAPDH14was found to be strongly under stress at 24 h.

In cold stress,GAPDH4was found to be strongly under stress at 24 h. It

is worth noting that GmGAPDH14 responded more strongly to salt

stress than the other genes, and GmGAPDH14 reached a maximum

expression level with 12 h to salt stress (about 150 folds). Therefore,

GAPDH14 may play an important role in response to salt stress.

Previous studies showed that GAPDH proteins—PsGAPDH,

NbGAPC, and AtGAPC—play key roles in growth and abiotic stress

response in plants (Guo et al., 2014; Han et al., 2015; Lim et al., 2021).

Next, to further understand the molecular function ofGmGAPDH14 in

response to salt stress, the overexpression of GmGAPDH14

significantly increased the salt tolerance of transgenic soybean lines

(Figures 6A, B). In this study, the SOD activity of OE-GmGAPDH14

plants was significantly higher than that of EV plants. The above-

mentioned data showed that GmGAPDH14 may play an important

role in reducing ROS accumulation under salt stress, which was

consistent with the results of previous studies (Zhang et al., 2011).

The content of MDA was commonly considered as a marker of

oxidative stress (Anjum et al., 2015). It was certified that the EV

plants were found to have more serious damage than OE-

GmGAPDH14 plants (Figure 6D). In addition, the five SNPs of the

GmGAPDH14 gene were significantly associated with soybean

tolerance to salt stress. Four haplotypes of the GmGAPDH14 gene

were defined by the five SNPs, and the difference of salt tolerance
D

A B

C

FIGURE 5

Expression level of GmGAPDHs in response to NaHCO3 (A), polyethylene glycol (B), cold (C), and salt (D) stresses in the leaves of soybean. The
expression of GmGAPDHs in a non-stress environment was used as a calibrator. Three technical replicates and three biological replicates were
applied to each sample. The expression level of GmGAPDHs was calculated with the 2–DDct method.
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FIGURE 6

Effect of GmGAPDH14 overexpression: (A) 0 mM salt, (B) 150 mM salt, (C) superoxide dismutase (SOD) activity, and (D) malondialdehyde (MDA)
content in transgenic lines under salt stress. EV represents empty vector pCambia3300 (transgenic soybean hairy roots, control), and OE-
GmGAPDH14 represents recombinant vector pCambia3300–GmGAPDH14 (transgenic soybean hairy roots). The activity of SOD and the MDA
content in soybean seedling at 3 days after 150 mM salt treatment. The asterisks represent significant differences between EV and OE-GmGAPDH14
by Student’s t-test (∗P < 0.05).
TABLE 1 The association between SNP in GmGAPDH14 gene and soybean resistance to salt based on 131 soybean germplasms.

Chromosome Position (bp) Region Alleles Year -log10(p)

18 693402 Exon G/T 2019 2.74

18 693891 Intron C/T 2019 1.82

18 695147 Intron T/C 2019 3.56

18 695420 UTR A/T 2019 2.35

18 695922 Promoter A/T 2019 2.74

18 693402 Exon G/T 2020 1.08

18 693891 Intron C/T 2020 2.6

18 695147 Intron T/C 2020 2.14

18 695420 UTR A/T 2020 1.53

18 695922 Promoter A/T 2020 1.08
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between the carriers of the four haplotypes reached a very significant

level. Meantime, the 693402 position SNP was found to be located in

the Gp_dh_C domain. This result suggests that variations in the

domain may enhance the salt tolerance of the GAPDH14 gene. In

this study, the involvement of GmGAPDH14 gene in soybean salt

tolerance was verified, and the salt tolerance effect of the gene related to

the natural variation of the gene sequence was also proven. These

results may provide ideas for exploring the beneficial salt-

resistant SNPs.

In conclusion, a total of 16 soybean GAPDH genes were clearly

divided into three clusters. These GmGAPDH genes had a different

expression level under various abiotic stresses. The 16 GmGAPDH

genes, including GmGAPDH14, had a markedly induced response

to salinity.
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