
Frontiers in Plant Science

OPEN ACCESS

EDITED BY

Karl H. Hasenstein,
University of Louisiana at Lafayette,
United States

REVIEWED BY

Baris Uzilday,
Ege University, Türkiye
John Z. Kiss,
University of North Carolina at Greensboro,
United States
Joshua Vandenbrink,
Louisiana Tech University, United States

*CORRESPONDENCE

Yusaku Uga

yuga@affrc.go.jp

Taiji Kawakatsu

riverwin@affrc.go.jp

†These authors have contributed
equally to this work and share
first authorship

‡
PRESENT ADDRESS

Ryo Nishijima,
Department of Bioscience and
Biotechnology, Fukui Prefectural University,
Fukui, Japan

RECEIVED 24 March 2023

ACCEPTED 24 May 2023
PUBLISHED 09 June 2023

CITATION

Kuya N, Nishijima R, Kitomi Y, Kawakatsu T
and Uga Y (2023) Transcriptome profiles of
rice roots under simulated microgravity
conditions and following gravistimulation.
Front. Plant Sci. 14:1193042.
doi: 10.3389/fpls.2023.1193042

COPYRIGHT

© 2023 Kuya, Nishijima, Kitomi, Kawakatsu
and Uga. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 09 June 2023

DOI 10.3389/fpls.2023.1193042
Transcriptome profiles of rice
roots under simulated
microgravity conditions and
following gravistimulation

Noriyuki Kuya1†, Ryo Nishijima2†‡, Yuka Kitomi1,
Taiji Kawakatsu2* and Yusaku Uga1*

1Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba, Japan,
2Institute of Agrobiological Sciences, National Agriculture and Food Research Organization,
Tsukuba, Japan
Root system architecture affects the efficient uptake of water and nutrients in

plants. The root growth angle, which is a critical component in determining root

system architecture, is affected by root gravitropism; however, themechanism of

root gravitropism in rice remains largely unknown. In this study, we conducted a

time-course transcriptome analysis of rice roots under conditions of simulated

microgravity using a three-dimensional clinostat and following gravistimulation

to detect candidate genes associated with the gravitropic response. We found

that HEAT SHOCK PROTEIN (HSP) genes, which are involved in the regulation of

auxin transport, were preferentially up-regulated during simulated microgravity

conditions and rapidly down-regulated by gravistimulation. We also found that

the transcription factor HEAT STRESS TRANSCRIPTION FACTOR A2s (HSFA2s)

and HSFB2s, showed the similar expression patterns with the HSPs. A co-

expression network analysis and an in silico motif search within the upstream

regions of the co-expressed genes revealed possible transcriptional control of

HSPs by HSFs. Because HSFA2s are transcriptional activators, whereas HSFB2s

are transcriptional repressors, the results suggest that the gene regulatory

networks governed by HSFs modulate the gravitropic response through

transcriptional control of HSPs in rice roots.

KEYWORDS

clinostat, gravitropism, heat shock transcription factor, rice (Oryza sativa. L.), RNA-Seq,
simulated microgravity treatment
1 Introduction

The root is an essential organ for absorbing water and nutrients from the soil in

terrestrial plants. Root system architecture is vital for the efficient acquisition of water and

nutrients that are unevenly distributed throughout the ground. The root growth angle,

which affects the root system architecture, is controlled by root gravitropism. DEEPER

ROOTING 1 (DRO1) and its homologs, positively regulate the root gravitropism and
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control the root growth angle in monocots (Uga et al., 2013; Ashraf

et al., 2019; Kitomi et al., 2020; Feng et al., 2022; Nakano et al.,

2022). A functional allele of DRO1 causes deep-rooting and

enhances the ability of drought avoidance (Uga et al., 2013). A

non-functional allele of quantitative trait locus for SOIL SURFACE

ROOTING 1 (qSOR1) causes shallow-rooting and these roots are

more effective for surface layer phosphorus absorption (Kitomi

et al., 2020; Oo et al., 2021). Thus, genetic improvement of the root

growth angle by manipulating root gravitropism contributes to the

enhanced absorption of water and nutrients in the soil.

Gravistimulation by rotating plants 90° is a standard approach

to dissecting the gravitropic response (Luschnig et al., 1998;

Sedbrook et al., 1999; Boonsirichai et al., 2003; Guan et al., 2003).

A three-dimensional (3D) clinostat is a device that minimizes the

effects of gravity by rotating in all directions. The mounted sample

is rotated three-dimensionally in two orthogonal axes. By

continuously changing the law of gravity before the mounted

sample is subjected to gravitational stimulation, the gravity vector

is dispersed, and the effect of gravity is reduced. This condition is

called “simulated microgravity” because it is imperfect. Thus, the

3D clinostat allows for simulated microgravity experiments in the

laboratory on plant samples that are slow to respond to gravity

(Herranz et al., 2013; Movie S1). Simulated microgravity treatment

(SMT) using a 3D clinostat has also been used to examine the

gravitropic response (Hoson et al., 1997; Herranz et al., 2013).

Because all plants on the earth experience gravity, the former

method captures the response to changes in the direction of

gravity (dGS: directional gravistimulation). In contrast, the latter

method can mimic space flight experiments and also produce the

transition from simulated microgravity to forced gravity (fGS:

forced gravistimulation).

The directional gravitropic mechanism of roots may be

classified into four processes based on studies in the

dicotyledonous model plant Arabidopsis: 1) graviperception in

gravity-sensing columella cells (Su et al., 2017; Nakamura et al.,

2019b), 2) gravity signaling following dGS mediated by LAZY1

(LZY)-like proteins (Nakamura et al., 2019a; Furutani and Morita,

2021), 3) redistribution of auxin resulting from differential polar

auxin transport by PIN-FORMED (PIN) transporters

(Adamowski and Friml, 2015; Han et al., 2021), and 4)

differential growth in the elongation zone resulting from auxin

signaling-dependent apoplast alkalinization (Barbez et al., 2017;

Li et al., 2022). These processes are likely conserved in

monocotyledonous plants, including rice (Uga et al., 2013;

Ashraf et al., 2019; Zhang et al., 2019; Kitomi et al., 2020; Feng

et al., 2022; Nakano et al., 2022). Mutations in Defective In Outer

Cell Layer Specification 1 (DOCS1) in rice, a leucine-rich repeat

receptor-like kinase, inhibits the formation of the gravity-sensing

root cap, which decreases the response to gravity (Bettembourg

et al., 2017). Actin binding protein RICE MORPHOLOGY

DETERMINANT (RMD) suppresses the gravitropic response of

the crown root by linking actin filaments and gravitropic

perception organelle amyloplasts, and rmd mutants show faster

gravitropism (Huang et al., 2018). DRO1 and qSOR1 are homologs

of the Arabidopsis LZY gene family and are involved in gravity
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signaling in rice (Uga et al., 2013; Kitomi et al., 2020). OsPIN2/

LARGE ROOT ANGLE1 (LRA1) plays an essential role in polar

auxin transport in the rice root tip (Inahashi et al., 2018; Wang

et al., 2018). The E3 ubiquitin ligase SOIL-SURFACE ROOTING

1 (SOR1) targets a noncanonical Aux/IAA protein OsIAA26 to

the 26S proteasome pathway and is involved in auxin signaling in

rice (Chen et al., 2018). Mutations in these genes affect the

gravitropic response and alter the root growth angle; however,

the gene regulatory network involved in the root gravitropic

response is not well understood in rice.

In this study, we conducted a time-series RNA-seq of rice roots

under simulated microgravity conditions (SMC) using a 3D

clinostat and fGS to identify gravity state-responsive genes in rice

roots. Heat shock transcription factors (HSFs) and HEAT SHOCK

PROTEINs (HSPs) were up-regulated by SMT and rapidly down-

regulated upon release from SMT. Genes in the co-expression

module, including the HSFs and HSPs share HSF-binding cis-

elements. These results suggest that HSFs govern the gene

regulatory network during the transition from simulated

microgravity to forced gravity in rice roots.
2 Materials and methods

2.1 Simulated microgravity treatment using
a 3D clinostat

Sasanishiki (lowland japonica rice) with a functional allele of

qSOR1 and a near-isogenic line with a non-functional allele of

qSOR1 (qsor1-NIL; Kitomi et al., 2020) with a Sasanishiki

background was used. Hulled seeds were washed three times

with sterile water. The seeds were then soaked in 1.0% (v/v)

PLANT PRESERVATIVE MIXTURE (PPM™ ; Plant Cell

Technology, Inc., USA) and incubated at 30°C to germinate for

24 hours. The germinated seeds were sown in a 0.4% (w/v)

agarose gel (Sigma-Aldrich, USA) in a microplate-type Petri dish

(Stem, Japan) (Figure 1A; Seeding). Roots protruding from the

medium were susceptible to desiccation, rather than gravitropic

stimulation, so the Petri dish was tilted 60 degrees and placed in

the dark at 28°C for 14 h to allow the roots to elongate into the

agar medium (Figure 1A; Preculture). They were then rotated

with a 3D clinostat PMS-VI (AES, Japan) in the dark for 6.0 h at

28°C (Figures 1A; S1; Movie S1; Clinorotation). SMC was

mimicked by adjusting the rotational speed of the 3D clinostat

(X-axis 11.0 RPM/Y-axis 13.0 RPM). However, the influence of

other physical stimuli that occurred by this device, such as

vibrations, cannot be excluded as a possibility in this clinostat

treatment. After simulated microgravity treatment (SMT), the

Petri dish was placed vertically and gravistimulation was applied

at 90 degrees (Figure 1A; Gravistimulation). Eighteen seeds were

sown on each plate, and 10-16 seminal root tips with 2-3 mm

were collected and pooled for RNA-seq. Seminal roots that were

too short were excluded from the sampling (Figure S2). The root

tips were collected at 0.0, 0.5, 1.5, and 3.0 h after fGS. For the
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control plot without SMT, the Petri dish was tilted 60 degrees for

14 h, then placed vertically, and the root tips were sampled after

6.0 h in the dark (Figure 1B). Therefore, the control samples are

the same age as the clinorotated sample at 0h after fGS.
2.2 RNA extraction

Root tips were immediately frozen in liquid nitrogen and ground

to a fine powder with a ShakeMaster BMS-A20TP (BMS, Japan).
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RNA was extracted with the RNeasy Plant Mini Kit (QIAGEN,

Germany) according to the manufacturer’s instructions.
2.3 RNA-seq analysis

RNA-seq libraries were prepared using the NEBNext Ultra II

Directional RNA Library Prep Kit for Illumina (E7760, New England

Biolabs, USA) according to the manufacturer’s instructions.

Sequencing of the libraries was performed with 150 bp paired-end
A

B

FIGURE 1

Simulated-microgravity treatment for rice roots. (A) Overview of simulated-microgravity treatment (SMT) and gravity treatment. Seeding: Germinated
seeds were sown onto 0.4% (w/v) agarose gels in a microplate-type Petri dish. Preculture: Petri dishes were tilted 60 degrees and placed at 28°C in
the dark for 14 h to allow the roots to grow down to the center of the medium. Clinorotation: The seedlings were rotated on a 3D clinostat for 6.0 h
at 28°C in the dark. Gravistimulation: After SMC, gravistimulation was applied by placing the Petri dish vertically. (B) Representative photos after each
treatment. 0.0 h and 3.0 h are different individuals. g: gravity vector, Sasa: Sasanishiki, NIL: qsor1-NIL. Bar = 2 cm.
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reads on the S4 flow cells of the Illumina NovaSeq6000 platform at

Macrogen Japan. The reads were mapped to the IRGSP-1.0 genome

assembly with MSU7 gene model annotation using the STAR aligner

program (ver. 2.7.3a) with options “–outFilterMultimapNmax 1 –

quantMode GeneCounts” (Dobin et al., 2013). Differentially

expressed genes (DEGs; |log2[fold-change]| >1, the false discovery

rate <0.05) were called using the glmLRT of R package edgeR (ver.

3.26.8; Robinson et al., 2010) and transcripts per kilobase million

(TPM) values were computed. Genes with TPM values >2 were

considered expressed. Pearson’s correlation coefficients between

samples were calculated using expression levels (log2[FPKM + 1])

of all expressed genes. Relative expression in Figures 2A; S3A is

shown as log2[FC to average FPKM of each gene in all samples].

Principal component analysis (PCA) was performed using TPM

values of all expressed genes. All heatmaps were plotted using

ComplexHeatmap (ver. 2.0.0; Gu et al., 2016). Gene ontology (GO)

enrichment analysis was performed using clusterProfiler (ver 3.12.0;

Yu et al., 2012) and visualized using corrplot (ver 0.84; Wei and

Simko, 2017). An initial quality check using PCA and heatmap

detected the wired behavior in one replicate of Sasanishiki, Sasa3

(Figures S3A–C). Therefore, Sasa3 was excluded from subsequent

analyses, although we could not determine this reason.
2.4 Alignment of amino acid sequences

Clustal Omega (Sievers et al., 2011) was used to calculate the

homology between HSF proteins.
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2.5 Co-expression network analysis

Pairwise Pearson’s correlation coefficients between the genes

were calculated and gene pairs with correlation coefficients >0.9

were extracted for further analysis. Co-expression modules were

analyzed using the “fastgreedy.community” function of igraph

(ver. 1.3.4; Csardi and Nepusz, 2006). Modules with less than five

genes were discarded. Cis-motifs enriched in the upstream

regions of genes within each co-expression module were

searched using MEME (ver. 5.4.1; Bailey et al., 2015) using the

option “-mod zoops -nmotifs 3 -minw 6 -maxw 13 -revcomp

-markov_order 0” and the detected motifs were compared

with the Arabidopsis DAP-seq motif dataset (Bailey et al.,

2015) using TOMTOM (ver. 5.4.1; Kitomi et al., 2020) and the

options “-no-ssc -verbosity 1 -min-overlap 5 -dist pearson

-thresh 1e-4.”
3 Results

3.1 Root gravitropic response in Sasanishiki
and qsor1-NIL

An overview of the SMT using a 3D clinostat and fGS

treatment is presented in Figure 1A. Images of the roots at

control, 0.0 h, and 3.0 h after fGS are shown in Figure 1B. The

qsor1-NIL showed weaker gravitropism in the seminal roots

compared with Sasanishiki (Kitomi et al., 2020). To identify
S: Sasa
N: NIL

Cont
0.0 h 
0.5 h 
1.5 h 
3.0 h 

C

0.0 h Cont0.5 h 1.5 h 3.0 h

0.0 h

Cont

0.5 h

1.5 h

3.0 h

B

3.0 h1.5 h0.5 h0.0 hCont

A

FIGURE 2

Summary of RNA-seq results. (A) Heatmap of gene expression levels of two and three replicates for Sasanishiki (Sasa) and qsor1-NIL (NIL),
respectively. Samples were ordered by k-means clustering. (B) Heatmap of the correlation matrix of Sasanishiki and qsor1-NIL. (C) PCA plot based
on TPM values of all expressed genes. We excluded one replicate (Sasa3) from the analysis because this replicate showed abnormal behavior
(Figure S1).
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genes downstream of qSOR1, we compared Sasanishiki and

qsor1-NIL. Root elongation tended to be suppressed under

SMC (Figure S4A). In the control without SMT, the root tips

of both Sasanishiki and qsor1-NIL elongated toward the

direction of gravity (Figures 1B; S4B). In contrast, the roots of

Sasanishiki and qsor1-NIL at 0.0 h after fGS showed various

directions of elongation (Figures 1B; S4). After 3.0 h of fGS, the

root tips of both Sasanishiki and qsor1-NIL elongated in the

direction of gravity (Figures 1B; S4B).
3.2 Gene expression patterns under SMC
and following fGS in Sasanishiki and
qsor1-NIL

To identify genes associated with the gravitropic response in

rice roots, we performed a time-series RNA-seq analysis along

with fGS after SMC. We considered 0.0 h after fGS as under

SMC. A heatmap of 16,648 expressed genes showed that

transcriptional changes mainly occurred at 0.0 h and 0.5 h

after fGS in qsor1-NIL and Sasanishiki (Figure 2A). The

correlation matrix of expression levels revealed that replicates

for each condition exhibited similar patterns (r > 0.99; Mann-

Whitney U test P = 3.8e-9) and the time-series gene expression

profile for qsor1-NIL broadly resembled that of Sasanishiki (r >

0.99; Mann-Whitney U test P = 2.0e-10; Figure 2B). The controls

without SMT were clustered with later-stage samples (1.5 h and

3.0 h) rather than early-stage samples (0.0 h and 0.5 h). PCA

based on TPM values of the top 5% genes with the highest

variability revealed that the difference in time points, rather than

genotype, had more of an effect on gene expression (Figure 2C).

This indicates that SMT-induced transcriptional changes were

similar in both genotypes.

The expression of qSOR1 tended to be slightly lower in

qsor1-NIL compared with that in Sasanishiki. Although the

expression levels of qSOR1 were constant throughout the time-

series in qsor1-NIL, qSOR1 expression in Sasanishiki was down-

regulated at 1.5 h after fGS (Figure S5). In contrast, no difference

in DRO1 expression between Sasanishiki and qsor1-NIL was

observed (Figure S5). This suggests that the expression of qSOR1

and DRO1 in the root tips under SMC and subsequent fGS are

similar between functional and non-functional qSOR1 genetic

backgrounds. We identified only a few DEGs between

Sasanishiki and qsor1-NIL after fGS (Figure S1D; Tables S1,

S2). The maximum number of DEGs that were up-regulated in

Sasanishiki compared with qsor1-NIL was seven at 0.0 h,

whereas the maximum number of DEGs that were down-

regulated was 11 at 0.5 h and 1.5 h. Among these, no rice

genes known to be involved in gravitropism was found. We

also examined auxin-related genes associated with gravitropism;

however, the expression patterns of these genes were almost

identical between Sasanishiki and qsor1-NI (Figure S6). These

results indicate that qSOR1 is not involved in the regulation of

gene expression patterns in the root tip during SMC and

subsequent fGS.
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3.3 Differentially expressed genes during
fGS compared to under SMC

We identified 152 and 117 DEGs in which expression was up-

regulated during fGS in Sasanishiki and qsor1-NIL, respectively

(Table S3). In addition, we identified 286 and 333 DEGs in which

expression was down-regulated during fGS in Sasanishiki and

qsor1-NIL, respectively (Table S4). GO enrichment analysis

revealed that the down-regulated genes that were common to

both genotypes were associated with response to heat, response to

temperature stimulus, response to abiotic stimulus, cellular

response to heat, response to hydrogen peroxide, protein

folding, chaperone-mediated protein folding, and response to

unfolded protein (Figure 3). We found that the three GOs

(response to heat, response to temperature stimulus, and

response to abiotic stimulus) were detected in qsor1-NIL, but

not in Sasanishiki, at 0.5 h after fGS. Because the expression levels

of the six genes in these GOs were almost the same between the

two genotypes, we concluded that this discrimination was

dependent upon less statistical power in Sasanishiki at 0.5 h

after fGS because of the number of replicates (Figure S7). Based

on these results, we focused our analysis on the DEGs that were

common to both genotypes.

Common DEGs between Sasanishiki and qsor1-NIL in

representative GOs were investigated (Figure 4). One of the most

prominent GO-enriched DEGs was protein folding. In Arabidopsis,

HEAT SHOCK PROTEINs (HSPs) are involved in gravitropism

through the regulation of auxin transport. HSP genes were enriched

in the down-regulated DEGs (Figure 4B), which included five

HSP20s, five HSP40s, eight HSP70s, and six HSP90s. The

expression of most HSPs was higher at 0.0 h after fGS, but lower

at 1.5 h and 3.0 h after fGS compared with those of the control

without SMT (Figure 4B). These results indicate that the expression

ofHSP genes was induced by SMT, but repressed by prolonged fGS,

likely reflecting an adaptive gravitropic response.
3.4 Differentially expressed transcription
factor genes during SMT and fGS

Transcription factors (TFs) regulate the expression of

downstream genes and often play an important role in

morphogenesis. Nine TFs were commonly up-regulated and 19

TFs were down-regulated during fGS in Sasanishiki and qsor1-NIL

(Figure 5). Of the 19 TFs, seven were HSFs, including HEAT

SHOCK TRANSCRIPTION FACTOR A2D (HSFA2D), which acts

upstream of LAZY1 and is involved in shoot gravitropism in rice

(Zhang et al., 2018) (Figure 5B). The expression of these HSFs was

higher at 0.0 h after fGS compared with those in the control without

SMT, indicating that the expression of these HSFs was induced by

SMT (Figure 6). These HSFs belong to the HSFA2 and HSFB2 sub-

groups. HSFs in other sub-groups were not induced by SMT,

suggesting that HSFs in sub-groups HSFA2 and HSFB2 are

specifically involved in the forced gravitropic response in rice

(Figure S8; Table S5).
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3.5 Similarity of detected DEGs between
3D clinostat treatment and space flight

The 3D clinostat is designed to minimize the effect of gravity

by randomly and continuously changing the direction of gravity;

however, the extent by which SMT reproduces real microgravity

in space is not guaranteed. Transcriptome analysis of plants under

microgravity in space have been conducted (Zupanska et al., 2013;

Vandenbrink et al., 2019; Kruse et al., 2020; Barker et al., 2023).

We compared genes detected as DEGs between our SMT

experiment in rice and the previous space experiment in

Arabidopsis (Zupanska et al., 2013). Many HSFs and HSPs were
Frontiers in Plant Science 06
commonly detected DEGs in the two studies (Table S6) as well as

other studies (Correll et al., 2013; Choi et al., 2019; Barker et al.,

2023; Paul et al., 2005; Paul et al., 2012; Kwon et al., 2015; Li et al.,

2017). These results support that our SMT treatment properly

mimics real microgravity in space.
3.6 Co-expression analysis of genes
detected as DEGs after fGS

To infer the gene regulatory networks under SMCs and

following fGS, we performed a co-expression analysis using DEGs
>
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frontiersin.org

https://doi.org/10.3389/fpls.2023.1193042
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Kuya et al. 10.3389/fpls.2023.1193042
commonly expressed in Sasanishiki and qsor1-NIL. The DEGs were

divided into five co-expression modules (Figures 6A, B; Table S7).

The seven HSFs that were altered under the SMC were included in

module 2 (M2), which was enriched with genes associated with

“response to heat .” HSP40 genes (LOC_Os01g13760 ,

LOC_Os03g57340, LOC_Os05g48810, LOC_Os06g02620), HSP70

genes (LOC_Os01g62290, LOC_Os03g16860, LOC_Os03g16920,

LOC_Os05g38530), and HSP90 genes (LOC_Os04g01740,

LOC_Os08g39140) were also included in M2, suggesting a

possible interaction between HSFs and HSPs. We identified the

enriched motif within a 200 bp upstream region of the genes

belonging to M2 (55 out of 92 genes, 59.8%), which closely

resembles the AtHSFA7 binding motif in the Arabidopsis

cistrome dataset (q-value = 4.29e-9; Figure 6C) (O’Malley et al.,

2016), whereas TCP motifs (M1, q = 8.21e-6) and MYB-related

motifs (M4, q = 2.45e-4) were identified in the other modules

(Figure S9, q < 1e-4). Because Arabidopsis HSF-binding motifs are

nearly identical to one another irrespective of class or sub-group, we

anticipate that rice HSFs also recognize similar sequences (Figure
Frontiers in Plant Science 07
S10). These results suggest that HSFA2s and HSFB2 directly

regulate the expression of genes in the M2 module and shape the

M2 module.
4 Discussion

Gravitropism is a key determinant of root system architecture.

We performed a time-series RNA-seq study under SMCs and

following fGS, which revealed dynamic transcriptional changes

and identified genes involved in the gravitropic response in rice

roots. A co-expression network analysis revealed that the HSF-HSP

pathway may contribute to the gravitropic response in rice roots.

HSFA2D is a positive regulator of gravitropism and acts upstream

of asymmetric auxin distribution in rice shoots (Zhang et al., 2018).

The dGS induces the expression of HSFA2D and HSFA2D activates

the rice LZY1 homolog LAZY1 (LA1), which is involved in gravity

signaling and asymmetric distribution of auxin in shoots (Zhang

et al., 2018). HSP40s and HSP90s are involved in auxin perception
A

B

FIGURE 4

Common DEGs between Sasanishiki and qsor1-NIL in representative GOs. (A) Genes up-regulated during fGS. (B) Genes down-regulated during fGS.
Gene expression is shown as logFC relative to each control. Sasa: Sasanishiki, NIL: qsor1-NIL.
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and transport (Harrison and Masson, 2008; Wang et al., 2016).

Therefore, the HSF-HSP pathway may be responsible for the

asymmetric auxin distribution followed by differential growth

during the gravitropic response in roots as in shoots.

Sasanishiki was more responsive to fGS compared with qsor1-

NIL with respect to root growth; however, we did not observe clear

differences in the expression of genes associated with root growth

during SMT and following fGS between Sasanishiki and qsor1-NIL.

This indicates that qSOR1 acts independently of transcriptional

control. AtLZYs, Arabidopsis homologs of qSOR1 and DRO1, are

expressed in columella cells and AtLZYs recruit RLD proteins to the

plasma membrane in the direction of gravity, which results in polar

localization of the auxin efflux carrier PIN3. Thus, qSOR1 may be

involved in the regulation of auxin transport or gravity signaling, in

a similar manner. Interestingly, AtLZYs also interact with HSP70s

and its rice homologs were up-regulated by SMT and repressed

following fGS (Furutani et al., 2020). Whether HSP70 is involved in

auxin transport, however, is unknown, although HSP40s and

HSP90s are involved in auxin transport. HSP40s regulate the

localization of PIN3 (Harrison and Masson, 2008). HSP90s

stabilize PIN1 and auxin receptor TIR1 with the co-chaperones,

HOPs and SGT1b (Figure S11; Samakovli et al., 2021; Muñoz et al.,

2022). All differentially expressed HSP40s, HSP90s, HOPs, and

SGT1b were assigned to the closely related modules M1 and M2

(Figure 6B), which indicates that these genes are tightly co-

expressed under SMC and following fGS. Because HSP70s
Frontiers in Plant Science 08
interact with co-chaperone HSP40s and cooperate with protein

folding with HSP90s, HSP70s may also be involved in auxin

transport. These suggest a possible crosstalk between LZYs,

including qSOR1 and the HSF-HSP pathway in regulating the

localization and stabilization of PINs and auxin transport. qSOR1

is negatively regulated by auxin signaling and qSOR1 was

transiently repressed by fGS (Figure S5; Kitomi et al., 2020). This

suggests the existence of a negative feedback loop between qSOR1-

mediated auxin transport and auxin signaling-dependent repression

of qSOR1.

Rice LA1, a homolog of qSOR1 and DRO1, is required for

gravitropism in shoots, but not in roots. HSFA2D acts upstream of

LA1 and regulates gravitropism in shoots. Seven HSFs, including

HSFA2D, were up-regulated by SMT and down-regulated by fGS

(Figure 5B). Five of these HSFs are responsive to gravity changes

in shoots (Zhang et al., 2018, Figure S12), suggesting that

transcriptional regulation during the gravitropic response of rice

shoots and roots is similar. The expression of LA1 is reduced in

hsfa2d, suggesting that HSFA2D is a positive regulator of LA1.

Whether qSOR1 is positively regulated by HSFs, including

HSFA2D, in roots is unknown; however, the expression of

qSOR1 was not increased by SMT, although the expression of

HSFs was increased. This is the same situation that was observed

in shoots, in which LA1 was not induced by dGS when HSFs were

up-regulated (Zhang et al., 2018; Figure S13). It is possible that the

transcriptional regulation of LZYs by HSFs is indirect or requires
A

B

FIGURE 5

Changes in transcription factor expression during fGS. (A) Transcription factors in the DEGs whose expression was up-regulated during fGS.
(B) Transcription factors in the DEGs whose expression was down-regulated during fGS. Gene expression is shown as logFC relative to each control.
Sasa: Sasanishiki, NIL: qsor1-NIL. HSFs were underlined in red.
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co-factors. HSF TFs include both transcriptional activators and

repressors. Members of the HSFA subfamily are activators,

whereas members of the HSFB subfamily are either activators or

repressors. Of the seven HSFs induced by SMT and repressed by

fGS, three OsHSFB2s are predicted to function as repressors based

on the presence of a repression domain (Lavania et al., 2018). In

Arabidopsis, HsfB1/B2b represses the expression of HSPs, HsfA2,

and HsfB1/B2b themselves under normal conditions (Ikeda et al.,

2011). Under heat stress conditions, HsfA1s are rapidly activated

by translocation from the cytoplasm to the nucleus and induce the

expression of HsfA2 and HsfB1/B2b. Activated HsfA2 induces

HSPs to acquire thermotolerance; however, HsfB1/B2b represses

the expression ofHsfA2 and HsfB1/B2b, attenuating the heat stress

response to normal conditions (Ikeda et al., 2011). We

hypothesize that a similar scenario may control the adaptive

gravitropic response in rice roots. OsHSFs other than

OsHSFA2s and OsHSFB2s, whose expression is constant, may
Frontiers in Plant Science 09
be activated by translocation during perturbed gravity and induce

the expression of OsHSFA2s and OsHSFB2s. Activated OsHSFA2s

induce the expression of HSPs and OsHSFBs for auxin

redistribution and its subsequent attenuation. At this point,

OsHSFBs may be inactivated by unknown mechanisms. During

fGS, OsHSFBs may be promptly activated and repress the

expression of OsHSFA2s and HSPs, resulting in the attenuation

of the adaptive gravitropic response. However, further studies are

needed to clarify the mechanism of gravitropism in rice root and

uti l ize the knowledges to improve the root tra its of

monocotyledonous plants.
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