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Large-scale afforestation is considered a natural way to address climate

challenges (e.g., the greenhouse effect). However, there is a paucity of

evidence linking plant diversity to soil carbon sequestration pathways during

long-term natural restoration of temperate vegetation. In particular, the carbon

sequestration mechanisms and functions of woody plants require further study.

Therefore, we conducted a comparative study of plant diversity and soil carbon

sequestration characteristics during 150 years of natural vegetation restoration in

the temperate zone to provide a comprehensive assessment of the effects of

long-term natural vegetation restoration processes on soil organic carbon

stocks. The results suggested positive effects of woody plant diversity on

carbon sequestration. In addition, fine root biomass and deadfall accumulation

were significantly positively correlated with soil organic carbon stocks, and

carbon was stored in large grain size aggregates (1–5 mm). Meanwhile, the

diversity of Fabaceae and Rosaceae was observed to be important for soil

organic carbon accumulation, and the carbon sequestration function of shrubs

should not be neglected during vegetation restoration. Finally, we identified

three plants that showed high potential for carbon sequestration: Lespedeza

bicolor, Sophora davidii, and Cotoneaster multiflorus, which should be

considered for inclusion in the construction of local artificial vegetation.

Among them, L. bicolor is probably the best choice.
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1 Introduction

The loss of plant diversity is a major challenge faced by humans

in maintaining the stability and functional sustainability of

ecosystems (Hautier et al., 2015; Hua et al., 2022). Anthropogenic

activity such as deforestation and landuse changes causes 30%

reduction in C (carbon) stock (Bargali et al., 2018; Awasthi et al.,

2022a Manral et al., 2020; Manral et al., 2022; Bisht et al., 2023).

Population pressure, agricultural expansion/intensification and

development of infrastructure have been considered as major

threats to biodiversity (Davidar et al., 2010; Baboo et al., 2017;

Bargali et al., 2019; Bargali et al., 2022; Bisht et al., 2022) which

causes an increase in CO2 in the atmosphere. Carbon sequestration

is a key ecosystem function influenced by plant diversity (Bartelt-

Ryser et al., 2005; Isbell et al., 2018). Forests are an important

component of the global carbon cycle as they store 70–90% of

terrestrial above and belowground biomass and are a major carbon

sink, which is strongly linked to the diversity of plants in different

forest types (Aponte et al., 2020; Besnard et al., 2021). There is

much uncertainty about whether tropical forests are carbon sinks or

sources, while temperate forests are known to play a significant role

as terrestrial carbon sinks (Clark, 2004; Yang et al., 2022).

In recent decades, the increasing emissions of CO2-based

greenhouse gases in the atmosphere (CO2 emissions have

increased from 280 ppm in the pre-industrial era to 400 ppm

today) have led to a series of environmental problems, such as

global warming, sea level rise, and increase in extreme weather

events, which seriously threaten the sustainable development of

natural ecosystems and socio-economic systems (Zhang et al., 2011;

Ramachandra and Bharath, 2020). Vegetation restoration is often

used to increase soil organic carbon (SOC) storage and

sequestration to reduce CO2 emissions and restore ecosystem

functions (Zhao et al., 2015; Pandey et al., 2023; Shahi et al.,

2023). Such restoration promotes the accumulation of SOC,

making SOC the largest component of the terrestrial SOC pool,

which is consequently two to three times greater than the vegetation

carbon pool and plays a crucial role in regulating global warming

(Davidson et al., 2000; Lal, 2004). In forest ecosystems, soil is an

important participant and carrier of matter and energy. It provides

essential mineral nutrients and water for plant growth. It can be a

carbon sink or source, and has become a hot topic in the discussion

on global climate change (Deng et al., 2013). Plant-soil interactions

are important intrinsic drivers of ecosystem evolution. Many

studies have focused on plant dynamics during vegetation

succession (Teixeira et al., 2020; Prach et al., 2021), the physical

and chemical properties of soils (Gu et al., 2019; Zhang et al., 2021),

microbial turnover and change (Gavazov et al., 2022; Hu et al.,

2022), and the effect of vegetation type changes caused by natural

restoration and afforestation on soil carbon sequestration capacity

(Liu et al., 2015; Yang et al., 2019a; Wang et al., 2020; Yan et al.,

2020; Augusto and Boča, 2022). However, these factors are usually

considered to influence soil carbon accumulation individually or

independently. Currently, experimental evidence from grasslands

and subtropical and tropical studies indicates that plant diversity

increases biomass production and SOC storage (Craven et al., 2018;

Chai et al., 2019; Yang et al., 2019b; Osuri et al., 2020; Yu et al.,
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2020). It has also been recognized that increasing plant diversity

may improve plant productivity through complementary effects of

ecological niches (Duffy et al., 2017). This consequently promotes

plant input of carbon-containing material into the soil and increases

SOC accumulation (Chen et al., 2020). However, there is a paucity

of evidence linking vegetation diversity to soil carbon sequestration

pathways on a broad scale during long-term natural recovery of

temperate vegetation. Furthermore, tree-based ecosystems are

critical for climate change mitigation; however, the mechanisms

of carbon sequestration by woody plants are poorly understood, and

there are also few reports on the plants that participate in

carbon sequestration.

To elucidate these processes, in the present study, we

investigated the influence of plant diversity on soil carbon

sequestration by examining the natural recovery process of

vegetation in the temperate zone for up to 150 years, considering

sample sites, vegetation composition at different time periods, plant

diversity, fine-root biomass, litter accumulation, soil aggregates, and

SOC characteristics. Representative stand types and major species

assemblages were selected and combined with partial least squares

path modelling (PLS-PM) to quantify the contribution of plant

diversity to soil carbon storage and evaluate the direct and indirect

effects of the diversity of key plant families on carbon sequestration

pathways. The aim of this study was to answer the following

questions: 1) What are the characteristics of changes in vegetation

and SOC during long-term vegetation recovery in the temperate

zone? 2) How does plant diversity drive soil carbon sequestration?

3) What are the plants associated with soil carbon sequestration?

Understanding how they are connected and how they work is

important for managing ecosystem carbon pools, restoring

vegetation to a near-natural state, and improving ecological

management, which is important for addressing global

climate change.
2 Materials and methods

2.1 Study area

The Ziwuling Nature Reserve is located in China’s temperate

zone on the Loess Plateau (34°50′–36°50′N, 107°30′–109°40′E)
(Figure 1). This reserve represents the best-preserved natural

vegetation area on the Loess Plateau, with a representative plant

germplasm resource base and the most important secondary

primary forest (Guo and Wang, 2005). The vegetation on the

ground is mainly represented by a temperate deciduous broadleaf

forest dominated by Quercus mongolica and a temperate coniferous

forest dominated by Pinus oleifera (Cheng et al., 2012). Zonal soil in

the mountains is either primary or secondary loess with a pH of 7.5-

8.2, and the soil profile is shallow overall (Tian et al., 2022).
2.2 Experimental design

The “space-for-time” replacement method has been widely

utilized by ecologists to anticipate vegetation chronosequence
frontiersin.org
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change since 1899 (Cowles, 1899; Blois et al., 2013). In the present

study, we used a “space for time” strategy to analyze 48 plots.

From 2020 to 2021, standard sample plots of typical vegetation

types were established with basically equal stand conditions and

similar soil texture, with six duplicates for each restoration stage

(Table 1). The restoration phase was determined by the findings

of the relevant forestry department survey and an in-depth review

of all relevant reports (Zou et al., 2002; Fan et al., 2006; Deng

et al., 2013; Zhao et al., 2015; Liu et al., 2020).
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2.3 Vegetation investigation and sampling

The species and their abundance in each standard sample plot

(random selection) were recorded for plots of 20 m × 20 m (trees),

10 m × 10 m (shrubs), and 1 m × 1 m (grasses) (Table 1). The

species’ Latin names were verified against the Flora of China (Li,

2007) and The Plant List (http://www.plantlist.org/). Owing to the

shallow soil layer in the Ziwuling area, the improvement effect of

vegetation restoration on the soil is mainly concentrated in the 0–40
FIGURE 1

Ziwuling study area on the Chinese Loess Plateau.
TABLE 1 Vegetation survey sample site information.

Restoration time
(year) Succession stage Plots Slope/

°
Elevation/

m Representative plants

0 Farmland 6 19–22 981–987 Viola collina, Agropyron cristatum

10 Pioneer Grassland 6 24–25 1212–1215
Bothriochloa ischaemum, Lespedeza bicolor, Artemisia

chamaemelifolia

20 Grassland 6 16–28 994–1021 Lespedeza bicolor, Artemisia codonocephala, Agrimonia pilosa

40 Shrub 6 10–30 1028–1169 Sophora davidii, Carex lanceolata, Lespedeza bicolor

70 Pioneer arbor 6 19–30 1030–1131 Betula platyphylla, Lespedeza bicolor, Agrimonia pilosa

120 Sub-top stage 6 23–25 1096–1122 Pinus tabuliformis, Carex lanceolata, Lespedeza bicolor

135
Sub-top to top transition

stage
6 13–35 1160–1246 Pinus tabuliformis, Quercus mongolica, Lespedeza bicolor

150 Top Stage 6 16–20 1146–1240 Quercus mongolica, Carex lanceolata, Lespedeza bicolor
frontiersin.org

http://www.plantlist.org/
https://doi.org/10.3389/fpls.2023.1191704
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Tian et al. 10.3389/fpls.2023.1191704
cm surface soil layer (Gu et al., 2019). Therefore, a root auger with

an inner diameter of 7 cm was used to collect fine root (≤2 mm),

and soil samples were collected from this soil layer using a root

auger with four replicates for each type of soil sample. The complete

harvest method was used to collect litter from 31.7 cm × 31.7 cm

plots (Ravindranath and Ostwald, 2007). The bulk density of the

soil was determined using the cutting ring (100 cm3) method. Soil

water-stable aggregates were determined using the wet sieve method

(Yoder, 1936), and SOC content was determined using the

dichromate oxidation method (Nelson and Sommers, 1996).
2.4 Data processing

The total plant diversity, woody plant diversity, and herbaceous

plant diversity were determined using the following equations

(Simpson, 1949; Hill, 1973):

Species richness index  ¼  S; (1)

Simpson index = 1�oS
i=1pi 2, (2)

 Shannon–Wiener index ¼ -oS
i=1piln(pi Þ; (3)

Pielou index ¼ H
ln(S Þ; (4)

where S is the total number of plant species in the sample

quadrat, pi is the relative abundance of plant species i in one

quadrat, and H is the Shannon–Wiener index.

SOC (g/m2) was calculated using Equation (5):

SOC storage = X � BD� T� 10; (5)

where X. is the SOC content of the soil (g/kg), BD is the density

of the bulk soil (g/cm3), and T is the soil layer thickness (cm).
2.5 Statistical analyses

Prior to analysis, all data were examined for normality and

homogeneity of variance; data having non-normal distribution and/

or non-homogeneous variance were log- or power function

transformed to meet the assumptions for statistical analysis.

Regression analysis was performed to evaluate the relationships

between plant diversity and restoration stage. Carbon sequestration

characteristics among the different periods were compared using

one-way ANOVA. If significant effects were observed using

ANOVA, the least significant difference [LSD (0.05)] test was

used. Pearson’s correlations were used to determine the variables

that were significantly correlated with plant diversity, restoration

stage, and carbon sequestration characteristics. PLS-PM was

performed to further link plant diversity with carbon

sequestration characteristics. PLS-PM is a type of structural

equation modelling algorithm based on correlation. The concept

of causality is expressed in terms of linear conditional expectations

to seek the best linear prediction relationship and allow the use of
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latent variables to estimate complex causality or prediction models

(Sanchez, 2013). The PLS-PM method was selected because it

requires a small sample size, and the algorithm can optimize the

prediction of dependent variables and fitting of data to a

predetermined model (Hulland, 1999; Götz et al., 2010; Ali et al.,

2017). Models with different structures were evaluated using the

goodness-of-fit (GOF) statistics, a measure of their overall

predictive power, with GOF > 0.7 considered an acceptable value

(Tian et al., 2019; Zhong et al., 2020). All statistical analyses were

performed using the R software (v. 4.1.1, R Core Team, 2020).
3 Results and analysis

3.1 Vegetation composition characteristics

Figure 2 shows that the vegetation in the study area has been

naturally restored for 150 years. A total of 128 species of seed plants

were recorded in the area, belonging to 39 families and 99 genera,

including two species of gymnosperms belonging to two families

and two genera and 126 species of angiosperms belonging to 37

families and 97 genera. Asteraceae (17 genera and 28 species),

Rosaceae (13 genera and 17 species), Poaceae (10 genera and 10

species), and Fabaceae (six genera and eight species) accounted for

49.22% of the total number of species and were the dominant

families. Asteraceae and Poaceae are primarily herbaceous plants,

whereas Rosaceae and Fabaceae are primarily woody plants. The

plant species richness of all species and four major families showed

a single-peaked curve, increasing and then decreasing with the

progress of restoration, and reaching a maximum after 70 years

of restoration.
3.2 Plant diversity characteristics

The fitted curves showed that the plant diversity indices had a

single-peaked curve in relation to the restoration years during the

150 years of natural vegetation restoration succession (Figure 3).

The Species richness, Shannon-Wiener, and Simpson indices

showed a similar pattern, increasing and then decreasing, with

the peak of herbaceous plants occurring earlier, between 40 and

70 years of vegetation restoration, the peak of total plant diversity

occurring in the middle of the restoration period, between 70 and

100 years, and the peak of woody plants occurring later, between

100 and 120 years of restoration. However, the Pielou indices of

herbaceous plants and total plants showed similar trends, with

their peaks occurring earlier, at approximately 20 years of natural

recovery, and decreasing thereafter. The Pielou index of woody

plants increased at first, peaked at approximately 90 years, and

then started to decrease. This indicated that the evenness of

species distribution in the community was mainly influenced

by herbaceous plants. In addition, we found that herbaceous

plant diversity was graphically symmetric with respect to woody

plant diversity at 70 years of restoration. This reflected the

differentiation of ecological niches to capture maximum

possible resources.
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3.3 Carbon sequestration characteristics

Figures 4A, C and D show that with the increase in the natural

vegetation recovery time, the difference in vegetation compared

with the agricultural stage became more significant (P< 0.05). Litter

accumulation, fine-root biomass, and SOC storage increased with

the progress of vegetation restoration. The most considerable

increase in litter accumulation was 773 g/m2 after 120 years of

restoration compared to that after 70 years of restoration, while the

differences were smaller in the later stages (Figure 4A). A significant

increase in fine-root biomass was observed during the 120- to 135-

year stage of vegetation recovery (Figure 4C). As the SOC storage

peaked at about 9447 g/m2, the disparity between the agricultural

stage and the 120 years of restoration stage was at its greatest

(Figure 4D). From the agricultural stage to the 10-year natural

recovery stage, the content of large-sized water-stable agglomerates

increased the fastest at 24.7%, followed by 10.9% at the 40–70-year

recovery stage. The >5 mm size agglomerates increased rapidly at

first, peaked at 25.1% in the 10-year natural recovery stage, and then

decreased gradually; the 1–5 mm size agglomerates initially

increased (but fluctuated), peaked at 70 years, and then decreased

gradually, while the 0.25–1 mm size agglomerates showed relatively

smaller variations (Figure 4B).
3.4 Relationship between plant diversity
and carbon sequestration characteristics

Pearson correlation analysis revealed that the total species

richness, woody plant diversity index, litter, fine-root biomass,

and SOC were significantly positively correlated with recovery

time, whereas the herb diversity index and total Pielou index were
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significantly negatively correlated with recovery time (Figure 5).

The total species richness of the plant communities was strongly

positively correlated with woody plant diversity. Herb diversity was

significantly positively correlated with the total Pielou, Simpson,

and Shannon–Wiener indexes of the plant community. This

indicated that the species variety of the entire community was

controlled by woody plants, and the species number was influenced

by herbaceous plants. In addition, herbaceous plant diversity was

negatively correlated with fine-root biomass and litter

accumulation. Woody plant diversity significantly affected the

SOC storage and was positively correlated with fine-root biomass

and litter accumulation, as well as with 1–5 mm grain size

aggregates, which had multiple functions. Litter and fine roots

were significantly positively correlated with SOC (P< 0.05). At the

same time, agglomerates of 1–5 mm particle size were significantly

positively correlated with SOC. This indicated that litter and fine

roots are important for SOC accumulation, and 1–5 mm

agglomerates are important carriers of SOC.
3.5 Plant diversity drives soil
carbon sequestration

PLS-PM revealed a significant association between plant diversity

and soil carbon sequestration-related pathways involving carbon

inputs, carbon storage, and a direct path (Figure 6A). It explained

93.8% of the SOC sequestration variance and provided the best fit to

our data (GOF = 0.805). Woody plant diversity showed the greatest

positive effect on soil carbon sequestration via direct and indirect

effects, whereas herb diversity was a negative determinant of the effects

of carbon inputs on natural restoration succession periods. Based on

our findings (Figure 6A), we performed a PLS-PM analysis using the
FIGURE 2

Vegetation composition and life forms of different vegetation restoration stages on the Chinese Loess Plateau. The numbers on the petal margins
indicate the richness of plant species at each stage (e.g., 10). The combination containing y indicates the recovery time (e.g., 20 y). The circles in the
center of the flowers indicate the species richness of different families at different stages.
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number of woody Fabaceae and Rosaceae species at different recovery

periods (Figure 6B). PLS-PM explained 92.6% of the SOC

sequestration variance and provided the best fit to our data (GOF =

0.752). The results showed that Fabaceae and Rosaceae diversity,

through direct and indirect effects of improving soil aggregation,

significantly affected the SOC accumulation. This indicated the

presence of carbon sequestration plants in these two families, which

are the key species related to SOC accumulation during natural

vegetation recovery.
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4 Discussion

4.1 Plant diversity drives soil
carbon sequestration

The present study confirmed the consistency of plant diversity

recovery and soil carbon accumulation, which is consistent with the

findings of several previous studies (Chen et al., 2018; Madrigal-

González et al., 2020; Osuri et al., 2020; Furey and Tilman, 2021;
FIGURE 3

Multiple linear regression relationships of plant diversity with the natural restoration succession periods. The dark lines indicate the fits of the linear
model to the plant diversity and succession ages, while the ribbon are the 95% confidence intervals of these linear models. †, P< 0.1; *, P< 0.05; **,
P< 0.01. Total represents the overall diversity of plant communities; Herb represents the herb diversity in plant communities; Woody represents the
woody plant diversity in plant communities.
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Suryaningrum et al., 2021). However, it is important to note that

soil carbon sequestration was mainly driven by woody plant

diversity during the 150 years of natural recovery of temperate

vegetation. This indicated the significant role of forests in carbon

sequestration, not only in the ground but also in carbon input to the

soil, a view that is widely shared (Besnard et al., 2021; Ding et al.,

2021). As shown by the direct relationship in PLS-PM (Figure 6A),

SOC accumulation was mediated by woody plant diversity through

increased proportions of large soil aggregates and other hitherto

unidentified mechanisms. The mechanisms that have been

identified so far include, first and foremost, that communities

with high plant diversity have higher litter accumulation, and the

input of litter increases future soil carbon (Gregorich et al., 2017).

Second, the input of root secretions acts as a source of soil carbon
Frontiers in Plant Science 07
(Rasse et al., 2005; Kramer et al., 2010; Wang et al., 2021).

Simultaneously, changes in deadfall and root systems can alter the

activity and composition of microbial communities and affect

microbial carbon turnover and carbon sequestration rates (Bais

et al., 2006; Craig et al., 2022). Third, soil microbial metabolic

activity can influence anabolic changes in plant diversity, which in

turn affects the carbon input from vegetation to the soil (Lange

et al., 2015; Manral et al., 2022; Padalia et al., 2022; Manral et al.,

2023). In addition, herbaceous plant diversity decreased with

increasing time of revegetation and showed a highly significant

negative correlation with carbon input, suggesting that dominant

populations established by herbaceous plants through competitive

exclusion had a positive effect on litter and fine roots. Herbaceous

plants may also influence SOC accumulation through the three
A B

DC

FIGURE 4

Comparison of litter (A), soil aggregate (B), fine-root biomass (C) and soil organic carbon (D) in each restoration succession period. Different
lowercase letters (a–f) indicate significant differences (P< 0.05) within each variable among different succession periods.
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pathways described above (Yang et al., 2019b). In summary,

vegetation plays a significant role in the formation of soil organic

matter and influences fundamental soil forming processes such as

aggregation or podzolization (Awasthi et al., 2022b; Awasthi et al.,

2022c). Notably, soil aggregates are known to be the main sites of

SOC fixation (Shankar and Suresha, 2006; Bai et al., 2020). It is

hypothesized that approximately 90% of SOC in the surface soil of

terrestrial ecosystems is fixed in soil aggregates (Six and Paustian,

2014). Soil fixation of organic carbon depends on soil

agglomeration (Oades and Waters, 1991), and the physical
Frontiers in Plant Science 08
segregation of soil aggregates, which provides them a good C

sequestration capacity, can slow down the rate of organic carbon

loss (Six et al., 2004; De Gryze et al., 2006). Moreover, increase in

the proportion of large-size aggregates due to woody plant diversity

enhances the SOC storage capacity.

In the present study, the carbon input pathway for SOC

accumulation in PLS-PM was not significant, probably because

the entry of litter into the soil requires microbial mediation. Fine

roots are mostly living roots, and their main role is exchanging

material with the soil, during which they produce carbon input as
FIGURE 5

Relationship between plant diversity and carbon sequestration characteristics. *P < 0.05. T represents the overall diversity of plant communities; H
represents the herb diversity in plant communities; W represents the woody plant diversity in plant communities; Ag represents the aggregate size;
SOC represents the soil organic carbon. The darker the color, the stronger the correlation.
A B

FIGURE 6

(A) Plant diversity drives soil carbon sequestration. (B) Carbon capturing plants drive soil carbon sequestration. *P < 0.05. Numbers on arrows are
path coefficients indicating a positive (positive number) or negative effect (negative number) effect. The red lines represent positive effects, and blue
lines represent negative effects. Solid lines represent significant effects, while dashed lines represent nonsignificant effects. The width of each arrow
is proportional to the standardized path coefficients.
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biological residues, thereby affecting future soil carbon (Gregorich

et al., 2017). However, in the present study, Pearson’s correlation

analysis found that both deadfall and fine roots increased

significantly with the natural vegetation recovery process, and

SOC accumulated gradually (Figures 4, 5). In summary, from our

observations of 150 years of natural vegetation recovery succession,

we hypothesized that the positive effect of plant diversity on carbon

sequestration was driven by the input of carbon into the soil by litter

and roots that was stored in large particle size aggregates, in which

soil microorganisms play an important role. This mechanism is

more evident in woody plants than in other plants. Some evidence

suggests that our proposed mechanism is of general interest

(Prommer et al., 2020; Jia et al., 2021; Wang et al., 2021; Feng

et al., 2022). This study emphasized that a wide variety of plants is

important and can have many ecological and environmental

benefits, such as greater carbon sequestration.
4.2 Carbon capturing plants drive soil
carbon sequestration

In the present study, we found that Fabaceae and Rosaceae plant

diversity is important for SOC accumulation, and that plants

belonging to these two families can directly transport organic

carbon to the soil through the mechanisms described previously. It

should not be overlooked that most of these species are well-rooted

plants, and they can increase the content of large particle size

aggregates (1–5 mm) in the soil and enhance the soil carbon

sequestration capacity. This inter-rooting effect can also

significantly improve the stability of soil aggregates and promote

carbon sequestration by soil aggregates (Li et al., 2020). An increase in

nitrogen content has been shown to be highly correlated with an

increase in SOC (Li et al., 2022), and an increase in SOC content

under high-nitrogen conditions corresponds to a 33% reduction in

CO2 outflow (Tian et al., 2019). Fabaceae and nitrogen-fixing bacteria

are known to form specific host relationships (Dassen et al., 2017).

Several carbon sequestration pathways showed that both families

contained species that could efficiently sequester carbon.

We screened three key species (L. bicolor, S. davidii, and C.

multiflorus) taking into account the two criteria that the plants must

be woody and in either Rosaceae or Leguminosae, as well as the

reported plant importance values (Tian et al., 2022). All three species

are shrubs; therefore, the carbon- sequestration function of shrubs

should not be neglected in the process of revegetation. All three plants

grow in temperate conditions, which is consistent with the climatic

characteristics of the study area. Furthermore, Tian et al. (2022)

showed that the ecological niche breadth of L. bicolor, S. davidii, and

C. multiflorus was 9.42, 4.36, and 3.34, respectively, and they easily

co-occur with other species. This indicates that they are well adapted

and are important for maintaining community stability and active

vegetation recovery in the area. According to Kou (2016), these three

species are highly erosion-resistant and have high ecological value.

Overall, we concluded that reasonable allocation of shrubs in artificial

vegetation restoration can improve the vegetation carbon

sequestration capacity, ecological service function, and soil health.

In this study area, these three species can be considered for inclusion
Frontiers in Plant Science 09
in artificial vegetation construction. Among them, L. bicolor is

probably the best choice because it has been found to contain a

variety of effective rhizobacteria (Yao et al., 2002). Moreover, the

nitrogen in its senescing leaves is rarely transferred and is fed back to

the soil in the form of litter and it has a significant impact on soil

nitrogen and SOC accumulation because of the appropriate rate of

litter decomposition (Hendricks and Boring, 1992). It has also been

found that transplantation of this species to poorly eroded soils

resulted in SOC enrichment and significantly improved cluster

stability (Bin and Xin-Hua, 2006; Yao et al., 2009). This evidence is

consistent with the results of the present study and suggests that L.

bicolor has great potential for improving vegetation carbon

sequestration capacity and deserves further study.
5 Conclusions

This study confirmed that the restoration of plant diversity is

consistent with soil carbon accumulation. Plant diversity showed a

single-peaked curve during 150 years of vegetation restoration. The

peak of herbaceous plant diversity occurred between 40 and 70 years

of vegetation recovery, and the peak of woody plant diversity occurred

between 70 and 120 years of vegetation recovery. Litter accumulation,

fine-root biomass, and SOC storage increased with the progress of

vegetation restoration. The positive effect of plant diversity on carbon

sequestration may be related to litter accumulation and fine-root

biomass, which drive carbon input and storage in large-particle-size

(1–5 mm) aggregates. Furthermore, woody plant diversity was

revealed to be the primary driver of soil carbon sequestration,

whereas plant diversity in Fabaceae and Rosaceae was discovered to

be crucial for SOC accumulation. The vegetation carbon sequestration

function of shrubs should not be neglected during vegetation

restoration. In the study area, three species, namely L. bicolor, S.

davidii, and C. multiflorus, should be considered for plantation.

Among them, L. bicolor was observed to be the best choice. Overall,

this study provides important insights into the driving mechanisms

underlying plant diversity and soil carbon sequestration and its

implications for addressing the effects of global climate. To

quantitatively identify the contribution of different mechanisms to

soil carbon sequestration, future research needs to incorporate more

biotic (e.g., microbial) and abiotic factors. This will be useful for fully

clarifying the connections between the above- and belowground

components of temperate vegetation.
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