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Comparative transcriptional and
co-expression network analysis
of two upland cotton accessions
with extreme phenotypic
differences reveals
molecular mechanisms of
fiber development
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Introduction: Upland cotton (Gossypium hirsutum) is the main source of natural

fiber in the global textile industry, and thus its fiber quality and yield are important

parameters. In this study, comparative transcriptomics was used to analyze

differentially expressed genes (DEGs) due to its ability to effectively screen

candidate genes during the developmental stages of cotton fiber. However,

research using this method is limited, particularly on fiber development. The aim

of this study was to uncover the molecular mechanisms underlying the whole

period of fiber development and the differences in transcriptional levels.

Methods: Comparative transcriptomes are used to analyze transcriptome data

and to screen for differentially expressed genes. STEM and WGCNA were used to

screen for key genes involved in fiber development. qRT-PCR was performed to

verify gene expression of selected DEGs and hub genes.

Results: Two accessions of upland cotton with extreme phenotypic differences,

namely EZ60 and ZR014121, were used to carry out RNA sequencing (RNA-seq) on

fiber samples from different fiber development stages. The results identified 704,

376, 141, 269, 761, and 586 genes that were upregulated, and 1,052, 476, 355, 259,

702, and 847 genes that were downregulated at 0, 5, 10, 15, 20, and 25 days post

anthesis, respectively. Similar expression patterns of DEGs were monitored using

short time-series expression miner (STEM) analysis, and associated pathways of

DEGs within profiles were investigated. In addition, weighted gene co-expression
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Abbreviations: DPA, days post anthesis; DEG, differe

WGCNA, weighted gene co-expression network analysis

kilobase of exon model per million mapped fragments; FD

STEM, short time-series expression miner; qRT-PCR,

polymerase chain reaction; VLCFAs, very long-chain

synthase 3.
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network analysis (WGCNA) identified five key modules in fiber development and

screened 20 hub genes involved in the development of fibers.

Discussion: Through the annotation of the genes, it was found that the excessive

expression of resistance-related genes in the early fiber development stages

affects the fiber yield, whereas the sustained expression of cell elongation-

related genes is critical for long fibers. This study provides new information

that can be used to improve fibers in newly developed upland cotton genotypes.
KEYWORDS

DEGs, fiber development, Gossypium hirsutum, RNA-Seq, WGCNA
1 Introduction

Cotton is one of the most important economic and cash crops in

the world. Due to upland cotton having a high yield, the area in

which it is grown comprises 95% of the total global cotton-growing

area (Yoo and Wendel, 2014). Determining how to improve the

quality of upland cotton fiber while ensuring the yield is an urgent

problem that remains to be solved (Kim and Triplett, 2001).

Cotton fiber is an extension of epidermal cells present on cotton

seed, which extend from a tiny bump of 10 mm–20 mm to a length of

3 cm–6 cm (Kim and Triplett, 2001). The growth of cotton fiber is

divided into four stages: fiber initiation [0–3 days post anthesis

(DPA)], elongation (3–20 DPA), secondary wall biosynthesis (20–

40 DPA), and maturity (40–50 DPA) (Kim and Triplett, 2001;

Haigler et al., 2012). During the fiber initiation stage (i.e., 0–3 DPA),

hair-like projections begin to appear on the epidermis of cotton

seeds (Qin and Zhu, 2011). This is followed by the fiber elongation

stage (3–20 DPA). During this stage, fiber development-related

genes are expressed in high amounts and elongated fibers form fiber

bundles by twisting (Singh et al., 2009). Close to 20 DPA, fiber

elongation gradually stops and fibers enter the stage of secondary

wall thickening (20–40 DPA) as the expression of secondary wall

synthesis-related genes is upregulated (Hinchliffe et al., 2010). The

secondary wall is mainly composed of cellulose, and cellulose

synthesis is dependent on cellulose synthase and cellulose

synthase-like enzymes (Taylor et al., 2003). During the fiber

maturation stage (40–50 DPA), fibroblasts undergo dehydration

and form mature fibers (Kim and Triplett, 2001; Haigler et al.,

2012). The first two stages primarily affect the number and length of

fibers, whereas the third and fourth stages are associated with fiber

strength (FS) and fineness (Patel et al., 2020).

In recent years, the success in the sequencing, assembly, and

publication of the reference genomes of cotton (diploid and
ntially expressed gene;

; FPKM, fragments per

R, false discovery rate;

quantitative real-time

fatty acids; SS3, starch
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allotetraploid) species has made it possible for subsequent

research on the genetic mechanisms of various traits at the

genomic level to be carried out (Paterson et al., 2012; Du et al.,

2018; Hu et al., 2019). In particular, RNA sequencing (RNA-seq)

technology has developed rapidly over the past 10 years and has

become an indispensable tool for the analysis of differential gene

expression/messenger RNA (mRNA) variable splicing at the

transcriptome level (Wang et al . , 2009). Comparative

transcriptomics is used to analyze differentially expressed genes

(DEGs) and has proven to be an effective method for the screening

of candidate genes at various growth stages. Numerous studies have

employed comparative transcriptome analysis to discover the genes

related to high-quality cotton fiber (Applequist et al., 2001; Gilbert

et al., 2014; Yoo and Wendel, 2014; Islam et al., 2016; Li et al.,

2017b; Li et al., 2017c; Lu et al., 2017; Zou et al., 2019; Jiang et al.,

2021a). A comparative analysis of the fiber development

transcriptomes of two short-fiber mutants and control cotton

samples in different environments identified 88 fiber elongation-

related DEGs (Gilbert et al., 2014). The comparative transcriptome

analysis of upland cotton MD52ne and MD90ne and their near

isogenic lines revealed that FS may be associated with ethylene and

its related hormone pathways, in addition to the signaling pathways

of receptor-like kinases (RLKs) (Islam et al., 2016). Moreover, the

comparative analysis of the MBI9915 and MBI9749 transcriptomes

of chromosome segment substitution lines (CSSLs) has provided

new insights into the biosynthesis-related pathway genes of the

secondary wall (Li et al., 2017b). The application of transcriptome

analysis for a population of upland cotton recombinant inbred lines

(RILs) identified several candidate genes associated with fiber

initiation and FS (Zou et al., 2019; Jiang et al., 2021a; Jiang et al.,

2021b). However, studies that have employed a systematic analysis

on all stages of fiber development are limited.

In this study, RNA-seq technology was used to conduct a

comparative transcriptome analysis of the plant material

ZR014121, which demonstrates excellent fiber quality and poor

yield, and line EZ60, which demonstrates poor fiber quality and

high yield. The primary focus of this study was to report differences

in the transcription level of the genes involved in fiber development.

Through DEG analysis and weighted gene co-expression network

analysis (WGCNA), candidate key genes that may be related to fiber
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development were identified. These findings can be used in the

development of new genetic material with the potential to improve

cotton fiber quality and yield.
2 Materials and methods

2.1 Plant materials

ZR014121, with its excellent fiber quality and poor yield, and

EZ60, with its poor fiber quality and high yield, were grown in

standard field conditions at the Experimental Station of the Institute

of Cotton Research, Chinese Academy of Agricultural Sciences,

located in Anyang, Henan, China (36°N, 114°E) in 2020. EZ60 and

ZR014121 are preserved in the National Germplasm Library

(Anyang, Henan, China) under accession numbers M116025 and

ZM115357, respectively. The plant material was sown in rows that

were 3 m long and 0.8 m wide. Ten rows of each plant material were

planted. Planting and sampling occurred in April and September,

respectively. Field management techniques followed those of

regular breeding practices. The days to flowering were recorded

as DPA, and cotton bolls were marked individually. The cotton

bolls were collected at 0, 5, 10, 15, 20, and 25 DPA, and fiber was

extracted from each boll with a sterile scalpel and frozen in liquid

nitrogen for the subsequent experiments. Sampling from each

period was conducted with three biological replicates. The

samples for each period for ZR014121 and EZ60 were labeled

ZR_0D, ZR_5D, ZR_10D, ZR_15D, ZR_20D, and ZR_25D and

EZ_0D, EZ_5D, EZ_10D, EZ_15D, EZ_20D, and EZ_25D,

respectively. The data collected pertained to the fiber-quality traits

from two cotton accessions planted in two different locations over 2

years (20AnYang, 21AnYang, 20HeBei, and 21HeBei).
2.2 RNA isolation, library construction, and
RNA-seq analysis

The total RNA of the fiber samples was extracted using the

RNAprep Pure Plant Kit (Polysaccharides & Polyphenolics-rich)

(Tiangen, Beijing, China), and 1% agarose gel electrophoresis was

used for the detection of RNA degradation and contamination. The

RNA concentration was determined using a NanoDrop 2000

spectrophotometer (Thermo Science, Waltham, MA, USA). The

RNA integrity was evaluated using a RNA Nano 6000 Assay Kit for

the Bioanalyzer 2100 system (Agilent Technologies, Palo Alto, CA,

USA). Approximately 2 µg RNA per sample was used to construct

the transcriptome library using an Illumina TruSeq™ RNA Sample

Preparation Kit (Illumina, San Diego, CA, USA). Transcriptome

sequencing of 36 libraries was carried out on the Illumina Novaseq

6000 sequencing platform that produced 150 base pair (bp) paired-

end (PE) raw reads (BerryGenomics Co., Ltd., Beijing, China). The

raw data were generated in FASTQ format and processed using

Trimomatic version 0.39 (Bolger et al., 2014). Reads containing

linkers and poly-N, low-quality reads with ≥10% unknown

nucleotides (N) and >20% bases, and reads with a phred quality

score <5 were excluded. The GCpercentage and Q30 of the clean
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data were then calculated to evaluate the quality for downstream

analysis. HISAT2 v2.1.0 was used to build an index of reference

genomes with default parameters (Pertea et al., 2016), with the

sequence alignment following the G. hirsutum genomes (https://

www.cottongen.org/) (Hu et al., 2019). StringTie version 1.3.5 was

then employed to quantify the fragments per kilobase of exon per

million reads (FPKM) values of the genes (Pertea et al., 2015).

Pearson correlation analysis was used to evaluate the correlation

between samples. Samples with a Pearson correlation coefficient of

less than 0.8 among the three biological replicates were deleted from

the database.
2.3 Differentially expressed gene analysis

The DESeq2 package in R (R Core Team) was used to screen

DEGs between the two cotton accessions at a particular fiber

developmental stage (vertical) and among stages of the same

accession (horizontal) based on the count number of each gene

transcript (Love et al., 2014). The DESeq2 package was also

employed for principal component analysis (PCA) and the

visualization of the results (Love et al., 2014). The screening

criteria were as follows: false discovery rate (FDR) <0.05;

log2Fold-change of pairwise comparison >1 or <−1; and FPKM

≥0.5. Gene annotations for all DEGs were obtained from the

Cottongen database (https://www.cottongen.org/) (Yu et al., 2014).

STEM software was used to analyze the expression patterns of

DEGs in the two accessions (Ernst et al., 2005). To explore the

functions of DEGs, the Kobas3.0 tool was used to perform Kyoto

Encyclopedia of Genes and Genomes (KEGG) and gene ontology

(GO) analysis based on the clusterProfiler package in R and the

Cottongen database (https://www.cottongen.org/) (Altschul et al.,

1990; Kanehisa and Goto, 2000; Wu et al., 2006; Xie et al., 2011; Yu

et al., 2014; Kanehisa, 2019; Kanehisa et al., 2021; Wu et al., 2021).
2.4 Construction of co-expression
networks and screening of hub genes

The WGCNA package in R was used to analyze the gene co-

expression network and screen the genes related to fiber quality

(Langfelder and Horvath, 2008). The edge files generated after co-

expression network analysis were sorted according to weight value.

The first 200 pairs of network connections were used to establish the

co-expression network. In each module, hub genes were screened

according to their module membership (KME) values. Cytoscape

3.9.0 (Shannon et al., 2003) was employed to vizualize the co-

expression network.
2.5 Hub genes and DEGs expression
pattern validation

Quantitative real-time PCR (qRT-PCR) was used to verify the

gene expression of select DEGs and hub genes. Approximately 1 µg

of the total RNA was used as a template to synthesize the cDNA in
frontiersin.org
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the HiScript® II Q RT SuperMix for qPCR (+gDNA wiper)

(Vazyme Biotech Co., Ltd). Real-time quantitative PCR was

carried out using the ChamQTM Universal SYBR® qPCR Master

Mix (Vazyme Biotech Co., Ltd) and LightCycler® 480 II Real-time

PCR instrument (Roche, Basel, Switzerland). The qPrimerDB

website (https://biodb.swu.edu.cn/qprimerdb/) was used as a

reference to design qRT-PCR-specific primers (Lu et al., 2018)

(Supplementary Table S8). The gene expression level was calculated

using the 2−△△CT method with three biological replicates (Livak

and Schmittgen, 2001).
3 Results

3.1 Phenotypic data analysis of the
two accessions

The lint percentage (LP) is a key measure for the quantification

of cotton fiber yield, whereas FS and fiber length (FL) are important

fiber-quality traits. The yield and quality potential of selected cited
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genotypes were recorded in four environments, namely, 20AnYang,

21AnYang, 20HeBei, and 21HeBei. The average values of LP, FL,

and FS determined for EZ60 were 40.82%, 28.91 mm, and 31.66 cN/

tex, respectively, and those for ZR014121 were 37.32%, 31.39 mm,

and 36.8 cN/tex, respectively (Figure 1A and Supplementary Table

S1). Thus, EZ60 has a higher fiber yield and ZR014121 has a higher

fiber quality.
3.2 Transcriptome sequencing analysis and
correlation of replicate samples

Fiber samples were collected during fiber growth (i.e., at 0 DPA,

5 DPA, 10 DPA, 15 DPA, 20 DPA, and 25 DPA) to identify the key

genes affecting fiber quality. Transcriptome sequencing was

subsequently carried out. A total of 1,634.76 million clean reads

were retrieved from 36 libraries, with an average number of reads

per sample of 45.41 million. Moreover, 97.01% to 99.36% of Q30

was calculated with an average of 98.80%, whereas 43% to 45% of

the GC contents were calculated with an average of 44.17%
B

C

A

FIGURE 1

Phenotypic data, transcription level, and DEG statistics for each sample. (A) Phenotypic data for LP, FL, and FS of EZ60 and ZR014121 from four
environmental conditions. (B) Transcript levels at each developmental stage of both accessions statistically classified as 0.5≤FPKM<5, 5≤FPKM<100,
and 100≤FPKM. (C) The number of DEGs was counted for the same period of both accessions in various developmental periods. The number of
upregulated and downregulated genes is marked in red and black. DEGs, differentially expressed genes; FL, fiber length; FPKM, fragments per
kilobase of exon model per million mapped fragments; FS, fiber strength; LP, lint percentage.
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(Supplementary Table S2). Note that two samples were removed as

their correlation coefficients were less than 0.8 (Supplementary

Table S3).

Based on the FPKM value, we believed that genes with an

FPKM value greater than 0.5 were expressed in this study. A total of

30,893, 28,885, 25,928, 22,518, 22,613, and 20,992 genes were

expressed at six time points (0 DPA, 5 DPA, 10 DPA, 15 DPA,

20 DPA, and 25 DPA, respectively) in EZ60. Similarly, 31,325,

28,857, 24,188, 22,835, 21,973, and 20,683 genes were expressed in

ZR014121 (at 0 DPA, 5 DPA, 10 DPA, 15 DPA, 20 DPA, and 25

DPA, respectively). Among all expressed genes, those with FPKM

values of 0.5 to 5, 5 to 100, and ≥100 accounted for 67.44%, 30.83%,

and 1.73% of the total gene models, respectively (Figure 1B).
3.3 Analysis of differentially
expressed genes

To identify the genes involved in the development of fiber

quality, differentially expressed genes were analyzed using the

DESeq2 package in R for the different fiber stages of both

accessions through vertical and horizontal comparisons. After

removing duplicate genes, 19,915 DEGs were identified during

cotton fiber development (Figure 1C and Supplementary Tables

S4, 5).

At 0 DPA, when comparing ZR014121 to EZ60, 1,756 DEGs

(FPKM ≥0.5 and FDR <0.05) were identified, of which 704 genes

were upregulated (log2(FC)>1) and 1,052 genes were downregulated

(log2(FC)<−1). We also screened high-expression genes that

exhibited significant differences in their expression (FPKM ≥10, |

log2(FC)|>2). A total of 34 genes were upregulated and 61 genes

were downregulated in the developmental stages (Supplementary

Table S6) . Among the upregulated genes , two genes

(GH_A08G14 5 1 a nd GH_D07G14 1 1 ) e n c o d i n g S -

adenosylmethionine synthase were responsible for the production

of S-adenosylmethionine. GH_A08G2565 was annotated as the

Alpha-1,4-glucan-protein synthase family protein, and

participated in the amino sugar and nucleotide sugar metabolism

process. In addition, GH_D01G0810 was enriched in the ascorbate

and aldarate metabolism pathway, annotated as Vitamin C

Defective 2. Among the downregulated genes, GH_A10G0118 was

annotated as starch synthase 3 (SS3). Two members of the aldehyde

dehydrogenase (ALDH) family were identified and annotated as

ALDH10A8 (GH_D11G0455 and GH_A11G0436), whereas

GH_D07G1876 was annotated as encodsphosphoserine

aminotransferase 2.

At 5 DPA, ZR014121 was compared with EZ60, and 852 DEGs

(FPKM≥0.5 and FDR<0.05) were identified, 376 of which were

upregulated (log2(FC)>1) and 476 of which were downregulated

(log2(FC)< −1). We also assessed the high-expression genes with

significant differences in their expression level (FPKM≥10, |log2
(FC)|>2). Among them, 36 and 34 genes were upregulated and

downregulated, respectively. The majority of upregulated genes

were related to proteins involved in various processes of the

endoplasmic reticulum. Several genes encoding heat shock
Frontiers in Plant Science 05
proteins were identified, including heat shock cognate protein 70-

1 (GH_D05G0960 and GH_A05G0973), heat shock protein 70B

(GH_A13G2624), heat shock protein 90.1 (GH_A12G2751),

17.6kDa class II heat shock proteins (GH_A07G0216 and

GH_D07G0225), and mitochondrion-localized small heat shock

protein 23.6 (GH_D12G2202). In addition, two genes encoding

ubiquitin-conjugating enzymes were also upregulated and

annotated as ubiquitin-conjugating enzyme 10 (GH_A08G1154)

and ubiquitin-conjugating enzyme 22 (UBC22) (GH_D11G3489).

Among the downregulated genes, GH_A05G4206 was annotated as

10-formyltetrahydrofolate synthetase, and GH_A08G2085 and

GH_D08G2099 were annotated as beta-6 tubulin.

At 10 DPA, ZR014121 was compared with EZ60, and 496 DEGs

(FPKM≥0.5 and FDR<0.05) were identified, of which 141 were

upregulated (log2(FC)>1) and 355 were downregulated (log2(FC)<

−1). We also screened the genes for high expression and significant

differences in their expression (FPKM≥10, |log2(FC)|>2). Among

them, 9 genes were upregulated and 37 genes were downregulated.

For the upregulated genes, GH_A08G1447 was annotated as ADP-

ribosylation factor A1F. Some genes were also enriched in the

ribosomal pathway (GH_D11G0050 , GH_D13G2117, and

GH_D02G0697 ) . Among the downregu l a t ed gene s ,

GH_D02G1053 was annotated as the phosphofructokinase family

protein. Phosphoserine aminotransferase 2 (GH_D07G1876) was

found to be downregulated at 0 and 10 DPA.

At 15 DPA, ZR014121 was compared with EZ60, and 528 DEGs

(FPKM≥0.5 and FDR<0.05) were identified. A total of 269 genes

were upregulated (log2(FC)>1) and 259 genes were downregulated

(log2(FC)< −1). We also assessed the genes with a high expression

and significant differences in their expression (FPKM≥10, |log2
(FC)|>2). Among them, 31 genes were upregulated and 34 genes

were downregulated. Among the upregulated genes, three genes

were enriched for the fatty-acid elongation pathway and annotated

as 3-ketoacyl-CoA synthase 6 (GH_A03G1679 and GH_D02G1843)

and 3-ketoacyl-CoA synthase 1 (GH_D12G1341). GH_A08G2414

was annotated as O-acetylserine (thiol) lyase (OAS-TL) isoform A1

and encoded cytosolic O-acetylserine (thiol) lyase. Among the

downregulated genes, GH_D06G1226 was annotated as

peroxidase 2. Interestingly, the upregulated gene GH_A08G1447

was present at 10 DPA, yet this gene was downregulated at 15 DPA.

At 20 DPA, ZR014121 was compared with EZ60, and 1,463

DEGs (FPKM≥0.5 and FDR<0.05) were identified, of which 761

genes were upregulated (log2(FC)>1) and 702 genes were

downregulated (log2(FC)<−1). We also screened genes with a

high expression and significant differences in their expression

(FPKM≥10, |log2(FC)|>2). Among them, 48 genes were

upregulated and 90 genes were downregulated. Among the

upregu l a t ed gene s , two gene s (GH_D12G2066 and

GH_D09G2122) were enriched in the pentose and glucuronate

interconversions pathway and annotated as the pectate lyase

family protein and pectin lyase-like superfamily protein,

respectively. Genes enriched in metabolic pathways were also

identified, including 3-ketoacyl-CoA synthase 6 (GH_D01G2106,

GH_A01G2012, and GH_D02G1843), 3-ketoacyl-CoA synthase 10

(GH_D13G2158), alcohol dehydrogenase 1 (GH_A01G2058), and
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D-3-phosphoglycerate dehydrogenase (GH_D12G0221) .

GH_A03G0664 encoded the ferulyl-CoA transferase. Among the

downregulated genes, the glycerolipid metabolism pathway was

enriched, including glycerol-3-phosphate acyltransferase 5

(GH_A10G2449, GH_D04G0663, and GH_D10G2557) and

glycerol-3-phosphate acyltransferase 8 (GH_A11G0931). In

pheny lp ropano id b i o s yn the s i s , GH_D10G0525 and

GH_A05G0051 were annotated as 4-coumaric acid: CoA ligase 1

and 4-coumaric acid: CoA ligase 2, respectively. Asparaginase B1

(GH_D02G0918) was enriched in the biosynthesis of secondary

metabolites. In addition, two peroxidase super-family proteins

(GH_A10G1988 and GH_D10G2089) were overexpressed in EZ60

as compared with ZR014121.

At 25 DPA, ZR014121 was compared with EZ60, and 1,433

DEGs (FPKM≥0.5 and FDR<0.05) were identified, where 586 genes

were upregulated (log2(FC)>1) and 847 genes were downregulated

(log2(FC)< −1). We also screened genes with a high expression and

significant differences in their expression (FPKM≥10, |log2(FC)|>2).

Among them, 34 genes were upregulated and 61 genes were

downregulated. Among the upregulated genes, GH_D11G0356

was enriched in the carbon metabolism pathway and was

annotated as malate dehydrogenase. Interestingly, GH_A03G0664

was upregulated at 20 DPA and 25 DPA. Among the downregulated

genes, GH_A09G0134 was annotated as pectin methylesterase 31.

Note that GH_D02G0918 was not only downregulated at 20 DPA,

but the expression level in EZ60 was higher than normal.
3.4 Principal component analysis

Principal component analysis was carried out during six periods

of fiber development in the two cotton accessions so that the periods

at which the two accessions exhibited differences in fiber

development could be determined (Figure 2). Among them, there

were significant differences in the transcript levels between the two

accessions at 0 DPA, 5 DPA, 15 DPA, and 20 DPA. Note that ZR 25D

and EZ 20D were almost identical in terms of the sample variability.
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3.5 Temporal gene expression
patterns analysis

To analyze the temporal expression, we carried out STEM

analysis on all DEGs in EZ60 and ZR014121. In particular, the

12,786 and 14,563 DEGs in EZ60 and ZR014121, respectively, were

divided into seven profiles (Figure 3A). The genes in each profile

exhibited similar expression patterns. To investigate the genes

associated with fiber development, we focused on profiles (profile7

and profile30) that were consistently upregulated or downregulated

with fiber development. Profile7 contained 2,135 genes for EZ60 and

2,508 genes for ZR014121, and 1,104 genes were found to be identical.

Profile30 contained 940 genes for EZ60 and 890 genes for ZR014121,

and 448 were found to be identical. In profile7, 1,031 and 1,404 genes

were specifically expressed in EZ60 and ZR014121, whereas in

profile30, 492 and 442 genes were specifically expressed in EZ60

and ZR014121, respectively (Figure 3B).

To investigate the pathways with common expression patterns

in two accessions, we carried out KEGG enrichment analysis of the

genes common to both accessions (Supplementary Table S7). The

DEGs in profile7 were primarily enriched in metabolic pathways,

secondary metabolite biosynthesis, ribosome, and flavonoid

biosynthesis (Figure 3C). In contrast, DEGs in profile30 were

enriched in the phenylpropanoid biosynthesis, starch and sucrose

metabolism, glycosaminoglycan degradation, and amino sugar and

nucleotide sugar metabolism (Figure 3D).

GO enrichment analysis with specific DEGs was conducted to

explore the differences between the two accessions (Supplementary

Table S7). In profile7, EZ60 was compared with ZR014121 based on

the Venn diagram in Figure 3E. The specific DEGs of EZ60 were

enriched for the GO terms of GO:0016817 “hydrolase activity,

acting on acid anhydrides,” and GO:0006164 “purine nucleotide

biosynthetic process”. Moreover, GO:0006353 “DNA-templated

transcription, termination”, GO:0009651 “response to salt stress”,

and GO:0009414 “response to water deprivation” were specifically

enriched in the DEGs of ZR014121. In profile30, ZR014121 was

compared with EZ60, as shown in the Venn diagram in Figure 3F.
FIGURE 2

PCA of the two cotton accessions at various time points presented as DPAs. The same color represents a single timeline, and the circles and
triangles represent EZ60 and ZR014121, respectively. DPAs, days post anthesis; PCA, principal component analysis.
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The specific DEGs of ZR014121 were enriched to the GO terms of

GO:0003997 “acyl-CoA oxidase activity”, GO:0006631 “fatty acid

metabolic process”, GO:0006621 “protein retention in ER lumen”,

GO:0046923 “ER retention sequence binding”, GO:0006635 “fatty

acid beta-oxidation”, GO:0016627 “oxidoreductase activity, acting
Frontiers in Plant Science
 07
on the CH-CH group of donors”, GO:0006012 “galactose metabolic

process”, and GO:0003955 “NAD(P)H dehydrogenase (quinone)

activity”. The GO enrichment results indicate that there are large

differences between the two accessions in terms of the enriched GO

terms, which may affect the development of fiber.
B

C D

E F

A

FIGURE 3

Description of DEG analysis in upland cotton. (A) STEM analysis results, bottom left corner of each profile is gene number and top left corner is
profile ID. (B) Venn diagram visualizing the gene number in profile7 and profile30 for both accessions. (C) KEGG analysis of the same genes in the
two accessions in profile7. (D) KEGG analysis of the same genes in the two accessions in profile30. (E) GO analysis of different genes in the two
accessions in profile7. (F) GO analysis of different genes in the two accessions in profile30. DEGs, differentially expressed genes; GO, gene ontology;
KEGG, Kyoto Encyclopedia of Genes and Genomes; STEM, short time-series expression miner.
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3.6 Gene co-expression network analysis
and identification of hub genes in
correlation networks

We constructed a co-expression network of 5,414 DEGs using

WGCNA to investigate the relationship between gene expression

and fiber development and identify the genes associated with

fiber development.

The hierarchical clustering method was used to construct the

topological overlap matrix, merging the dynamic cut modules with

similar expression patterns. A total of 25 modules were identified in

the fiber samples of both accessions. Five of these (i.e., darkred,

orangered4, darkolivegreen, maroon, and floralwhite) were highly

correlated with each period of fiber development (Figure 4). In five

significant modules, a total of 20 DEGs were identified as hub genes
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based on the highest KME values in each module. All hub genes

exhibited KME values greater than 0.9 (Table 1). The gene co-

expression networks for the five significant modules are provided in

the additional files (Supplementary Figures S1–S5).

Eight hub genes were identified in the darkred module (related to

EZ60_0DPA), including the pre-mRNA-processing-splicing factor,

reticulan-like protein B3, ubiquitin-specific protease 14, SS3, calcium-

binding EF-hand family protein, and cleavage and polyadenylation

specificity factor 30. In the orangered4 module (related to

EZ60_5DPA), two genes were identified as hub genes, namely,

tubulin beta 8 and an ATP synthase alpha/beta family protein. Five

genes were identified as hub genes in the darkolivegreen module

(related to EZ60_15DPA), namely, beta-6 tubulin, pyridoxal

phosphate (PLP)-dependent transferases superfamily protein,

calcium ion binding, and rapid alkalization factor (RALF)-like 33.
B

A

FIGURE 4

Gene co-expression network analysis of vertical DEGs for the two cotton accessions. (A) Gene dendrogram of the co-expression modules in
WGCNA. According to the expression pattern, 5,414 DEGs were dynamically cut into different-colored modules. (B) Correlation analysis of 25 co-
expression modules with 34 samples; important modules are marked in red. DEGs, differentially expressed genes; WCGNA, weighted gene co-
expression network analysis.
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In the maroon module (related to ZR_20DPA), three genes were

identified as hub genes, namely, alcohol dehydrogenase 1, xyloglucan

endotransglucosylase/hydrolase family protein, and subtilase family

protein. Two genes were identified as hub genes in the floralwhite

module (related to ZR_25DPA), namely, the pollen Ole e 1 allergen

and extensin family protein and EIN3-binding F box protein 1. These

may be key regulatory genes in fiber development.
3.7 Validation of qRT-PCR
expression pattern

qRT-PCR was carried out to verify the expression pattern of

important DEGs and hub genes. The expression of 41 genes was

monitored, indicating that the significant results were similar to the

FPKM values in the transcriptome analysis (Figure 5). These results

validated the reliability of our RNA-seq.
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4 Discussion

4.1 Insights into the RNA-seq of
divergent accessions

RNA-seq was conducted on two accessions with extreme

phenotypic differences, EZ60 (LP of 40.82%, FL of 28.91 mm,

and FS of 31.66 cN/tex) and ZR014121 (LP of 37.32%, FL of 31.39

mm, and FS of 36.80 cN/tex) to explore the molecular mechanisms

involved in the fiber development of cotton. The recent

application of RNA-seq techniques to study fiber development

generally focuses on specific timelines and periods, but research

explaining the whole fiber development process is lacking. Based

on the analysis of two short-fiber mutants and the fiber

transcriptome of wild type (WT) grown in different

environments, Gilbert et al. (2014) identified 88 differentially

expressed genes required for fiber elongation. Li et al. (2017b)
TABLE 1 Candidate hub genes in five modules.

Gene ID KME Arabidopsis ID Description

darkred module (EZ_0DPA)

GH_A12G0442 0.971 AT1G30460 Cleavage and polyadenylation specificity factor 30

GH_D08G0448 0.967 AT1G09680 PPR superfamily protein

GH_D10G0843 0.962 AT1G80070 Pre-mRNA-processing-splicing factor

GH_A08G1344 0.958 AT1G64090 Reticulan-like protein B3

GH_D08G0264 0.958 AT3G20630 Ubiquitin-specific protease 14

GH_A10G0118 0.957 AT1G11720 SS3

GH_D11G0143 0.956 AT3G49240 PPR superfamily protein

GH_A02G1327 0.951 AT5G04170 Calcium-binding EF-hand family protein

orangered4 module (EZ_5DPA)

GH_D03G1709 0.953 AT5G23860 Tubulin beta 8

GH_A04G1196 0.945 AT5G08680 ATP synthase alpha/beta family protein

darkolivegreen module (EZ_15DPA)

GH_D08G2099 0.971 AT5G12250 Beta-6 tubulin

GH_A05G3885 0.961 AT3G01120 PLP-dependent transferases superfamily protein

GH_A08G2085 0.959 AT5G12250 Beta-6 tubulin

GH_A08G0145 0.954 AT4G08810 Calcium ion binding

GH_D11G1234 0.954 AT4G15800 RALF-like 33

maroon module (ZR_20DPA)

GH_A01G2058 0.945 AT1G77120 Alcohol dehydrogenase 1

GH_D08G0287 0.924 AT5G57560 Xyloglucan endotransglucosylase/hydrolase family protein

GH_A05G2091 0.919 AT5G67360 Subtilase family protein

floralwhite module (ZR_25DPA)

GH_D05G3615 0.943 AT1G29140 Pollen Ole e 1 allergen and extensin family protein

GH_D08G2716 0.938 AT2G25490 EIN3-binding F box protein 1
KME, eigengene connectivity value; mRNA, messenger RNA; PLP, pyridoxal phosphate; PPR, pentatricopeptide repeat; SS3, starch synthase 3.
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provided new insights into the biosynthesis-related pathways of

secondary walls in chromosome segment substitution lines

(CSSLs) by comparative analysis of the MBI9915 and MBI9749

transcriptomes in CSSLs. Similarly, Zou et al. (2019) and (Jiang

et al. 2021a, Jiang et al., 2021b) identified several candidate genes

related to FS and fiber initiation, respectively, using the

transcriptome analysis of a recombinant inbred lines (RILs)

population of upland cotton.

RNA-seq was carried out on cotton fibers from 0–25 days after

flowering to generate valuable data that could explain the genetic
Frontiers in Plant Science 10
and molecular mechanisms of fiber development. Such data sets

play an integral role in breeding work. In this study, 1.635 billion

clean reads were obtained in 36 libraries, with an average of 45.41

million reads per sample. The average Q30 and GC contents were

determined to be 98.80% and 44.17%, respectively. This

demonstrates the reliability of the presented RNA-seq data. Data

with a low correlation (<0.8) were removed due to possible

environmental influences on the samples. These data act as a

basis for the exploration of differences in transcript levels during

fiber development.
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FIGURE 5

qPCR analysis of hub genes and key DEGs. (A–X) qPCR results of key DEGs during fiber development. (Y–OO) qPCR results of hub genes in five key
modules. DEGs, differentially expressed genes; qPCR, quantitative PCR.
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4.2 DEG analysis reveals differences in fiber
development processes

Differentially expressed gene analysis was carried out to explore

the differences in transcript levels during fiber development. At 0

DPA, GH_A10G0118 (Figure 5F), annotated as SS3, was

significantly upregulated in the expression of EZ60. SS3 has been

reported to promote the release of glucose units by modifying the

cell wall structure (Grisolia et al., 2017; Gámez-Arjona and Mérida,

2021). This process leads to the metabolism of energy and the

accumulation of sugars. In particular, it may provide energy for the

differentiation of seed epidermal cells. For the high fiber-yielding

accession EZ60, during this period DEGs are enriched in metabolic

pathways such as glycine, serine, and threonine metabolism. In

addition, a variety of amino acid synthesis-related enzymes have

high FPKM values in EZ60. For example, phosphoserine

aminotransferase 2 (GH_D07G1876) was regulated and expressed

by MYB34, playing an important role in plant development and

metabolism (Benstein et al., 2013). The ALDH10A (GH_D11G0455

and GH_A11G0436) enzyme participates in seed development by

synthesizing g-butyrobetaine (Jacques et al., 2020; Tola et al., 2020).
This implies that a large number of amino acids is synthesized and

accumulated during the differentiation of seed epidermal cells, a

process that may affect the quantity of cotton fibers produced. At 5

DPA, two beta-6 tubul in genes (GH_A08G2085 and

GH_D08G2099) (Figure 5JJ) were significantly upregulated in

EZ60. These genes are involved in the direction of cell growth by

directing fibrillin (Soga et al., 2018) and may be required to regulate

the growth of fibers during the early stages of fiber elongation. The

synthesis of protein and various metabolism processes are more

active during fiber elongation. 10-formyltetrahydrofolate synthase

(GH_A05G4206) can be transported as mRNA to distant cells,

regulating cell differentiation and growth (Thieme et al., 2015). This

provides the impetus for fiber elongation. During the elongation

stage of fiber development (10 DPA and 15 DPA), GH_A08G1447,

annotated as ADP-ribosylation factor A1F, was significantly

upregulated in the expression of the high fiber quality of

ZR014121. This gene is involved in the transport process of

vesicles by assisting in transporting cellulose synthase to the

plasma membrane and non-cellulose polysaccharides to the cell

wall (Gebbie et al., 2005). This implies that GH_A08G1447 plays an

important role in cell wall composition and in biosynthesis during

fiber elongation stage. In addition, three genes (GH_A03G1679,

GH_D02G1843, and GH_D12G1341) (Figure 5K) are upregulated

in the fiber elongation of ZR014121. They are enriched in the fatty-

acid elongation pathway, which regulates the biosynthesis of very

long-chain fatty acids (VLCFAs) (Singh et al., 2020; Guyomarc’h

et al., 2021). For extracellular lipids, VLCFAs can be classified as

either suberin or cuticle/cutin (Li-Beisson et al., 2013). They are

essential for the polar transport of growth hormones during plant

development and facilitate the process of fiber elongation (Roudier

et al., 2010). VLCFA content and the ratio of VLCFAs to short-

chain fatty acids have been reported to play a role in the increased

production of long fibers (Hu et al., 2020). Moreover, cytosolic O-
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acetylserine (thiol) lyase can reduce the concentration of cell sulfide

to support the structure of actin cytoskeleton (Li et al., 2018). The

upregulated expression of these genes provides the foundation for

high-quality fiber in ZR014121. The analysis of DEGs revealed the

fiber elongation process to be related to metabolic pathways, the

biosynthesis of secondary metabolites, and other pathways.

Numerous protein transport genes and polar growth-related

genes play an important role in this process (Ruan et al., 2001;

Qin and Zhu, 2011).

Several DEGs in ZR014121 are upregulated during pre-fiber

development and are also associated with resistance.

GH_D01G0810 was significantly upregulated at 0 DPA for

ZR014121 and is involved in the ascorbate pathway (Iwagami

et al., 2022). Upregulated genes at 5 DPA were enriched for

multiple heat shock proteins involved in stress responses (Dorn

et al., 2010; Li et al., 2017a; Cha et al., 2020; Zhao et al., 2021).

Moreover, UBC22 (GH_D11G3489) is reported to have multiple

functions during plant development and stress responses (Wang

et al., 2020). Cotton fibers are developed from the epidermal cells of

the seeds (Kim and Triplett, 2001). Seed epidermal hairs form a

plant defense system to protect seeds, and thus resistance-related

genes are significantly expressed in the early development of fiber.

However, from a macroscopic perspective, this may take up genetic

resources for the differentiation of fiber during early development.

ZR014121 was heavily upregulated in resistance-related genes early

in fiber development, which may explain its low fiber yield. Genetic

resources related to stress response pathways are allocated for fiber

development, resulting in a higher biomass (Yoo and Wendel,

2014). The fiber initiation stage is important in determining fiber

yield, and significant differences between EZ60 and ZR014121 at 0

DPA may induce differences in yield (Figure 2).

During the secondary wall thickening stage (20 DPA and 25

DPA), DEGs were enriched in phenylpropanoid biosynthesis,

starch and sucrose metabolism, glycosaminoglycan degradation,

and amino acid sugar and nucleotide sugar metabolism pathways.

Two pectin lyase family genes (GH_D12G2066 and GH_D09G2122)

(Figure 5P) were significantly upregulated in terms of their

expression in ZR014121 and could induce cell-wall loosening,

remodeling, and rearrangement (Sun et al., 2018). GH_A03G0664

(Figure 5U), which encodes feruloyl-CoA transferase, was

upregulated at both 20 DPA and 25 DPA in ZR014121. It is

involved in several synthesis pathways and regulates the cell wall

composition (Gou et al., 2009; Molina et al., 2009). Interestingly, at

20–25 DPA, the majority of upregulated DEGs expressed in EZ60

were enriched in the phenylpropanoid biosynthetic pathway and

the thickening of the secondary wall. For example, at 20 DPA, the

upregulated glycerol-3-phosphate acyltransferase (GH_A10G2449,

GH_D04G0663, GH_D10G2557, and GH_A11G0931) is reported to

be involved in the biosynthesis of cork polyester (Jayawardhane

et al., 2018) and 4-Cumaric acid. Furthermore, CoA ligase

(GH_D10G0525 and GH_A05G0051) is involved in the

biosynthesis of lignin and the process of secondary wall

deposition in cotton fibers (Vanholme et al., 2012; Sun et al.,

2015). Peroxidase superfamily proteins (GH_A10G1988 and
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GH_D10G2089) play a role in the lignification stage of the

secondary wall (Hoffmann et al., 2020). Moreover, pectin

methylesterase 31 was upregulated at 25 DPA in EZ60, and

participated in the pectin remodeling process, possibly affecting

the thickening of the fiber secondary wall (Liu et al., 2013; Li et al.,

2016). Furthermore, malate dehydrogenase was upregulated at 25

DPA in ZR014121 and may influence fiber elongation during fiber

development (Imran et al., 2016). Malate, a product of malate

dehydrogenase, drives fiber elongation by enhancing turgor

pressure (Dhindsa et al., 1975). This may be due to the longer cell

elongation of ZR014121 and the shorter duration of fiber growth in

EZ60, which is one of the factors influencing poor-quality fiber. The

PCA results demonstrate the similarity between fibers from EZ60 at

20 DPA and those from ZR014121 at 25 DPA in terms of the

transcript level (Figure 2).
4.3 Hub genes identified by WGCNA

WGCNA identified numerous modules associated with each

period of fiber development and the hub genes for each module.

We conducted an extended study for some modules that

exhibited a strong correlation with EZ60 early-fiber and

ZR014121 late-fiber samples. These modules were correlated

with periods that demonstrated significant differences between

the two accessions in the PCA results (Figure 2). Among the three

modules associated with EZ60, the identified hub genes were

highly correlated with seed epidermal hair cell differentiation and

elongation initiation. These genes include several transcription

factors (cleavage and polyadenylation specificity factor 30 and

pre-mRNA-processing-splicing factor), genes which regulate the

protein synthesis process (reticulan-like protein B3, calcium-

binding EF-hand family protein, and calcium ion binding), and

genes involved in the energy supply process (ATP synthase alpha/

beta family protein). Cleavage and polyadenylation specificity

factor 30 is associated with the metabolic process of mRNA and

mediates mRNA N6-methyladenosine (m6A) modifications

(Hou et al., 2021). This pre-mRNA-processing-splicing factor

affects pre-mRNA shearing and is essential for embryonic

development in Arabidopsis (Sasaki et al., 2015). This gene may

affect the differentiation process of epidermal cells. Reticulan-like

protein B3 plays an important role in endoplasmic reticulum

modeling (Kriechbaumer et al., 2015). The expression of calcium-

binding EF-hand family protein is consistent with the

involvement of Ca2+ in the regulation changes of cell

development (Day et al., 2002). ATP synthase alpha/beta family

protein drives the synthesis of mitochondrial ATP; its mRNA can

move between cells and is transported to more distant tissues

(Thieme et al. , 2015). These genes may influence the

accumulation of protein synthesis during the differentiation of

fiber development initiation and the energy transfer process. In

addition, RALF-like 33 is a small peptide that causes rapid

extracellular alkalinization and acts as an extracellular signal to

regulate plant development (Sharma et al., 2016). Ubiquitin-
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specific protease 14 is required for the lateral root development

in Arabidopsis and may be associated with the initiation of fiber

development (Majumdar et al., 2021). Note that SS3 and multiple

tubulin proteins (tubulin beta 8 and beta-6 tubulin) were

identified as hub genes, which is consistent with the results of

the DEGs analysis. Thus, the role of the aforementioned genes in

the early stages of fiber development is crucial. Previous

transcriptome research on the Ligon lintless-1 mutant has

reported the importance of starch synthase and tubulin for

fiber development (Ding et al., 2014).

Among the two modules associated with ZR014121, the

xyloglucan endotransglucosylase/hydrolase family protein acts as

a cell wall-modifying enzyme to regulate plant growth by

maintaining cell wall homeostasis (Zhang et al., 2022). In

addition, EIN3-binding F box protein 1 is involved in ethylene

signaling (Vaseva et al., 2018). Previous research has linked fiber

strength in cotton to the ethylene signaling pathway (Islam et al.,

2016). During fiber development, hub genes play an important role

in all developmental stages and influence fiber-yield and -quality

traits. Therefore, the functions of these hub genes require

further investigation.
5 Conclusions

Differentially expressed genes were identified by the

transcriptome sequencing of fibers from two cotton accessions

(EZ60 and ZR014121) with extreme phenotypic differences at

various developmental stages. DEGs with similar expression

patterns were classified using STEM analysis, focusing on profiles

with persistent upregulated and downregulated expression (profile7

and profile30). Their differences in pathways and classes of action

were highlighted by KEGG and GO analysis. DEGs and hub genes

associated with each fiber developmental stage were selected by

longitudinal comparison and multiple screening, including fiber

initiation-related genes (SS3 and tubulin). These genes may be

associated with fiber yield. Genes associated with fiber elongation

(ADP-ribosylation factor A1F, pectin lyase, and fatty acid extension

pathway-related genes) and fiber secondary-wall thickening

(feruloyl-CoA transferase, and EIN3-binding F box protein 1-

related genes) may be crucial to affecting fiber quality. Our results

provide new insights into the molecular mechanisms underlying

cotton fiber development.
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