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Plants are adapted to defend themselves through programming, reprogramming,

and stress tolerance against numerous environmental stresses, including heavy

metal toxicity. Heavy metal stress is a kind of abiotic stress that continuously

reduces various crops’ productivity, including soybeans. Beneficial microbes play

an essential role in improving plant productivity as well as mitigating abiotic stress.

The simultaneous effect of abiotic stress from heavy metals on soybeans is rarely

explored. Moreover, reducing metal contamination in soybean seeds through a

sustainable approach is extremely needed. The present article describes the

initiation of heavy metal tolerance mediated by plant inoculation with

endophytes and plant growth-promoting rhizobacteria, the identification of

plant transduction pathways via sensing annotation, and contemporary changes

frommolecular to genomics. The results suggest that the inoculation of beneficial

microbes plays a significant role in rescuing soybeans under heavy metal stress.

They create a dynamic, complex interaction with plants via a cascade called plant–

microbial interaction. It enhances stress metal tolerance via the production of

phytohormones, gene expression, and secondary metabolites. Overall, microbial

inoculation is essential in mediating plant protection responses to heavy metal

stress produced by a fluctuating climate.
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GRAPHICAL ABSTRACT

A schematic representation of the mitigation of heavy metal stress via plant–microbial interaction.
Introduction

Environmental stress is a persistent threat to agriculture

production. In the current era, pollution of the environment with

heavy metals is increasing rapidly. The accumulation of heavy metals

in the environment is a serious concern globally for scientists because

they exert long-lasting toxic effects on ecosystems (De Storme and

Geelen, 2014; Pessarakli et al., 2015). Heavy metal stress is abiotic,

which is alarming for the ecological system and disturbs the biotic

and abiotic components of ecological systems. As such, it degrades

soil texture, pH, and mineral content. In addition, it causes heavy

metal toxicity in plants, reducing crop productivity. The agriculture

industry is facing pressure to meet the zero-hunger population, and

the human population is increasing and is estimated to reach 10

billion people worldwide by 2050. In addition, agronomy has to face

abiotic stresses, such as heavy metal stress, the most prevalent stress

globally (Conforti, 2011; Alexandratos and Bruinsma, 2012; Stout,

2012). Higher plants are sessile in nature, so they have to face

constant environmental stress. Heavy metal toxicity is the leading

cause of reduced crop productivity among different abiotic stresses.

Heavy metal stress can be defined as a metal with a specific density of

more than 5 g/cm3 (Maksymiec, 2007; Bilal et al., 2020). The most

distinguishable characteristics of heavy metals are their high density

and greater atomic number of more than 20. Among 90 metals, only

17 are labeled as beneficial, while 53 others are designated as heavy

metal stressors (Polle and Schützendübel, 2003; Tuteja et al., 2011).

Among beneficial metals, iron, zinc, and copper are required only in

trace amounts for plant health, but in excess amounts, they cause

heavy metal stress (Mani and Sankaranarayanan, 2018;

Emamverdian et al., 2020). It is estimated that more than a million

hectares of cultivable land are contaminated with heavy metals in

China, which is a total of 20% of total land biomass (Yadav

et al., 2020).
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Agrochemical applications, industrialization, anthropogenic

activities, and climatic change produce emissions through which

heavy metals are transported to ecological systems (biotic and abiotic

components) (Sarkar, 2002; Singh et al., 2011). The causes of heavy

metal stress are summarized in Figure 1. Heavy metals, including

cadmium (Cd), arsenic (As), molybdenum (Mo), cobalt (Co), nickel

(Ni), and copper (Cu), are transported to the environment through

water and air. Some of these heavy metals are vital and required for the

normal growth and production of plants, such as Fe, Zn, and Cu;

however, these metals are required in trace amounts (Callender, 2005;

Salomons et al., 2012; Alloway, 2013). Some heavy metals, even in trace

amounts, cause toxicity in plant cells. Heavymetals accumulate in plant

cells and cause heavy metal stress (Nagajyoti et al., 2010; Asati et al.,

2016). Heavy metals are immobile and non-biodegradable, so they are

toxic to the environment. When these heavy metals reach the soil

through water, they are transported to plant cells through diffusion or

endocytosis (Khan et al., 2015; Ali et al., 2020). Plants are sessile and

face constant environmental stress, such as heavy metal stress, which is

a kind of abiotic stress that harms plant productivity (Sharma and

Agrawal, 2005; Ali et al., 2022). Heavy metal accumulation causes

serious complications based on their subsequent accumulation

throughout the food chain. Heavy metal stress adversely affects plant

productivity by reducing enzymatic activities, soil biota, and metabolic

reactions (Puschenreiter et al., 2005; Volpe et al., 2009; Sonone

et al., 2020).

Interestingly, plants are natural bioaccumulators. They reduce

the concentration of heavy metals in soil and accumulate them,

although they do not require them (Smical et al., 2008). Plants have

an intrinsic mechanism to tolerate stress, but only up to certain

limits. After that, the plants show symptoms of toxicity, such as

chlorosis, browning of the roots, growth reduction, and death. The

response to heavy metals varies among several plant species (La

Camera et al., 2004; Debnath et al., 2011; Zahra et al., 2022).
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Whenever plants are exposed to heavy metals, they increase the

production of free radicals such as reactive oxygen species (ROS),

peroxide, superoxide, and singlet oxygen (Xie et al., 2019). These

highly reactive diatomic molecules degrade biomolecules and

cellular organelles. ROS results in oxidative damage to plant cells,

as shown in Figure 2 (Arora et al., 2002; Demidchik, 2015).

Methylglyoxal (CH3CCHO) is an organic compound produced

under heavy metal stress. When plants are subjected to heavy

metals, the rapid accumulation of these substances results in ROS,

causing oxidative stress that degrades carbohydrates (Hossain et al.,

2012; Li, 2016; Yang et al., 2023). Carbohydrate degradation causes

the production of a reduced derivative of pyruvic acid, resulting in

cell toxicity. Methylglyoxal also inhibits the production of

antioxidant enzymes, ultimately enhancing plant stress, as shown

in Figure 2 (Kaur et al., 2014; Mostofa et al., 2018).

As described earlier, plants are natural bioaccumulators.

Therefore, whenever the amount of heavy metal reaches a specific

limit, the first-line defense mechanism is related to stress

(Kosakivska et al., 2021). The root exudates avoid heavy metal

uptake (Dalvi and Bhalerao, 2013; Ghori et al., 2019). Metal ions are

sequestered in different compartments to prevent metal

interactions. The cell walls of the epidermis and mesophyll have

negative charges. Therefore, metals can be accumulated by

attracting negative charges, such as Cu. Heavy metals can also be
Frontiers in Plant Science 03
stored as free ions in the vacuole of the cell (Krzesłowska, 2011).

Sometimes, heavy metals form complex cellular proteins or salt

complexes. Amino acids, organic acids, and antioxidants

(enzymatic and non-enzymatic) are responsible for the tolerance

mechanism of heavy metal stress (Zaets and Kozyrovska, 2012; Yu

et al., 2019; Lei et al., 2021).

In response to continuous exposure to heavy metals, the

avoidance and tolerance mechanisms become exhausted, and

plants respond via the survival mechanism of action. The survival

mechanism includes the process of detoxifying metals by producing

stress-related molecules such as hormones, genes, and proteins

(Egamberdieva et al., 2017).

Rhizospheric soil has different microbes, such as bacteria,

nematodes, fungi, and viruses, which enhance stress tolerance.

In addition, plants sometimes form biological relationships

with rhizospheric microbes. This interaction is known as the

plant–microbial interaction. This interaction enhances (1) the

production of plant growth-promoting potential, stress-related

phytohormones, and secondary metabolites; (2) the expression of

genes and proteins; (3) the activation of antioxidant molecules; and

(4) stress tolerance in plants. It regulates heavy metal stress via

mitogen-activated protein kinases. It is a highly conserved signaling

pathway connected with the phosphorylation and activation of

hormones (Ali et al., 2022). The entire metabolic reprogramming

process is provided in Figure 3.

Over time, plants adapt to heavy metal stress to endure it and

maintain physiological growth, but only up to a limit. Plant species

can tolerate different degrees of stress at different times, depending

on the species, their habitats, and the duration of heavy metal stress.

Plant cells may die if heavy metal stress becomes a long process

(Bisht et al., 2023; Lu et al., 2023; Shakoor et al., 2023; Xu

et al., 2023).

Soybean (Glycine max) is an important legume cultivated

globally. It is an essential crop because of its nutritional value. It

contains rich amounts of oil, proteins, fibers, minerals, and

vitamins. Various studies have reported that abiotic stresses, such

as heavy metal stress, severely threaten soybeans. The synergistic

effect of heavy metal toxicity adversely influences soybean growth

and metabolic processes.
FIGURE 1

Sources of heavy metal stress on plant performances.
FIGURE 2

Production of oxidative damage in plants via ROS and methylglyoxal
ROS (reactive oxygen species).
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Moreover, soybean is not tolerant of heavy metal stress; hence,

metal-induced stress significantly affects its growth from

germination to production. The toxicity also enters the food

chain and affects human health. Metal accumulation in crop

grains is considered of great concern, while phytobeneficial

microbes are reported to have essential abilities for biosafety of

crops grown in contaminated soil (Liu et al., 2021; Razi and

Muneer, 2021). Soybean has a strong tendency and potential to

build a symbiotic relationship with microbes (Chen et al., 2021;

Zhou et al., 2023). The studies regarding mitigating the heavy metal

stress via inoculation of the microbes are limited, and no single

comprehensive study is present in soybean plant model. Reducing

metal stress in soybean crops through a sustainable approach is

extremely needed. Therefore, the present study was conducted to

explore the role of microbes in mitigating heavy metal stress in

model soybean plants. The present study reports for the very first

time that phytohormone-producing microbes are coordinately

involved in soybean growth and adaptation under heavy metal

stress. Moreover, it explores the mutualistic association of the

beneficial microbes in reducing heavy metal stress in the soybean

plant without compromising its seeds or biochemical profile.

Role of microbes in the alleviation of
heavy metal stresses

Heavy metal stress is a kind of abiotic stress that negatively

affects the productivity of various crops, such as tomato (Marques

et al., 2023; Khan et al., 2023a), rice (Mao et al., 2022; Zhao et al.,

2023), wheat (Din et al., 2023; Noor et al., 2023), millet (Revathy

and Shanker, 2023; Khan et al., 2023b), maize (Hafeez et al., 2023;

Tang et al., 2023), soybean (Lavado et al., 2001; Martin Molinero

et al., 2023), and others. Heavy metal remediation is required for

environmental protection and conservation. Numerous

physicochemical and biological strategies have been used to
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remove heavy metals from the environment. Physicochemical

procedures are quick, yet they are considered difficult due to their

expense and technical complexity. They also have a negative impact

on the physical, chemical, and biological aspects of the soil and

contribute to secondary contamination. However, because

biological remediation is a natural, eco-friendly, low-cost, and

widely accepted technology, it is regarded as the most successful

form of toxic metal elimination. One such method is the

employment of plant growth-boosting bacteria for bioremediation

of heavy metal-polluted soil, which is important in the context of

biological degradation (Adesemoye and Kloepper, 2009; Chamkhi

et al., 2021; Shaffique et al., 2022b).

The inoculation of beneficial microbes mitigates heavy metal

stress in plants. Microbes, such as bacteria, fungi, viruses, and

nematodes, are used to minimize heavy metal stress (Ge et al., 2023;

Narayanan andMa, 2023; Rahman et al., 2023). Microbes have been

acknowledged as an eco-friendly and alternative way to increase

plant productivity and alleviate stress. However, the microbes

potentially producing phytohormones are less evaluated for

soybean (G. max L.). The current study focused on plant growth-

promoting rhizobacteria (PGPR) and endophytes and their role in

mitigating heavy metal stress, as shown in Figure 4. The interactive

effect of microbes via the production of phytohormones and other

cellular events on soybean growth and heavy metal stress tolerance

is the least known.
Plant–microbial interaction

Beneficial microbes (bacteria and fungi) are acknowledged for

their stress tolerance and organic pollutant degradation. Plant–

microbial interaction enhances plant growth even under abiotic

stress (heavy metal stress). The microbes have the potential to

integrate plant growth and metal accumulation via the production

of essential metabolites such as ACC deaminase, organic acid, etc.

(Prabhakaran et al., 2016; Tiwari and Lata, 2018). The metal

tolerance mechanism is the induction of thiol compounds such as

superoxide dismutase or metallothionein. Various studies reported

that metal tolerance could be achieved in the plant via the

inoculation of microbes mediated by the production of thiol

compounds. The two pathways follow microbe-assisted heavy

metal tolerance. One is the direct growth enhancement pathway,

and another is the indirect growth enhancement microbial-assisted

pathway. Microbes such as endophytes provide essential nutrients

such as vitamins and minerals through a direct microbial-assisted

pathway. This growth enhancement pathway works when the plant

is under stress. In addition, the direct method also provides

increased accumulation of phytohormones to enhance the

biological process of the plant as well as increase stress tolerance

in plants (Liu et al., 2023; Zhou et al., 2023). In direct microbial-

assisted growth, the enhancement pathway is followed by the

induction of systemic resistance (ISR). Various enzymes, such as

proteases, glucanases, etc., assist the plant in the enhancement of

resistance to metal stress (Gul et al., 2023; Nagrale et al., 2023).

Beneficial microbes integrate a complex symbiotic relationship

with the plant and create a dynamic network of plant–microbial
FIGURE 3

A holistic view of the metabolic reprogramming of plants with heavy
metal stress ROS (reactive oxygen species).
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interaction. Plant–microbial interaction enhances heavy metal

tolerance due to the production of a cascade of events, such as

phytohormones, exopolysaccharides, and siderophores, organic

acids, amino acids, secondary metabolites, and enhancing the

antioxidant defense system, as shown in Figure 5. The expression

of some genes facilitates this interaction. Moreover, plant–microbial

interaction modulates a plant’s metabolic process, which helps

enhance stress tolerance (Rajendran et al., 2003; Pishchik et al.,

2016; Islam et al., 2021; Zhou et al., 2023).
Endophytes

Endophytes are living microbes within plant cells that form a

symbiotic relationship with plants via a cascade of events (Rajkumar

et al. , 2009). These events include the production of

phytohormones, organic compounds, and genetic expression.

These may be microbes or fungi (Adhikari et al., 2023; Ghorai,

2023; Li et al., 2023). They form healthy relationships with plants.

The following are examples of inoculation of endophytes in model

plant soybeans to enhance metal tolerance (Gupta et al., 2023; Rai

et al., 2023).

A study was conducted in 2018 to determine the stress

mitigation potential of two endophytic fungal strains,

Paecilomyces formosus LHL10 and Sphingomonas sp. LK11, in

soybeans under zinc and aluminum (Al) stress. Hormonal

regulation, antioxidant capacities, and genetic expression were

ruled out. The results suggest that inoculation of the endophytic

strain significantly enhanced the production of the endogenous
Frontiers in Plant Science 05
phytohormones abscisic acid, salicylic acid, and gibberellins. It also

enhances the activity of antioxidant enzymes such as SOD, CAT,

and APX. Furthermore, genetic expression revealed that it

upregulates the overexpression of the Ariadne-like ubiquitin

ligase gene, namely GmARI1, and downregulates the ATPase

genes GmHMA18, GmHMA13, GmHMA19, and GmPHA1. The

mechanism they followed for stress mitigation was inhibiting the

uptake and reduction of oxidative stress by producing antioxidant

molecules. The combined inoculation improved soybean’s metal

toxicity and morphological features (Bilal et al., 2018).

Later in 2018, extending the work on endophytic fungi, Bilal

et al. (2018) explored the mechanism of Cr tolerance in soybeans.

The researchers estimated the presence of endogenous

phytohormones and antioxidant molecules. The results revealed

that inoculation of endophytic fungi significantly upregulated

endogenous phytohormones, i.e., indole acetic acid, abscisic acid,

and salicylic acid. The entophytic treatment mitigated Cr toxicity by

enhancing the antioxidant defense system, such as catalase,

superoxide dismutase, and peroxidase activities (Bilal et al., 2018).

In 2019, two entophytic strains, LH10 and LH6, were inoculated

into soybeans to mitigate Ni, Cd, and Al. The results suggested that

these strains upregulated the endogenous phytohormones (i.e.,

abscisic and jasmonic acids), reducing metal transportation and

accumulating the genetic expression of GmHMA13, GmHMA14,

and GmHMA18. The combined application enhanced the physio-

morphological characteristics of the plants and reduced oxidative

stress by activating antioxidant systems (e.g., GSH, SOD, APx, and

CAT). (Bilal et al., 2020). Saqib et al., extending the work on P.

funiculosum LHL06, estimated the quantitative measurement of
FIGURE 4

Microbes involved in the study for mitigation of heavy metal stress in soybean.
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phytohormones. Their results revealed that the inoculation of LH06

enhanced the production of the growth-promoting hormone

gibberellins and indole acetic acid and lowered the levels of ABA

and salicylic acid. The genetic expression analysis showed that

inoculation significantly upregulated the FQR1-like 1 isoform X2

and peroxidase and downregulated the expression analysis of three

genes: GmHMA13, GmHMA14, and GmHMA19 (Bilal et al., 2019).

Vesicular–arbuscular mycorrhiza fungi

Vesicular–arbuscular mycorrhiza fungi (VAMF) are a type of

beneficial microorganism that forms the plant–microbial

interaction by improving the soil’s plant nutrition and health

(Xin et al., 2001; Chinnusamy et al., 2006).

AMF has the capacity to increase the defensive system of AMF-

mediated plants, which can aid in the establishment of plants in

soils contaminated with heavy metals and encourage growth and

development. Food crops, fruits, vegetables, and soils may collect

heavy metals, posing a number of health risks. Under aluminum

stress, nitrogen absorption was positively improved by AMF

interaction with wheat. According to Salehi et al. (2006), Tripathi

(2014), and Chaturvedi and Malik (2019), plants grown in soils

enriched with Cd and Zn exhibit significant suppression of shoot
Frontiers in Plant Science 06
and root growth, leaf chlorosis, and even death. The effects of AMF

on the accumulation of metals in plants have been the subject of

numerous reports in the literature (Dar and Reshi, 2017). In the

soybean model plant, only two studies are presented regarding

heavy metal stress, as described below.

In 1990, American scientists explored heavy metal toxicity in

soil. They mainly targeted Zn, Cd, and Mn metals. These

researchers isolated some bacterial strains and some VAMF. The

researchers inoculated VAMFs into soybeans under conditions of

metal toxicity. Then, after harvesting, they accessed the mineral

content and nitrogenase activity. The results revealed that the

inoculation of VAMF enhanced metal stress tolerance and

improved nitrogen and phosphorus content compared to the

bacterial strain. The results also showed that it improved the

plant’s biomass (Heggo et al., 1990).
PGPR and their role in the
enhancement of heavy metal stress
tolerance in soybean

PGPR are beneficial microorganisms that promote the growth

and development of plants (Ahemad, 2019; Barra Caracciolo and
FIGURE 5

Plant growth-promoting mechanisms of microbes in metal stress tolerance.
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Terenzi, 2021). PGPR also alleviate stress by producing

phytohormones, siderophores, exopolysaccharides, organic acids,

secondary metabolites, antioxidant agents, and systemic tolerance

in plants (Bhat et al., 2023; Jalal et al., 2023; Thomas and

Archana, 2023).

In 2015, Kang conducted an experimental study in which

soybeans were grown under Zn and Cu toxicity at a dosage of

100 mm. E. asburiae KE17 was inoculated into the plants. All

physiological, biochemical, and endogenous phytohormone levels

were determined. The results revealed that inoculation enhanced

metabolic reprogramming by lowering the level of free amino acid

leakage and the levels of ABA and SA that were higher in the stress

condition. Microbial inoculation also enhances nutrient availability

in soybean plants (Kang et al., 2015).

Pseudocitrobacter anthropiwas inoculated in soybeans under Cr

and As toxicity. The biochemical and hormonal assays were

determined. The results suggested that the strain can tolerate

metal stress up to 1,200 ppm, and it mitigates the stress by

regulating endogenous phytohormones (IAA 59.02 µg/ml and GA

101.88 nM/ml) (Hussain et al., 2021). In 2019, Chinese scientists

designed an experimental study in which they inoculated two

microbes, Trichoderma harzianum L. and Bacillus subtilis L.,

along with bio-char, into soybeans under Cd stress. Three Cd

concentrations were prepared (0, 10, and 30). The results revealed

that combining bio-char with plant growth-promoting microbes

significantly reduced metal uptake. Improve the growth and

biomass of plants significantly (Haider et al., 2021). In another

study, seven microbial strains, namely Pseudomonas sp. IMBG163,

Pseudomonas aureofaciens IMBG164, Paenibacillus sp. IMBG156,

Klebsiella oxytoca IMBG26, Pantoea agglomerans IMBG56,

Bradyrhizobium japonicum IMBG172, and Stenotrophomonas

maltophilia IMBG147, were inoculated into soybean under Zn,

Cd, and Cu stress. Heavy metal stress was produced by polluting the

soil at 30–300 mg concentrations. The results showed that the

inoculation of microbes lowered the toxicity level 10 times lower

than in the negative control group. The plants were protected from

heavy metal stress due to the activation of phenolic compounds and

glutathione-S-transfers. The results suggest that microbial

inoculation significantly enhanced the antioxidant activity of 10

SMV in Cd soil (Zaets et al., 2010).
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In 2017, two strains of plant growth-promoting rhizobacteria of

Penibacillus sp. were selected for Cr-induced toxicity. The results

showed that inoculating microbes significantly enhanced soybean

growth under Cr stress. The expression of chromium reductases in

soybeans enhanced the antioxidant capacity of the plant to tolerate

stress (Wani et al., 2018). The studies mentioned above were about

single inoculation, and the results suggested that it improved the

performance of soybeans under metal stress. Later, an experimental

study was designed in Argentina in 2019. The results suggested that

double inoculation of two strains, B. japonicum E109 andAzospirillum

brasilense Az39, enhanced stress tolerance under As stress in soybean

plants. The inoculation followed the phytostablization method and

enhanced the nitrogen content in soybean to alleviate the Cr stress

(Armendariz et al., 2019).

The trend of utilizing microbes is becoming prevalent for

alleviating environmental stress from plants due to their interactive

effect. They provide substantial tolerance for overcoming hostile

conditions (Shaffique et al., 2022a). After establishing the plant–

microbial interaction, they modulate various plant biological

processes, which augment stress mitigation. Establishing a plant–

microbial interaction leads to beneficial changes in the host plant to

mitigate heavy metal stress, which boosts overall plant fitness. The

plant response to heavy metal stress induces the accumulation of

phytohormones such as ABA, JA, SA, IAA, etc. and stress-responsive

genes such as GmHMA13, GmHMA18, etc., as shown in Table 1

(Rajendran et al., 2003; Bhandari and Bhatt, 2021; Islam et al., 2021).

The increased accumulation of ABA causes restricted photosynthesis

due to the closure of the stomata and, ultimately, growth restriction

under metal stress. In comparison with plants that are inoculated with

beneficial microbes, as shown in Table 1, they lower the accumulation

of ABA and are reported to have the potential to mitigate heavy metal

stress (Kumar and Verma, 2018; Jan et al., 2019).

This study suggests an increasing interest in the microbial field in

mitigating heavymetal stress in plants. Themitigation of abiotic stress by

microbes was first reported in 1990, and later there was a research gap.

Only after 2000, especially from 2015 onward, was there an increasing

interest in this research topic. Despite several studies evaluating heavy

metal stress, they lack essential crop soybeans, so the most interest was

seen. Now, more researchers around the world are expected to invest

more effort in the field of mitigation of heavy metal stress by microbes.
TABLE 1 Microbes and their corresponding mechanisms of action by which microbes mitigate heavy metal stress in soybean.

Country, Year,
Reference Microbe Strain Mechanism of action Metal

stress

South Korea
2018

(Bilal et al., 2018)

Fungus
Entophytic

LHL10
LK11

Down regulate GmHMA13, GmHMA18, GmHMA19,
and GmPHA1
Upregulate
GmARI1,

ABA,SA,GA↑

Al,
Zn

South Korea
2019

(Bilal et al., 2020)
Entophytic fungi LHL10 and LHL06

↑ABA,JA
Inhibit metal translocation

Down regulation of GmHMA13, GmHMA14, and

Ni, Cd, and
Al

(Continued)
f
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Conclusion and future prospective

Soybean is an important crop that is continuously threatened by

heavy metal stress. Although many databases have been presented

on heavy metal tolerance by inoculating microbes, only limited

studies exist on the soybean model plant and heavy metal tolerance.

This study concluded that microbes could enhance soybean growth

under heavy metal stress. Microbial inoculation, such as plant

growth-promoting rhizobacteria, VAMF, and endophytes,

significantly improves heavy metal stress in many ways. These

include the production of phytohormones, genetic expression,

nitrogen fixation, phytostabilization increase, and antioxidant
Frontiers in Plant Science 08
stress enhancement, as shown in Figure 6. In conclusion, we can

say that phytohormones and phytohormone-producing microbes

upregulated production of the reactive oxygen species production

and then triggered the attenuation of heavy metal stress via

antioxidant pathways such as the production of GSH.

Phytohormones have an important role in the mitigation of heavy

metal stress. Among them, ABA, JA, SA, and ethylene have a

synergistic effect on stress tolerance. Microbial inoculation opens a

new door for researchers in the field of enhancing heavy metal stress

tolerance. Finally, the study suggested that compatible microbial

isolates could be an eco-friendly and vital strategy for developing

soybean and metal tolerance in multi-metal-contaminated soil and
TABLE 1 Continued

Country, Year,
Reference Microbe Strain Mechanism of action Metal

stress

GmHMA18
↑Antioxidant

Pakistan
2021

(Hussain et al.,
2021)

PGPRs C18
↑Antioxidant
↑IAA,GA

Cr
Ar

South Korea
2018

(Bilal et al., 2018)
Entophytic fungi Lk11

↑IAA
↑ABA
↑SA

↑Antioxidant defense system

Cr

USA
1990

(Heggo et al., 1990)

vesicular–arbuscular
mycorrhiza

NA
↑P 20%–87%

↑N
↑Biomass

Zn
Cd
Mn

South Korea
2019

(Bilal et al., 2019)
Endophytic fungi LH06

↓
GmHMA13, GmHMA14, GmHMA19) and

GmMATE1
↑GA,IAA
↓ABA,SA

Ni
Cu
Pb

Cr and
Al

China
2021

(Haider et al., 2021)
PGPRs

Trichoderma harzianum L. and Bacillus
subtilis L

↓Cd bioavailability
↑Growth

↑Photosynthesis
Cd

South Korea
2015

(Kang et al., 2015)
PGPRs Enterobacter asburiae KE17

↑Phytohormone
↑Antioxidant

Cu
Zinc

Ukraine
2010

(Zaets et al., 2010)
PGPRs

IMBG 164
IMBG 163
IMBG 156
IMBG 147
IMBG 172

↑Carbonylated proteins
↑GPX
↑GST

Cu
Zinc

Cadmium

Iran
2017

(Wani et al., 2018)
PGPRs

Penibacillus
MA12
MA11

Chromium reductases
↑Antioxidant

Cr

Argentine
2019

(Armendariz et al.,
2019)

PGPRs
E109
AZ39

↑N content
↑ Phytostablization

Ar
f

The ↑and ↓represent the increase and decrease of the specific response.
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a sustainable approach to agronomy. The present study suggests

further studies investigating the synergistic interaction of reported

microbes with other beneficial microbes in the rhizosphere as well

as large-scale in situ studies for bioremediation of multi-metal-

contaminated soil under hostile environmental conditions.
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