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Abundance considerations for
modeling yield of rapeseed at
the flowering stage

Yuanjin Li †, Ningge Yuan †, Shanjun Luo, Kaili Yang,
Shenghui Fang, Yi Peng and Yan Gong*

School of Remote Sensing and Information Engineering, Wuhan University, Wuhan, China
Introduction: To stabilize the edible oil market, it is necessary to determine the

oil yield in advance, so the accurate and fast technology of estimating rapeseed

yield is of great significance in agricultural production activities. Due to the long

flowering time of rapeseed and the characteristics of petal color that are

obviously different from other crops, the flowering period can be carefully

considered in crop classification and yield estimation.

Methods: A field experiment was conducted to obtain the unmanned aerial

vehicle (UAV) multispectral images. Field measurements consisted of the

reflectance of flowers, leaves, and soils at the flowering stage and rapeseed

yield at physiological maturity. Moreover, GF-1 and Sentinel-2 satellite images

were collected to compare the applicability of yield estimation methods. The

abundance of different organs of rapeseed was extracted by the spectral mixture

analysis (SMA) technology, which was multiplied by vegetation indices (VIs)

respectively to estimate the yield.

Results: For the UAV-scale, the product of VIs and leaf abundance (AbdLF) was

closely related to rapeseed yield, which was better than the VIs models for yield

estimation, with the coefficient of determination (R2) above 0.78. The yield

estimation models of the product of normalized difference yellowness index

(NDYI), enhanced vegetation index (EVI) and AbdLF had the highest accuracy,

with the coefficients of variation (CVs) below 10%. For the satellite scale, most of

the estimation models of the product of VIs and rapeseed AbdLF were also

improved compared with the VIs models. The yield estimation models of the

product of AbdLF and renormalized difference VI (RDVI) and EVI (RDVI×AbdLF

and EVI×AbdLF) had the steady improvement, with CVs below 13.1%.

Furthermore, the yield estimation models of the product of AbdLF and

normalized difference VI (NDVI), visible atmospherically resistant index (VARI),

RDVI, and EVI had consistent performance at both UAV and satellite scales.

Discussion: The results showed that considering SMA could improve the

limitation of using only VIs to retrieve rapeseed yield at the flowering stage.

Our results indicate that the abundance of rapeseed leaves can be a potential

indicator of yield prediction during the flowering stage.

KEYWORDS

rapeseed, yield estimation, spectral mixture analysis, optical remote sensing,
vegetation index
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Introduction

Remote sensing plays an important role in agricultural

applications, and various remotely obtained information is

urgently needed by decision-makers (Atzberger, 2013). Remote

sensing with unmanned aerial vehicles (UAVs) offering

unprecedented spectral, spatial, and temporal resolution but also

providing detailed vegetation height data and multi-angular

observations is a game-changer in precision agriculture (Maes

and Steppe, 2019). Precision agriculture can be broadly meant as

an agricultural system in which the management practice is

performed at a suitable place, with the appropriate intensity, and

at the right time. Precision agriculture uses intensive data and

information collection and processing in time and space to make

more efficient use of farm inputs, leading to improved crop

production (Mulla, 2013). The framework of deep neural network

(DNN) by UAV-based multimodal data fusion using RGB,

multispectral, and thermal sensors was used in soybean grain

yield estimation, which improved yield prediction accuracy and

adaptability of spatial variations. However, the model requires too

many parameters and is not easy to implement (Maimaitijiang et al.,

2020). A random forest model based on a dual-camera high-

throughput phenotyping (HTP) platform was used to measure

crop geometric features and obtain high correlations with final

yield in breeding populations, but the cost of a stable carrier and a

high-quality sensor system became the current limitations of HTP

(Yu et al., 2016). It is demonstrated that both multispectral and

digital sensors mounted on the UAV are reliable platforms for rice

growth and grain yield estimation. Moreover, for rice grain, the best

period, the booting stage, and optimal vegetation indices (VIs) for

yield prediction were determined (Zhou et al., 2017). However, for

different crops, this conclusion remains to be verified. UAV-based

VIs and abundance information obtained from spectral mixture

analysis (SMA) were integrated to improve the estimation accuracy

of rice yield at the heading stage (Duan et al., 2019). UAV remote

sensing can establish a robust model according to different crops,

but the transferability of the model needs further research.

Compared with UAV remote sensing, satellite remote sensing

can reflect the spatial and spectral information of ground objects on

a larger scale and is often applied in estimating large-scale crop

productivity (Toth and Jóźków, 2016), which has critical value for

scientific and societal benefits (Lobell et al., 2009). In addition,

large-scale crop yield estimation often relies on satellite remote

sensing (Guan et al., 2017). Traditional approaches have primarily

used visible and near-infrared (NIR) remote sensing data. Many

studies directly used the satellite remote sensing-based VI models

that provided a general indicator of vegetation features to estimate

crop yield (Son et al., 2014; Munghemezulu et al., 2017; Nagy et al.,

2018; Garcıá-Martıńez et al., 2020). The normalized difference

vegetation index (NDVI) is one of the first VIs and has been

widely used for vegetation monitoring (Tucker, 1979). After that,

various VIs were derived for different crops and environments.

Near real-timely U.S. corn yields based on time-series MODIS data

with wide dynamic range vegetation index (WDRVI) and bias

correction algorithm were predicted (Sakamoto et al., 2014), but
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because of the coarse spatial resolution (250 m) and the mixed-pixel

effect, the proposed method would have limited applicability to

other regions of the globe. A raw imagery-based deep learning

approach for field-scale yield prediction with in-season

multitemporal imagery was developed (Sagan et al., 2021). The

approach could explain nearly 90% variance in field-scale yield, but

it contained hundreds of spectral, spatial, textural, and temporal

features and was too complicated. Spatiotemporal fusion of

Landsat-8 and MODIS data to derive phenology, biomass, and

yield estimation for corn and soybean was used (Liao et al., 2019),

which solved the problem of interference of cloud cover and rather

long revisiting cycles of high-resolution satellite sensors to some

extent. However, this approach needed images from multiple

periods and had a time-consuming pixel-based optimization

procedure. Several VIs and machine learning (ML) approaches

were compared to map within-field wheat grain yield by

combining harvester data and EOS Sentinel-2 multispectral bands

(Segarra et al., 2022). However, the methods in most papers mainly

estimated crop yield by combining multiple time series data and ML

approaches. Although there was also reliable estimation accuracy,

the data acquisition cycle was long and often covered the entire crop

growth period. In addition, these methods rarely optimize for the

characteristics of the crops themselves or reduce the complexity of

the methods. Moreover, for large-scale grain yield estimation,

mixed-pixel effects from image resolution may negatively impact

grain yield estimation.

We aim to utilize the growth characteristics of crops. Based on

accurate identification, we used the main characteristics that affect

yield to estimate yield. On the one hand, combined with the

flowering characteristics of rapeseed, we used UAV multispectral

images to develop VI-improved models of different organs based on

the SMA for yield estimation. On the other hand, we used GF-1

wide-field view (WFV) images to extract the rapeseed planting area

of the Jianghan Plain in Hubei Province at the flowering stage and

transferred the approach from the UAV scale to the satellite scale to

further demonstrate the approach.

This study focused on the following questions: i) How do we

explore a simpler and easier yield estimation model for the

flowering characteristics of rapeseed crops? ii) Is the approach

consistent across scales? iii) Which VI is more suitable for the

rapeseed yield estimation combined with the flowering

characteristics? Combining the above problems, this study

developed a simple and feasible yield estimation model according

to the flowering characteristics of rapeseed crops, which can

estimate yield only based on the flowering period of rapeseed and

provide data support for economic decisions, ensuring farmers’

income and food security.
Materials and methods

Experimental design

There were two study sites in this study, including the UAV field

experiment and the satellite large-scale experiment (Figure 1A).
frontiersin.org

https://doi.org/10.3389/fpls.2023.1188216
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Li et al. 10.3389/fpls.2023.1188216
The UAV rapeseed experiment was conducted from October 2014

to May 2015 at Rapeseed Experiment and Research Base, Wuxue,

Hubei, China. We studied 24 rapeseed plots, with the size of 15 m ×

2 m, and all planted with the same hybrid of rapeseed (Huayouza No.

9) (Ma et al., 2014). The field management for these plots was similar

except that different amounts of nitrogen fertilizer were applied. Eight

nitrogen (N) rates (0, 45, 90, 135, 180, 225, 270, and 360 kg/ha) were

utilized based on the available research (Ren et al., 2016), and each rate

was repeated on three randomly distributed plots (Figure 1C).

Another study site was in the Jianghan Plain, which was located in

the middle reaches of the Yangtze River, in the central and southern

parts of Hubei Province. The Jianghan Plain belongs to the northern

subtropical humid monsoon climate, with distinct four seasons,

sufficient light energy resources, very rich heat resources, a long

frost-free period, abundant rainfall, and the same period of rain and

heat, which is very suitable for rapeseed cultivation (Figure 1B).
Data acquisition

UAV data acquisition
The UAV flight was carried out on 2 March 2015 between 10:00

and 13:00 local time when changes in solar zenith angle were
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minimal at a 50-m altitude to collect the centimeter-level images

with a 2.74-cm spatial resolution, and the weather was clear with

low cloud cover observed. The Mini-MCA system (Mini-MCA 6,

Tetracam Inc., Chatsworth, CA, USA) was mounted on a UAV

(S1000, SZ DJI Technology Co., Ltd., Shenzhen, China) to obtain

images of the studied area. Mini-MCA consists of six individual

miniature digital cameras [central bands of 490@10 (B), 550@10

(G), 670@10 (R), 720@10 (RE), 800@10 (NIR1), and 900@20 nm

(NIR2)]. These bands were selected since they were commonly used

for estimating vegetation photosynthesis-related parameters

(Behrens et al., 2006; Ray et al., 2010; Kira et al., 2015).

Prior to the flight, three calibration ground targets with the

reflectance of 0.06/0.24/0.48 were laid on the study area for UAV

radiometric calibration (more details can be found at https://

www.tetracam.com/Products_Ground_Calibration_Panels.htm).

When flying, the cameras were fixed on the gimbal to ensure that

the lenses were always on the horizontal plane, which could

minimize the change of ground reflectance caused by the

observation angles. Each time the cameras were exposed, they

could obtain six 8-bit RAW format images at the same time.

This study used an empirical linear model (ELM) to convert

UAV image digital number (DN) values to ground reflectance

(Dwyer et al., 1995; Laliberte et al., 2011). ELM assumes that
A

B

C

FIGURE 1

Study site. (A) General location of the study area. (B) Satellite study site. (C) Details of the UAV experimental design. Three rectangular boxed (blue,
yellow and red) areas represent triplicate experiments. UAV, unmanned aerial vehicle.
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there is a linear relationship between the DN values and the ground

reflectance, and the canopy reflectance can be calculated by the

following formula (Dwyer et al., 1995; Baugh and Groeneveld,

2008):

r(l) = gains(l)� DN(l) + bias(l) (1)

(l =  490,  550,  670,  720,  800,  and 900 nm),

where DN(l) is the digital number of a pixel at the band with

the wavelength l;   gains(l) and bias(l) are gains and bias of the

camera at wavelength l, respectively. Gains and bias can be

calculated from DN values by three calibration targets for each

band. Within each of the 24 plots, a rectangular region of interest

(ROI) was defined for each plot by avoiding plot boundaries, and

the mean reflectance within the region was treated as the plot-level

reflectance of the plot. Plot-level VIs were then retrieved from plot-

level canopy reflectance (Table 1).
Satellite data acquisition
The satellite dataset used in this study was composed offive GF-

1 WFV images and 19 Sentinel-2 images covering the Jianghan

Plain. A summary of information regarding the sensor, resolution,
Frontiers in Plant Science 04
acquisition date, number, and phenology stage for these images is

listed in Table 2. The GF-1 WFV images were downloaded from the

China Center for Resources Satellite Date and Application

(CRESDA), which had four bands (blue, green, red, and NIR).

Sentinel-2 data include all available Sentinel-2A and Sentinel-2B

Multi Spectral Instrument (MSI) images from the European Space

Agency (ESA). The detailed information could be browsed on the

website of CRESDA and ESA.

The preprocessing of GF-1 WFV images includes geometric

correction, radiometric calibration, and atmospheric correction. A

geometric correction was conducted with the assistance of ASTER

GDEM V2 data (Zhang et al., 2015). For each image, it was

processed using the Environment for Visualizing Images (ENVI)

5.3 software (Harris Geospatial Solutions, Inc., Broomfield, CO,

USA) with the updating calibration parameters published in

CRESDA, obtained by a large number of calibration experiments

in Chinese calibration fields. In this study, an atmospheric

correction was performed using the FLASH model in ENVI. The

Sentinel-2 data were preprocessed by Sen2Cor supplied by ESA

from https://step.esa.int/main/snap-supported-plugins/sen2cor/

sen2cor-v2-10/. The rapeseed planting area could be extracted

easily by using a colorimetric transformation and spectral feature-

based oilseed rape extraction algorithm (CSRA) due to the obvious
TABLE 1 Vegetation indices selected in this study.

Vegetation indices Abbreviation Formula References

Normalized difference vegetation index NDVI (r800nm − r670nm)=(r800nm + r670nm) (Rouse et al., 1974)

Green chlorophyll index CIgreen r800nm=r550nm − 1 (Gitelson, 2005)

Visible atmospherically resistant index VARI (r550nm − r670nm)=(r550nm + r670nm) (Gitelson et al., 2002)

Ratio vegetation index RVI r800nm=r670nm (Jordan, 1969)

Difference vegetation index DVI r800nm − r670nm (Richardson and Wiegand, 1977)

Renormalized difference vegetation index RDVI (r800nm − r670nm)=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(r800nm + r670nm)

p
(Roujean and Breon, 1995)

Enhanced vegetation index EVI 2:5(r800nm − r670nm)=(r800nm + 6r670nm − 7:5r490nm + 1) (Liu and Huete, 1995)

Triangular vegetation index TVI 0:5½120(r800nm − r550nm) − 200((r670nm − r550nm)� (Broge and Leblanc, 2001)

Normalized difference yellowness index NDYI (r550nm − r490nm)=(r550nm + r490nm) (Sulik and Long, 2015)
r stands for reflectance.
TABLE 2 A summary of information on satellite images.

Sensor Resolution Acquisition date Number Phenology stage

GF-1 WFV 16 m

17 March 2014 2

Flowering stage

26 March 2014 2

29 March 2014 1

Sentinel-2A/B 10 m

9 March 2018 13

3 April 2018 4

8 April 2018 2
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color characteristics of rapeseed during flowering (Wang

et al., 2018).

Rapeseed yield determination
The 24 rapeseed plots at Wuxue City were harvested on 5 May

2015. In each plot, half of the rapeseed plants (approximately 15

m2) were all cut for yield determination, and they were exposed to

the sun for 10 days for seed threshed. The seeds were then cleaned

and put into an oven at 60°C until their weight did not change. After

that, the plot yield per unit area (kg/ha) was converted by total

weight and ground area.

Ancillary data
The statistical planting areas and yields of rapeseed in Hubei

Province in 2014 and 2018 at county levels were used to validate the

yield models. The statistical data were downloaded from the Hubei

Statistical Bureau (https://tjj.hubei.gov.cn/tjsj/sjkscx/tjnj/gsztj/

whs/).
Spectral mixture analysis

A pixel often contains multiple spectral members. This study

needs to analyze the effects of different spectral components in

rapeseed fields on rapeseed yield. Therefore, three endmembers

were considered in this study: 1) flower (FL), 2) leaf (LF), and 3) soil

(SL). They were the dominant components visible in our studied

scene. Samples of each endmember were collected from the 24 plots,

and their spectra were immediately measured in situ by a

hyperspectral radiometer (Analytical Spectral Devices Inc.,

Boulder, CO, USA). This radiometer was equipped with a 25°

field-of-view optical fiber that obtained sample reflectance in the

range of 350–2,500 nm at a spectral resolution of approximately 1

nm. The measurements were conducted in all plots (at least six
Frontiers in Plant Science 05
sampling areas per plot). The leaf spectra were taken by the

radiometer with a self-illuminated leaf clip. Since the rapeseed

flower is small and narrow, the sample flowers were gathered

together on a black background and arranged to fully cover the

sensor’s view field to make sure that the radiometer collected the

pure spectra of flowers. The averaged spectra were used as

endmember spectra of flowers. In this way, the reference

endmember reflectance of three components was obtained

(Figure 2):

r(l) =oN
i=1Abdiri(l);   0 ≤ Abdi ≤ 1   and  oN

i=1Abdi = 1 (2)
and rSL.

For SMA, the linear mixing spectral model was used in this

study to estimate the fractional abundance of each spectral

endmember (Singer et al., 1979). It is assumed that the pixels in

the acquired image can be represented as a linear mixture of a few

dominant spectral endmembers. For a given pixel at the wavelength

l, the pixel reflectance r(l)   can be approximated as follows:

r(l) =o
N

i=1
Abdiri(l);   0 ≤ Abdi ≤ 1   and  o

N

i=1
Abdi = 1 ; (2)

where N is the number of selected endmembers, Abdi is the

fractional abundance of endmember i, and ri(l) is the reference

reflectance of endmember i at band l. According to Equation 2, the

abundance of the selected three endmembers for each pixel can be

retrieved from the six-band UAV images and GF-1 WFV images

(Heinz et al., 1999; Pu et al., 2015; Pan et al., 2017):

r(l1)

r(l2)

r(l3)

r(l4)

r(l5)

r(l6)

2
66666666664

3
77777777775
=

rFL(l1)rLF(l1)rSL(l1)

rFL(l2)rLF(l2)rSL(l2)

rFL(l3)rLF(l3)rSL(l3)

rFL(l4)rLF(l4)rSL(l4)

rFL(l5)rLF(l5)rSL(l5)

rFL(l6)rLF(l6)rSL(l6)

2
666666666664

3
777777777775

AbdFL

AbdLF

AbdSL

2
664

3
775 (3)
FIGURE 2

Pure spectral reflectance from 450 to 1,000 nm of flower endmember (rFL), leaf endmember (rLF ), and soil endmember (rSL) in the studied rapeseed
plots measured by Analytical Spectral Devices (ASD) and rapeseed canopy reflectance during flowering from Mini-MCA.
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r(l1)

r(l2)

r(l3)

r(l4)

2
66664

3
77775 =

rFL(l1)rLF(l1)   rSL(l1)

rFL(l2)rLF(l2)   rSL(l2)

rFL(l3)rLF(l3)   rSL(l3)

rFL(l4)rLF(l4)   rSL(l4)

2
666664

3
777775

AbdFL

AbdLF

AbdSL

2
664

3
775 : (4)

Formulas 3 and 4 are the calculation formulas for the

endmember abundance of UAV images and satellite images,

respectively, where r(li) is the surface reflectance of the given

pixel at bandi (UAV :   i   = 1, 2,…, 6; GF-1: i   = 1,2,…, 4; Sentinel-

2: i   = 2, 3, 4, 8; this paper focused only on the red, green, blue, and

near-infrared bands in order to be consistent with GF-1). rFL(li),  
rLF(li),   and rSL(li) are the endmember reflectance at bandi for

flowers, leaves, and soil at the study site, respectively. The AbdFL,

AbdLF , and AbdSL are the abundance of flower, leaf, and soil,

respectively, referring to the fraction of the given component

within a pixel.
Yield estimation based on combination of
vegetation indices and abundance

Leaves are crucial organs for photosynthesis and yield

accumulation of rapeseed, so it is worth trying to estimate yield

by studying the spectral characteristics of rapeseed. In yield

estimation using VIs, the mixed effect of pixels in different scales

is often a significant factor affecting the accuracy of the model. The

flowers and leaves of rapeseed are important functional organs,

which were separated from pixels and studied separately. Therefore,
Frontiers in Plant Science 06
this study extracted the abundance of flowers and leaves through

SMA to separately study the role of different organ spectra in yield

analysis while removing the effect of soil spectra, combined with the

vegetation index model, to jointly estimate yield. In this study, 24

plots in Wuxue City and 15 counties in the Jianghan Plain were

used to establish three linear models with yield: i) yield versus VI, ii)

yield versus VI × AbdFL, and iii) yield versus VI × AbdLF.

Coefficients of determination (R2), root mean square error

(RMSE), and coefficient of variation (CV) were analyzed

and compared.
Algorithm establishment using leave−one
−out cross−validation

Due to the limited sample size in this study, the leave-one-out

cross-validation approach was used to validate the results (Fielding

and Bell, 1997). The R2, RMSE, and CV were selected to value the

performance of the models. The correlated algorithms with

accuracy can be produced as follows:

R2 = o
K
i=1R

2
i

K
; (5)

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
oK

i=1E
2
i

K

s
, (6)

CV =
1
Ko

N
i=1CVi, (7)
FIGURE 3

Distribution map of rapeseed in Jianghan Plain in 2014. OR, oilseed rape.
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where K is the number of samples. For each time i, K − 1

samples were used iteratively as training data.
Results

Extraction of rapeseed based on GF-1 WFV
images in Jianghan Plain

The following takes the extraction of the rape planting area

from the GF-1 multispectral image as an example. Figure 3 shows

the distribution of flowering rapeseed in the Jianghan Plain in 2014,

which was estimated by CSRA (Wang et al., 2018). Due to cloud

cover, there was only a small distribution of rapeseed in Yicheng,

Tianmen, and Jingzhou counties among the GF-1 WFV images

available during flowering. As could be seen from Figure 3, rapeseed

was mainly distributed in Shayang, Zhongxiang, Qianjiang,

Xiantao, Jiangling, Gongan, Honghu, Hanchuan, and other

regions. The GF-1 image of rapeseed during flowering is shown

in Figure 4A, and the mask image of rapeseed was obtained using

CSRA (Figure 4B). The flowering rapeseed showed bright yellow in

the image, which was different from other vegetation. The details of

the rapeseed are shown in Figures 4C, D. Most of the rapeseed was

extracted very accurately, but there was a fuzzy phenomenon in the

boundary of the features. The confusion matrix could analyze the

spatial distribution of classification (Table 3). Classification

accuracy was well assessed using visual interpretation methods.

The overall accuracy was 88.40%. The user accuracy was relatively
Frontiers in Plant Science 07
low (83.62%). Producer accuracy indicated that the CSRA-derived

OR maps using GF-1 WFV images could obtain high spatial

consistency. Rapeseed from Sentinel-2 data was extracted just like

GF-1 WFV images do. Therefore, the extracted rapeseed map could

be used as data for subsequent yield analysis.
Relationship of VI versus yield in rapeseed

In this study, the relationships between VIs and yield at

different scales (UAV and satellite) were analyzed (Table 4).

Among these VIs, DVI, renormalized difference VI (RDVI), and

triangular vegetation index (TVI) showed significant correlations

with yield (R2 > 0.8) of rapeseed at the UAV scale. Enhanced

vegetation index (EVI) and normalized difference yellowness index

(NDYI) showed strong correlations (R2 > 0.6). The remaining VIs

showed a medium correlation (R2< 0.52). In addition, the NDVI,

visible atmospherically resistant index (VARI), and RVI versus yield

appeared non-linear in Figure 5. For GF-1 WFV images in 2014

(Figure 6), the EVI, CIgreen, VARI, DVI, RDVI, and TVI displayed

medium correlation with the statistical yield by the National

Statistical Bureau. Unlike the UAV scale, NDVI, RVI, and NDYI

from GF-1 showed no correlation with statistical yield (R2< 0.1)

(Figures 6A, D and I). Even more differently, CIgreen showed a

negative correlation with yield in Figure 6B. For Sentinel-2 data in

2018, the EVI, DVI, RDVI, and TVI displayed a medium

correlation with the statistical yield by National Statistical Bureau.

Others showed weak or no correlation in Figure 7.
A B

DC

FIGURE 4

Rapeseed planting area extraction renderings. (A) The GF-1 image of rapeseed during flowering. (B) The mask image of rapeseed was obtained using
CSRA. (C, D) The details of the rapeseed before and after extraction. NOR, no oilseed rape; OR, oilseed rape.
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Variation of abundance and yield with
nitrogen application

In this paper, the abundance of flowers, leaves, and soils of each

pixel was calculated by the fully constrained least-squares (FCLS)

method. The ROI of each plot was selected to calculate its average

abundance, and the relationship between abundance and nitrogen

gradient was analyzed. The results are shown in Figure 8. With the

increase of soil nitrogen application, rapeseed flower abundance

decreased, but the overall change range was small, all approximately

0.2. The leaf abundance gradually increased from 0.2 to 0.7 with the

augment of nitrogen application, showing an upward trend, and

tended to be flat after N225. Soil abundance decreased gradually

with the increase in nitrogen application rate. With the increase of

nitrogen application, the yield of rapeseed increased gradually and

reached the maximum value at N225. Nitrogen application

continued to increase, but yield decreased. From Figure 8, it can

be found that the changes in rapeseed leaf abundance and yield with

nitrogen gradient have similar trends.
Yield estimation using a combination of VIs
and abundance data

In this study, the least squares regression analysis was

performed, and leave−one−out cross−validation was conducted

on images of different resolutions at UAV and satellite scales

combined with flower and leaf abundance (AbdFL and AbdLF).

The results are shown in Table 5.

For the UAV scale, VI × AbdFL reduced the correlation between

VI and rapeseed yield (R2< 0.2), which was also confirmed by RMSE

in Table 5. However, VI × AbdLF did improve the correlation of the

rapeseed yield regression model (R2 ≥ 0.79). For example, the R2 of
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the linear regression model using NDVI × AbdLF inversion is more

than 0.3 higher than the R2 inversion using NDVI alone. The R2

obtained with VARI × AbdLF inversion is improved by more than

0.6. In addition, the CV was also significantly reduced (reduced by

up to 11.8%).

For the satellite scale, VI × AbdLF also had an overall

improvement in R2 relative to VI except for CIgreen from GF-1.

VARI, RDVI, EVI, and TVI multiplied by AbdLF from both GF-1

and Sentinel-2 had a medium correlation with statistical yield in

Table 4 (R2 > 0.4). At the same time, the values of RMSE decreased

and have a certain reliability as well. NDVI and NDYI multiplied by

AbdLF from Sentinel-2 had a medium correlation with statistical

yield. Compared with the relationship between VI and statistical

yield, R2 has an increase of more than 0.2. However, this result was

not evident in the results of GF-1.

For different scales, retrieval models of VI × AbdLF with higher R
2

were selected as displayed in Table 5 (the top 6 performers were

marked with *, regardless of VI × AbdFL). They worked accurately in

estimating the yield of rapeseed with RMSE below 260.1 kg/ha for the

UAV scale and 447.8 kg/ha for the satellite scale (Figures 9, 10). The

CVs of estimated models with different scales were all less than 14.1%.
Discussion

First of all, the purpose of this paper is not to study the method of

rapeseed extraction, as rapeseed extraction is only a link to subsequent

research. In this paper, a method that was easy to implement and

suitable for China’s small field and fragmented planting mode was

selected among the existing methods (Wang et al., 2018; Ashourloo

et al., 2019; Zang et al., 2020; Zhang et al., 2022). Therefore, the CSRA

method was adopted and obtained the results in Figures 3, 4 (Wang

et al., 2018). Producer accuracy (PA) and user accuracy (UA) showed
TABLE 4 Coefficients of determination (R2) between VIs and yield in rapeseed.

NDVI CIgreen VARI RVI DVI RDVI EVI TVI NDYI

UAV 0.50 0.55 0.18 0.51 0.81* 0.81 0.79* 0.81* 0.63

GF-1 0.01 0.41 0.44 0.01 0.48* 0.39 0.52* 0.49* 0.06

Sentinel-2A/B 0.22 0.14 0.24 0.15 0.37* 0.37 0.44* 0.37* 0.05
frontie
Among them, the part marked with * and bold is the first three parameters with good performance in different scales.
VIs, vegetation indices; NDVI, normalized difference vegetation index; CIgreen, green chlorophyll index; VARI, visible atmospherically resistant index; RVI, ratio vegetation index; DVI, difference
vegetation index; RDVI, renormalized difference vegetation index; EVI, enhanced vegetation index; TVI, triangular vegetation index; NDYI, normalized difference yellowness index; UAV,
unmanned aerial vehicle.
TABLE 3 Confusion matrix of local accuracy assessment by visual interpretation.

Class NOR OR UA (%)

NOR 27,418 2,226 92.49

OR 4,163 21,249 83.62

PA (%) 86.82 90.52 –

OA (%) 88.40 – –

Kappa 0.77 – –
PA, producer accuracy; UA, user accuracy; OA, overall accuracy; NOR, no oilseed rape; OR, oilseed rape.
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the feasibility of this method in rapeseed extraction. Since the spatial

resolution of GF-1 WFV and Sentinel-2 MSI was 16 and 10,

respectively, there were a large number of mixed pixels on the field

boundary, which harmed the extraction accuracy and would lead to

misclassification or omission of pixels. The flowering period of

rapeseed was long and lasted for approximately 1 month. However,

due to the difference in planting times and positions, the flowering

proportions of rapeseed would differ, resulting in the missing of some

pixels in the extraction results (D’ Andrimont et al., 2020). Pixel

unmixing could improve pixel purity and alleviate problems caused

by insufficient resolution (Somers et al., 2011).

At the flowering stage of rapeseed, NDYI performed better than

NDVI in estimating yield at the UAV scale, which was consistent

with Sulik and Long (2015). Numerous studies have demonstrated

that NDVI has a good effect on yield at maximum chlorophyll

content or maximum green canopy coverage (Lopes and Reynolds,

2012; Xiao et al., 2019; Gao et al., 2020). However, during the

flowering period of rapeseed, the flowers affected the reflectance of

leaves, increasing the reflectance of red and green bands, and the

overall canopy was yellowish (Figure 2). NDVI did not perform as
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well in the case of reduced greenness. However, DVI, EVI, and TVI

also had a relatively good linear relationship with the yield at

flowering at both the UAV and the satellite scales (Table 4). In the

flowering stage of rapeseed, the flowers were located above the

canopy and were distributed in clusters. Flowers and leaves were

significantly different in spectra (Figure 2). The reflectance of flowers

is generally higher than that of leaves in the red and green bands and

lower than that of leaves in the NIR band. With the increase in the

flowering ratio, the effect of the flower on the canopy spectra also

increased, resulting in an increase in the reflectance of the red band of

the canopy. The values of NDVI and CIgreen in the regions with high

flowering proportions decreased, which may be the reason for the

unsatisfactory yield estimation effect of NDVI, CIgreen, and RVI at the

flowering stage of rapeseed.

For the UAV experiment in Wuxue City, different nitrogen

applications affected the growth period of rapeseed (Li et al., 2016),

which resulted in different proportions of flowering in the rapeseed

at the same time (Fang et al., 2016). Plots with low nitrogen

application entered the flowering stage earlier than those with

normal nitrogen application, which could be the reason why the
A B

D E F

G IH

C

FIGURE 5

Relationship between VIs and rapeseed yield at the UAV scale. VIs, vegetation indices; UAV, unmanned aerial vehicle. (A: NDVI, B: CIgreen, C: VARI,
D: RVI, E: DVI, F: RDVI, G: EVI, H: TVI, I: NDYI).
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flower abundance of low nitrogen application in Figure 8 was higher

than that of high nitrogen application. The images used in this study

might be missing some late-blooming flowers. Although the

number of flowers is proportional to the number of rapeseed

pods (Faraji, 2012), it was difficult to establish an accurate yield

model from the one-phase images because of the difference in the

flowering proportions. Rapeseed flower was not the main organ of

photosynthesis, which made the use of flower abundance combined

with VIs to estimate yield inaccurately (R2< 0.2). Under different

nitrogen gradients, the canopy chlorophyll content and leaf area

index of rapeseed had significant changes, which were closely

related to the yield of rapeseed (Peng et al., 2019; Xu et al., 2020).

Rapeseed leaf abundance represented the proportion of rapeseed

leaves in a pixel, which avoided the influence of background spectra

such as flowers and soil to a certain extent. In addition, leaf

abundance and yield showed similar trends with nitrogen

application (Figure 8). Therefore, the combination of VIs and

rapeseed leaf abundance improved the accuracy of yield

estimation. Our findings in the UAV experiment were consistent

with the results obtained by GF-1 and Sentinel-2 (Table 5), which

indicated that the combination of VIs and leaf abundance has
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certain applicability in yield estimation. Yield predictions can be

made over a wide range, especially for vegetation such as rapeseed

with distinct spectral differences between flowers and leaves.

When using satellite images to estimate yield at the flowering

stage of rapeseed, NDVI and NDYI cannot reach the accuracy of R2

above 0.66 as John J. Sulik mentioned in the North Dakota

experiment (Sagan et al., 2021), which could be related to

different planting patterns. The United States mainly plants on

large farms on a large scale, with flat terrain and a single crop.

However, China’s terrain is complex, and the fields are scattered

and broken (Figure 4). In the analysis of satellite images, the

phenomenon of mixed pixels was serious, so the field boundary

and soil harm the reflectance of rapeseed. At the same time,

flowering time was also affected by sowing time, rainfall, degree

of flowering, and soil fertility. Therefore, according to the

characteristics of China’s fields, the method of using VIs to

retrieve crop yield at the satellite scale is limited to a certain

extent. We had to consider using SMA techniques to improve the

yield estimation models. Compared with the VI models, R2 still had

a certain improvement in the improved models with leaf abundance

at the satellite scale though not much of an increase (the increment
A B

D E F
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C

FIGURE 6

Relationship between VIs and rapeseed yield at the satellite scale: GF-1 in 2014. VIs, vegetation indices. (A: NDVI, B: CIgreen, C: VARI, D: RVI, E: DVI,
F: RDVI, G: EVI, H: TVI, I: NDYI).
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FIGURE 7

Relationship between VIs and rapeseed yield at the satellite scale: Sentinel-2A/B in 2018. VIs, vegetation indices. (A: NDVI, B: CIgreen, C: VARI, D:
RVI, E: DVI, F: RDVI, G: EVI, H: TVI, I: NDYI).
A B

DC

FIGURE 8

Variation of abundance and yield with nitrogen application. (A: Abd_FL, B: Abd_LF, C: Abd_SL D: Yield), The Abd_FL, Abd_LF, and Abd_SL are the
abundances of flower, leaf, and soil, respectively, referring to the fraction of the given component within a pixel. The yield was obtained by drying
and weighing and showed the mean yield of each nitrogen gradient.
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of R2 was less than 0.1 mostly; Table 5). Some scholars have

proposed that the abundance of endmembers has a spatial

correlation (Jia and Qian, 2007), which means that abundance is

not simply independent of each other. With the decrease in spatial

resolution, the mixed pixel phenomenon becomes more obvious,

and the extraction accuracy of abundance also decreases. Therefore,
Frontiers in Plant Science 12
compared with the VI model, the accuracy of the VI × AbdLF model

in satellite scale yield estimation was improved, but the

improvement was not significant enough. In conclusion,

considering the scale of UAV and satellite, the experimental

results showed that considering SMA could improve the

limitation of using only VIs to retrieve crop yield.
TABLE 5 The statistics of relationships of yield versus VI, VI × AbdFL, and VI × AbdLF.

UAV
R2 RMSE (kg/ha) CV (%)

VI VI × AbdFL VI × AbdLF VI VI × AbdFL VI × AbdLF VI VI × AbdFL VI × AbdLF

NDVI 0.50 0.09 0.84* 474.1 661.2 228.1* 20.6 28.6 9.9*

CIgreen 0.55 0.00 0.83* 409.5 685.6 249.7* 17.8 29.7 10.8*

VARI 0.18 0.01 0.79 609.0 697.3 273.4 26.4 30.2 11.8

RVI 0.51 0.02 0.84* 454.0 687.2 226.0* 19.7 29.8 9.8*

DVI 0.81 0.17 0.79 265.2 611.9 287.4 11.5 26.5 12.5

RDVI 0.81 0.01 0.82* 262.4 686.4 258.4* 11.4 29.7 11.2*

EVI 0.79 0.01 0.82* 284.7 692.1 260.1* 12.3 30.0 11.3*

TVI 0.81 0.15 0.80 263.0 619.3 284.2 11.4 26.8 12.3

NDYI 0.63 0.01 0.85* 406.8 686.5 216.2* 17.6 29.7 9.4*

GF-1
R2 RMSE (kg/ha) CV (%)

VI VI × AbdFL VI × AbdLF VI VI × AbdFL VI × AbdLF VI VI × AbdFL VI × AbdLF

NDVI 0.01 0.44 0.36* 589.9 425.8 447.8* 20.1 13.1 14.1*

CIgreen 0.41 0.35 0.01 436.2 461.9 590.9 14.0 15.1 20.1

VARI 0.44 0.45 0.51* 425.7 420.1 399.5* 13.2 13.1 12.1*

RVI 0.01 0.46 0.30 585.8 422.1 468.8 20.2 13.0 15.6

DVI 0.48 0.47 0.48* 410.5 418.2 405.8* 12.6 12.5 12.6*

RDVI 0.39 0.46 0.44* 438.9 421.1 419.3* 13.3 12.8 13.1*

EVI 0.52 0.49 0.53* 398.6 407.7 389.4* 12.3 12.7 11.9*

TVI 0.49 0.48 0.50* 406.6 416.4 400.8* 12.2 12.6 12.3*

NDYI 0.06 0.11 0.03 563.7 526.5 606.6 20.4 18.5 20.1

Sentinel-2
R2 RMSE (kg/ha) CV (%)

VI VI × AbdFL VI × AbdLF VI VI × AbdFL VI × AbdLF VI VI × AbdFL VI × AbdLF

NDVI 0.22 0.25 0.48* 429.4 411.8 329.3* 13.4 14.2 10.9*

CIgreen 0.14 0.44 0.29 443.9 345.3 394.5 13.9 12.2 11.8

VARI 0.24 0.03 0.41* 429.4 441.9 350.8* 14.0 14.5 11.4*

RVI 0.15 0.22 0.29 445.0 418.1 396.0 13.9 14.3 11.6

DVI 0.37 0.24 0.40* 375.5 412.4 367.7* 12.5 14.2 12.5*

RDVI 0.37 0.24 0.46* 368.1 411.5 346.3* 11.3 14.2 11.8*

EVI 0.43 0.18 0.45* 344.4 422.6 348.7* 11.4 14.2 11.9*

TVI 0.37 0.20 0.41* 374.2 418.8 366.6* 12.4 14.2 12.4*

NDYI 0.05 0.30 0.42 448.1 397.9 357.3 13.7 14.0 12.2
The top 6 performers were marked with * and bold, regardless of VI × AbdFL.
VIs, vegetation indices; NDVI, normalized difference vegetation index; CIgreen, green chlorophyll index; VARI, visible atmospherically resistant index; RVI, ratio vegetation index; DVI, difference
vegetation index; RDVI, renormalized difference vegetation index; EVI, enhanced vegetation index; TVI, triangular vegetation index; NDYI, normalized difference yellowness index; UAV,
unmanned aerial vehicle.
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The theoretical framework provided in this study is applicable

to the flowering period of rapeseed, especially when there is a

significant difference between flowers and leaves during the

flowering period of vegetation. Follow-up attempts will be made

to research other crops. For large-scale yield estimation, this study
Frontiers in Plant Science 13
can establish a better yield estimation model in the plain area only

through a single temporal image of rapeseed during flowering. In

the future, we will consider more factors such as terrain, weather,

rainfall, phenology, and other SMAs to enhance the robustness of

the model.
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FIGURE 9

Validation for estimating rapeseed yield in 24 plots under different nitrogen treatments at the UAV scale. UAV, unmanned aerial vehicle. (A:
NDYI×Abd_LF, B: NDVI×Abd_LF, C: RVI×Abd_LF, D: CIgreen×Abd_LF, E: RDVI×Abd_LF, F: EVI×Abd_LF).
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FIGURE 10

Validation for estimating rapeseed yield in Jianghan Plain at the satellite scale: Sentinel-2A/B in 2018. (A: EVI×Abd_LF, B: VARI×Abd_LF, C:
TVI×Abd_LF, D: RDVI×Abd_LF, E: NDVI×Abd_LF, F: DVI×Abd_LF).
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Conclusions

In this study, a method for retrieving rapeseed yield using leaf

abundance multiplied by VIs was adopted and compared at the UAV

and satellite scales. We found that there was a prominent spectral

difference between flower and leaf during the flowering period of

rapeseed, which often appeared in the image in the form of mixed

pixels. Therefore, we tried to extract the abundance of different

components of rapeseed by SMA technology and estimated rapeseed

yield by combining VIs. The product of VIs selected in this paper and

leaf abundance was closely related to rapeseed yield for the UAV-scale

nitrogen gradient experiment, which was better than the simple VI

model for yield estimation, with R2 above 0.78 (Figure 9). The yield

estimation models of NDVI × AbdLF, RVI × AbdLF, and NDYI ×

AbdLF had the highest accuracy, and the CVs were below 10%. For the

satellite scale, most of the estimation models of the product of VIs and

rapeseed leaf abundance were also improved compared with the simple

VI model, with R2 above 0.4 (Figures 11, 10). Among them, RDVI ×

AbdLF and EVI × AbdLF had a steady improvement, with CVs below

13.1%.Moreover, the yield estimationmodels of NDVI × AbdLF, VARI

× AbdLF, RDVI × AbdLF, and EVI × AbdLF had consistent

performances at both UAV and satellite scales. The experimental

results showed that considering SMA could improve the limitation

of using only VIs to retrieve rapeseed yield at the flowering stage.
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Toth, C., and Jóźków, G. (2016). Remote sensing platforms and sensors: a survey.
Isprs J. Photogrammetry Remote Sens. 115, 22–36. doi: 10.1016/j.isprsjprs.2015.10.004

Tucker, C. J. (1979). Red and photographic infrared linear combinations for
monitoring vegetation. Remote Sens. Environ. 8, 127–150. doi: 10.1016/0034-4257
(79)90013-0
Frontiers in Plant Science 16
Wang, D., Fang, S., Yang, Z., Wang, L., Tang, W., et al. (2018). A regional mapping
method for oilseed rape based on hsv transformation and spectral features. Isprs Int. J.
Geo-Information 7, 224. doi: 10.3390/ijgi7060224

Xiao, J., Chevallier, F., Gomez, C., Guanter, L., Hicke, J. A., et al. (2019). Remote
sensing of the terrestrial carbon cycle: a review of advances over 50 years. Remote Sens.
Environ. 233, 111383. doi: 10.1016/j.rse.2019.111383

Xu, H., Cen, H., Ma, Z., Wan, L., Zhou, W., et al. (2020). Assessment of seed yield
and quality of winter oilseed rape using chlorophyll fluorescence parameters of pods.
Trans. Asabe 63, 231–242. doi: 10.13031/trans.13176

Yu, N., Li, L., Schmitz, N., Tian, L. F., Greenberg, J. A., et al. (2016). Development of
methods to improve soybean yield estimation and predict plant maturity with an
unmanned aerial vehicle based platform. Remote Sens. Environ. 187, 91–101.
doi: 10.1016/j.rse.2016.10.005

Zang, Y., Chen, X., Chen, J., Tian, Y., Shi, Y., et al. (2020). Remote sensing index for
mapping canola flowers using modis data. Remote Sens. 12, 3912. doi: 10.3390/rs12233912

Zhang, H., Liu, W., and Zhang, L. (2022). Seamless and automated rapeseed
mapping for large cloudy regions using time-series optical satellite imagery. Isprs J.
Photogrammetry Remote Sens. 184, 45–62. doi: 10.1016/j.isprsjprs.2021.12.001

Zhang, Y., Wan, Y., Wang, B., Kang, Y., and Xiong, J. (2015). Automatic processing
of chinese gf-1 wide field of view images. Int. Arch. Photogramm. Remote Sens. Spatial
Inf. Sci. XL-7/W3. 729–734. doi: 10.5194/isprsarchives-XL-7-W3-729-2015

Zhou, X., Zheng, H. B., Xu, X. Q., He, J. Y., Ge, X. K., et al. (2017). Predicting grain
yield in rice using multi-temporal vegetation indices from uav-based multispectral and
digital imagery. Isprs J. Photogrammetry Remote Sens. 130, 246–255. doi: 10.1016/
j.isprsjprs.2017.05.003
frontiersin.org

https://doi.org/10.1016/j.isprsjprs.2021.02.008
https://doi.org/10.1016/j.rse.2014.03.008
https://doi.org/10.1016/j.jag.2022.102697
https://doi.org/10.1016/j.rse.2011.03.003
https://doi.org/10.1016/j.rse.2011.03.003
https://doi.org/10.1016/j.agrformet.2014.06.007
https://doi.org/10.1016/j.agrformet.2014.06.007
https://doi.org/10.1080/01431161.2015.1047994
https://doi.org/10.1016/j.isprsjprs.2015.10.004
https://doi.org/10.1016/0034-4257(79)90013-0
https://doi.org/10.1016/0034-4257(79)90013-0
https://doi.org/10.3390/ijgi7060224
https://doi.org/10.1016/j.rse.2019.111383
https://doi.org/10.13031/trans.13176
https://doi.org/10.1016/j.rse.2016.10.005
https://doi.org/10.3390/rs12233912
https://doi.org/10.1016/j.isprsjprs.2021.12.001
https://doi.org/10.5194/isprsarchives-XL-7-W3-729-2015
https://doi.org/10.1016/j.isprsjprs.2017.05.003
https://doi.org/10.1016/j.isprsjprs.2017.05.003
https://doi.org/10.3389/fpls.2023.1188216
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

	Abundance considerations for modeling yield of rapeseed at the flowering stage
	Introduction
	Materials and methods
	Experimental design
	Data acquisition
	UAV data acquisition
	Satellite data acquisition
	Rapeseed yield determination
	Ancillary data

	Spectral mixture analysis
	Yield estimation based on combination of vegetation indices and abundance
	Algorithm establishment using leave&minus;one&minus;out cross&minus;validation

	Results
	Extraction of rapeseed based on GF-1 WFV images in Jianghan Plain
	Relationship of VI versus yield in rapeseed
	Variation of abundance and yield with nitrogen application
	Yield estimation using a combination of VIs and abundance data

	Discussion
	Conclusions
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	References


