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fast primary root
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TIR1/AFB and TMK1 act antagonistically in auxin-
mediated fast primary root elongation inhibition

Plants adjust their growth rapidly in response to various stimuli, thus improving their

fitness to ever-changing environments. In most cases, including plasma membrane (PM)

depolarization, H+-pump activation, transient cytosolic Ca2+, and pH changes, are

regulated by the plant phytohormone auxin (Friml, 2022). Moreover, auxin also induces

fast (within 2 min) and reversible primary root elongation inhibition, which particularly

requires the cytoplasm localized AFB1 receptor together with TIR1 and other AFBs, to

operate in an unexpected non-transcriptional manner (Fendrych et al., 2018; Prigge et al.,

2020; Dubey et al., 2021; Li et al., 2021; Serre et al., 2021; Chen et al., 2023; Dubey

et al., 2023).

The influx auxin carrier AUX1 imports IAA− into cells with two H+, and passive

diffusion also delivers auxin into the cells. On one hand, TIR1/AFB receptors perceive

auxin to promote cellular H+ influx across the PM through so far undiscovered channels or

transporters/antiporters, resulting in rapid apoplast alkalinization. The Ca2+ transient

contributes to H+ influx (Li et al., 2021; Li et al., 2022a); however, it remains elusive

whether undefined Ca2+ channels are required for H+ influx. On the other hand, the

auxin-TIR1/AFB module acts through CYCLIC NUCLEOTIDE-GATED CHANNEL 14

(CNGC14), a Ca2+ channel, to rapidly stimulate PM depolarization (Serre et al., 2021; Serre

et al., 2022). As a consequence, primary root elongation is repressed rapidly (Fendrych

et al., 2018; Li et al., 2021; Serre et al., 2021; Serre et al., 2022). Recently, it has been

suggested that adenylate cyclase (AC) activity is essential for TIR1/AFB receptor function

and auxin perception (Qi et al., 2022). Auxin stimulates the AC activity to produce cAMP,

thus executing its long-term effect on primary root elongation. Notably, AC activity is not

required for auxin-TIR1/AFB signaling-mediated fast primary root elongation inhibition

(Qi et al., 2022). Notably, the involvement of cGMP signaling in the auxin-induced fast

primary root elongation inhibition requires further investigation.
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In addition to TIR1/AFB perception machinery, apoplastic and

PM-localized auxin signaling components have been proposed

for years; AUXIN BINDING PROTEIN 1 (ABP1) and

TRANSMEMBRANE KINASEs (TMKs) are excellent candidates

(Cao et al., 2019; Lin et al., 2021; Friml et al., 2022). Remarkably,

TMK1 transmits the auxin signal in an unraveled manner to

phosphorylate AHA2, a H+-ATPase, at the well-known Thr947

activation site, resulting in apoplast acidification and promotion of

primary root elongation (Li et al., 2021). Conversely, ABP1 has

recently been reported to mediate auxin-induced fast (2 min)

phospho-response together with TMK1 (Friml et al., 2022).

However, the loss-of-function abp1 mutant responds normally to

auxin in fast primary root elongation inhibition (Li et al., 2021).

Nonetheless, further analysis of abp1 tmk1 double mutant in the fast

auxin response is further needed (Rodriguez et al., 2022).

Collectively, the TIR1/AFB and cell surface TMK1 kinase mediate

antagonistic auxin signaling to fine-tune primary root elongation

rapidly, but the mechanisms are still beyond our current

understanding (Figure 1).

Besides apoplast alkalinization, other cellular processes such as

cortical microtubule re-orientation (Adamowski et al., 2019) and

vacuolar expansion (Dünser et al., 2019; Dünser et al., 2022) have

been implicated in cell elongation. In elongating cells, the

orientation of microtubules can either limit or allow cell
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expansion in a certain direction. Vacuoles are unique plant

organelles, and their dimensions play essential roles in defining

plant cell expansion rates. During cellular elongation, the size of the

vacuole and its relative occupancy of the cell dramatically increase

to 80%–90% of the cellular volume, which leads to rapid cellular

growth (Dünser et al., 2019; Dünser et al., 2022). Therefore,

microtubule re-orientation and vacuolar expansion may

potentially be part of the machinery in rapid primary root

elongation inhibition. Evidence has been shown that auxin does

not rapidly induce microtubule re-orientation or vacuolar

expansion (Li et al., 2021).

Ca2+ signaling consists of an array of receptors that perceive

extracellular cues and Ca2+ channels that transport Ca2+ into the cells,

formulating a specific Ca2+ signature (Tang et al., 2020).

CALMODULIN (CaM), CaM-LIKE PROTEINs (CMLs), Ca2

+-DEPENDNT PROTEIN KINASEs (CDPKs), and CALCINEURIN

B-LIKE PROTEINs (CBLs) have been identified in land plants as Ca2+

sensors. Plant-specific CBL-INTERACTING PROTEIN KINASEs

(CIPKs) act as major downstream signaling components of the CBL

sensors to orchestrate central CBL-CIPK signaling networks and fine-

tune plant adaptive growth in response to developmental and

environmental cues (Tang et al., 2020). Auxin immediately triggers

ion fluxes across the PM in root cells. In particular, transient increased

cytosolic Ca2+ and increased apoplastic pH are detected less than 30 s
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FIGURE 1

Auxin and RALF1 mediate rapid Arabidopsis primary root elongation inhibition via distinct routes. (A) The AUX1 auxin influx transporter and passive diffusions
deliver auxin into the cells, then intracellular auxin is mainly perceived by cytoplasm AFB1 receptor, together with other SCFTIR1/AFB receptors in the nucleus
to trigger a rapid CNGC14-mediated Ca2+ influx through unknown factors. The Ca2+ transient contributes to the H+ influx into cells across the PM via so far
unidentified channels or transporters/antiporters, which ultimately leads to apoplast alkalinization and PM depolarization. As a result, primary root
elongation is inhibited rapidly. In contrast, cell surface localized TMK1 kinase recognizes auxin via an undefined manner to phosphorylate AHA2, a H
+-ATPase, to pump H+ to apoplast, resulting in apoplast acidification and promotion of primary root elongation. Hence, the SCFTIR1/AFB receptor and TMK1
kinase antagonize the auxin-dependent rapid primary root elongation inhibition. (B) RALF1 and its corresponding receptor FER may act through undefined
channels or transporters/antiporters to trigger apoplast alkalinization, resulting in rapid and reversible primary root elongation inhibition. (C) The RALF1-FER
module promotes auxin biosynthesis via increasing YUCCAs expression, thus inducing the canonical nucleus SCFTIR1/AFB transcriptional pathway for its
long-term effect on primary root elongation inhibition. (D) Unmapped Ca2+ channels and signaling pathways that may be involved in RALF1-FER mediated
both rapid and sustained effect on primary root elongation inhibition. (E) RALF1 acts via FER receptor to regulate undefined channels or transporters/
antiporters to trigger PM depolarization in an unknownmanner for the regulation of rapid response in primary root. AHA2, H+-ATPase 2; ARF, AUXIN
RESPONSE FACTOR; CNGC14, Cyclic NUCLEOTIDE-GATED CHANNEL 14; PM, plasma membrane; TIR1/AFB, TRANSPORT INHIBITOR RESPONSE1/
AUXIN-SIGNALLING F-BOX PROTEIN; TMK1, TRANSMEMBRANE KINASE 1; AUX1, AUXIN RESISTANT 1; CaM, CALMODULIN; CMLs, CaM-LIKE PROTEINs;
CDPKs, Ca2+-DEPENDNT PROTEIN KINASEs; CBLs, CALCINEURIN B-LIKE PROTEINs; CIPKs, CBL-INTERACTING PROTEIN KINASEs; CPK9, CALCIUM-
DEPENDENT PROTEIN KINASE 9; Pi, phosphorylation.
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after auxin treatment (Li et al., 2021; Serre et al., 2022). Therefore, the

Ca2+ transient and external pH changes represent very early responses

to auxin. Most likely, auxin acts via TIR1/AFB receptors to activate

CNGC14 channel (Shih et al., 2015; Dindas et al., 2018; Li et al., 2021;

Serre et al., 2022). The increased Ca2+ thus transiently initiates fast H+

influx and apoplast alkalinization. Consequently, primary root

elongation is rapidly inhibited (Figure 1) (Li et al., 2021; Serre et al.,

2022). How auxin regulates the well-known Ca2+ signaling pathways

to mediate fast root elongation regulation (Tang et al., 2020), however,

is largely unknown. On the other hand, it is unclear whether so far

undiscovered channels or transporters/antiporters are involved in

auxin-mediated fast H+ influx into the cells, as auxin induces the K+

efflux (Li et al., 2021; Li et al., 2022a).

Auxin rapidly arrests primary root elongation, which is too

quick to be associated with transcriptional regulation, suggesting

that this rapid elongation regulation may occur at the protein level

(Fendrych et al., 2018; Li et al., 2021; Serre et al., 2021). Protein (de)

phosphorylation is a prominent post-translational modification

involved in many signaling pathways (Vu et al., 2018), and auxin

has been reported to provoke a fast (2 min) protein phosphorylation

through the receptors, TIR1/AFB, ABP1, and TMK1 (Han et al.,

2021; Lin et al., 2021; Friml et al., 2022; Roosjen et al., 2022; Kuhn

et al., 2022). Indeed, this fast protein phosphorylation analysis in

root tips has successfully led to the identification of AHA2 that

antagonizes TIR1/AFB-mediated rapid primary root elongation

modulation (Han et al., 2021; Li et al., 2021). Additionally, a

RAF-like protein kinase was identified as a central mediator of

fast auxin-mediated phosphorylation, but its role in the fast

responses of primary root needs further investigation in the

future (Kuhn et al., 2022). Together with the fast phospho-

response in the auxin receptor mutants (Lin et al., 2021; Friml

et al., 2022; Kuhn et al., 2022; Roosjen et al., 2022), it will provide

new access to identify unprecedented auxin-mediated machinery

that enables plants to adjust primary root elongation rapidly

through the non-canonical auxin signaling cascade. We also have

to note that auxin may also trigger the rapid flow of K+ and other

ions across the membrane (Ward et al., 2009; Li et al., 2021) and cell

wall extensibility (Du et al., 2020), which will ultimately lead to the

primary root elongation inhibition. A further investigation of ion

exchangeandcellwall plasticity in theauxin-mediated fast responsesof

primary root at the translational or post-translational level needs to be

carried out.
RALF1-FER module rapidly arrests
primary root elongation

The small cysteine-rich polypeptide, RAPIDALKALINIZXATION

FACTOR1 (RALF1), has also been shown to rapidly (within 2 min)

arrest primary root elongation in a similar way to auxin (Li et al., 2021;

Li et al., 2022b). The application of the synthetic RALF1 peptide may

also generate a rapid net H+ influx across the PM into cells;

nevertheless, this rapid net H+ influx and primary root elongation
Frontiers in Plant Science 03
are abolished in FERONIA (FER) receptormutant (Gjetting et al., 2020;

Li et al., 2022b). Their result further suggests that the RALF1-FER

module functions in a non-transcriptional manner to actuate rapid

apoplast alkalinization and root elongation inhibition (Li et al., 2022b).

It is implausible for RALF1 to directly regulate AHAs proton pump, as

the tested aha mutants show normal responses to RALF1 peptide

treatment within a time scale of 0 to 6 h, suggesting that the existence of

so far undiscovered channels or transporters/antiporters is responsible

for RALF1-inhibited rapid primary root elongation (Li et al., 2021; Li

et al., 2022b). Unexpectedly, RALF1 and auxin independently suppress

primary root elongation rapidly, supported by the fact that fer responds

normally to short-term auxin treatment, and tir triple and tmkmutants

respond normally to RALF1 peptide (Li et al., 2021; Li et al., 2022b).

Notably, RALF1-FERmodulates the biosynthesis of auxins via elevating

the expression of auxin biosynthesis gene YUCCAs, and the

accumulated auxin then inhibits primary root elongation acts

through TIR1/AFB signaling in a long-term dimension (Li et al.,

2022b). Thus, RALF1 exhibits both fast and sustained effects on

primary root elongation through different mechanisms (Figure 1).

FER plays multiple roles in plant development, including

cortical microtubule re-orientation (Malivert et al., 2021; Lin

et al., 2022; Tang et al., 2022) and intracellular expansion of the

vacuole (Dünser et al., 2019). However, whether microtubule re-

orientation or vacuole expansion is involved in RALF1-FER

module-mediated rapid response requires further investigation.

Additionally, it is also necessary to examine whether RALF1-FER

initiates rapid PM depolarization in parallel with apoplast

alkalinization and, if so, what the underlying mechanisms

are (Figure 1).

A fast RALF1-induced PM protein phosphorylation assay has

led to the identification of CALCIUM-DEPENDENT PROTEIN

KINASE 9 (CPK9) as a strong candidate to enhance cytoplasmic

calcium concentrations (Haruta et al., 2014). NORTIA (NTA)

functions as a Ca2+ sensor in FER-mediated pollen tube

reception (Gao et al., 2022). Therefore, it is an open question to

test the involvement of CNGC14, NTA, or other unmapped Ca2+

channels and signaling components (Tang et al., 2020) in

RALF1-FER-dependent fast and sustained primary root elongation

inhibition (Figure 1).

FER is a Ser/Thr receptor kinase that phosphorylates itself

or substrates in a context-specific manner (Zhu et al., 2021).

RALF1 induces FER phosphorylation within 5 min, indicating

uncharacterized rapid protein phosphorylation networks to

operate the rapid effect on primary root elongation through

RALF1-FER signaling (Haruta et al., 2014). The newly developed

timsTOF Pro mass spectrometer, powered by parallel accumulation

serial fragmentation (PASEF) acquisition mode and trapped ion

mobility spectrometry (TIMS) technology, paves the way to

4D-proteomics (Loginov et al., 2021). This approach will provide

essential information on fast protein phosphorylation and will

contribute to identify undefined robust protein networks involved

in auxin or RALF1-FER module in both fast and sustained primary

root elongation inhibition.
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Future perspectives

Unlike animals, plants cannot run when they meet

environmental stressors. Rapidly adjusting their growth is one of

the most effective strategies to avoid the negative effects of diverse

stressors on development and growth. The disclosed fast (within

2 min) and reversible effects of auxin and RALF1 peptide provide

mechanistic insights into rapid primary root elongation regulation.

Nevertheless, open questions remain to be unanswered. The key

unresolved question is how TIR1/AFB and TMK1 kinase confer

primary root rapid reactions, and which downstream players

function in non-canonical auxin actions. Phosphoproteomics

analysis has revealed that many proteins are rapidly phosphorylated

independently of the TIR1/AFB pathway (Han et al., 2021). Only a

small portion of the identified proteins overlaps with auxin-mediated

transcriptional regulation (Han et al., 2021; Friml et al., 2022; Kuhn

et al., 2022; Roosjen et al., 2022). Therefore, an in-depth analysis of fast

phosphorylation assays in related receptor mutants (Han et al., 2021;

Friml et al., 2022; Kuhn et al., 2022; Roosjen et al., 2022) will help

identify the downstream players that are responsible for auxin-

mediated fast primary root elongation regulation. On the other

hand, it would be appealing to uncover the kinase cascades

that endow the rapidity of the TIR1/AFB-TMK-dependent

non-canonical auxin signaling or the RALF1-FER dependent

signaling, although only a few kinases have been confirmed in

these fast signaling pathways (Haruta et al., 2014; Kubes ̌ and
Napier, 2019; Kuhn et al., 2022). We have to note that the rapid

elongation inhibition of Arabidopsis primary root depends not

only on the AFB1 subcellular localization but also on specific

AFB1 protein properties (Prigge et al., 2020; Chen et al., 2023;

Dubey et al., 2023). Furthermore, the auxin effect on endocytic

PIN trafficking is also a rapid, non-transcriptional, and TIR1/

AFB-independent biological process (Friml, 2022). Hence, auxin

may also regulate its target protein dynamics through endocytic

trafficking to execute its rapid inhibitory effect on primary

root elongation.

RALF1 also regulates dynamics and partitioning of FER at PM

via clathrin-mediated endocytosis (CME), and the clc2-1/3-1

mutant, impaired in CME, shows resistance to RALF1 peptide in

root growth inhibition (Yu et al., 2020). It is likely that RALF1 may

trigger a rapid dynamic change of FER and FER-targeted PM

proteins to initiate the early signals (such as pH, ROS, Ca2+) and

MITOGEN-ACTIVATED PROTEIN KINASE (MAPK) cascades

to exert its rapidness (Zhu et al., 2021), but this requires detailed

investigation. Moreover, FER shows differential affinity to RALF

peptides, and the involvement of other RALFs in this rapid primary

root response remains unknown. The RALF1-FER signaling in the

plant kingdom has been revealed, and RALFs and their (co)

receptors co-evolved from bryophytes to seed plants (Zhu et al.,

2021). Hence, it is intriguing to reveal that whether the RALF1-FER

signaling in plant rapid primary root elongation is evolutionary

conserved. Additionally, it is worth examining whether the FER

interacting proteins (Du et al., 2016) are required for both fast and

long-term effects of RALF1. Another crucial unanswered question is
Frontiers in Plant Science 04
how RALF1 regulates FER kinase activity under different conditions

or in diverse cell types, thus coordinating its biphasic effect on

primary root elongation. Its potential players and the underlying

mechanisms for the rapid activation or inactivation of RALF1-FER

signaling remain largely unclear. It is also puzzling why plants

utilize two independent pathways to rapidly inhibit primary root

elongation via regulating H+ influx (Figure 1). Also, it is not clear at

which physiological circumstances plants awaken RALF1-FER or

auxin signaling, and how these independent pathways are

integrated to adjust Arabidopsis primary root elongation rapidly.

The answers to these fundamental but mysterious questions would

assist in better elucidating the unprecedented auxin and

RALF1-FER regulatory networks and provide a novel toolbox to

improve agronomic traits.
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(2023). The AFB1 auxin receptor controls the cytoplasmic auxin response pathway in.
Preprint at bioRxiv. doi: 10.1101/2023.01.04.522696
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