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Introduction: Plant essential oils (EOs) can be used as a feasible tool for insect

pest control. Nanoparticle formulations of plant EOs can improve the efficiency

and stability of EOs, as well as insecticidal potential.

Methods: In this study, Carum copticum L. essential oil–loaded nanoparticles

(OLNs) were prepared via an oil-in-water emulsion, followed by droplet

solidiffication via ionic gelation using a cross-linker, sodium tripolyphosphate

(TPP). The nanoparticles were characterized by ultraviolet and visible (UV–Vis)

spectrophotometry, Fourier-transform infrared spectroscopy (FTIR), laser light

scattering (LS), transmission electron microscopy (TEM), and scanning electron

microscopy (SEM). Moreover, the insecticidal activity of C. copticum EO and OLNs

was evaluated against Rhyzopertha dominica (F.) (Coleoptera: Bostrychidae) and

Tribolium confusum Jacquelin du Val. (Coleoptera: Tenebrionidae). In addition, their

effectiveness was assessed on the progeny production of tested insect species.

Results and discussion: The loading efficiency ranged from 34.33 to 84.16% when

the chitosan to EO weight ratio was 1:1.25 and 1:0.5, respectively. The loading

efficiency decreased with increasing EO content in the nanoparticles. The OLN

particles exhibited spherical shape. The particle sizewas in the range 120–223.6 nm

and increased with the increase of EO to chitosan ratio. So that the largest mean

particle size (223.6 nm) was reported in the 1:1.25 weight ratio of chitosan to the EO.

The mortality percentage of R. dominica and T. confusum adults were 74 and 57%

when exposed for 7 days to 2000mg/kg of OLNs at the 1:1.25weight ratio, while EO

caused 62 and 44% mortality on both insect species, respectively. Therefore, OLNs

can potentially improve the insecticidal activity of C. copticum EO and could be

applied to facilitate control of stored-product insect pests.
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1 Introduction

The lesser grain borer, Rhyzopertha dominica (F.) (Coleoptera:

Bostrychidae) is a primary pest and generally infests stored wheat

and other cereals but prefer wheat, corn, or rough and brown rice

(Mason and McDonough, 2012). Both larvae and adults feed inside

kernels, reducing them to hollow husks. Damaged kernels lose

weight and their market value (Rees, 2007). The confused flour

beetle, Tribolium confusum Jacquelin du Val. (Coleoptera:

Tenebrionidae) is also one of the most destructive storage beetles

of stored wheat in Iran and worldwide. Both adults and larvae infest

cereals grains, grain products, and damage causes loss of weight and

reduction in product volume. Moreover, the grains become

contaminated with insects’ exuviae, faecal matter, and fragments

(frass) (Hill, 2002). Therefore, the protection of stored products

from insect pests’ infestation is the concern of the government,

farmers, and those involved in this matter.

Maintaining pest prevention and control is an essential issue in

reducing any type of damage (Kumar and Kalita, 2017). Various

chemical pesticides such as malathion, bromophos, fenitrothion

(Lemon, 1967), malathion, pirimiphos methyl (Shawir et al., 1988;

Kljajić and Perić, 2007), cyfluthrin (Arthur, 1994; Arthur, 1998),

thiamethoxam (Arthur et al., 2004), spinosad (Toews et al., 2003;

Bonjour and Opit, 2010; Subramanyam et al., 2012), deltamethrin

(Kljajić and Perić, 2007; Sehgal and Subramanyam, 2014; Ziaee and

Babamir-Satehi, 2019), methoprene (Daglish and Wallbank, 2005;

Athanassiou et al., 2011; Wijayaratne et al., 2012), and chlorfenapyr

(Arthur, 2008; Arthur, 2009) have been used to control stored-

product beetles. For decades, the use of chemical pesticides was one

of the main components of the integrated management of storage

insect and mite pests, providing long-term protection of stored

products (Hamel et al., 2020). However, the adverse effects of

pesticides on beneficial insects and non-target organisms, the risk

of synthetic pesticides residues in products, the occurrence of

resistance in insect pests, and the risk of the environmental

pollution have caused to increase in the tendency to use safer

compounds for insect pest control (Damalas and Eleftherohorinos,

2011; Barzman et al., 2015). Therefore, investigating the

appropriate, safe, and economical methods, such as botanical

insecticides, can be effective in the management of insects (Hikal

et al., 2017; Ahmed et al., 2021). Botanical insecticides, namely,

pyrethrum, neem, and insecticides based on plant essential oils

(EOs) and plant extracts are commercially produced and entered

the marketplace (Isman, 2006; Rharrabe et al., 2008; Adarkwah

et al., 2010; Dively et al., 2020; Moldovan et al., 2020). Among

botanical insecticides, plant EOs have advantages such as low

toxicity on mammals, fast degradability, and local availability

(Isman, 2004). Some of the plant essential oils and their

compounds have insecticidal, repellent, and antifeedant properties

on insects. Therefore, they can be used as an alternative to chemical

insecticides to protect agricultural crops (Isman, 2006; Said-Al Ahl

et al., 2017). Encapsulation can protect active agents from severe

conditions, for example, light, oxygen, and heat (Yinbin et al.,

2018). Moreover, this process causes a slow and controlled release of

the loaded compound to prolong its effectiveness (Yoksan et al.,
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2010). Therefore, to overcome the issue of plant EOs low stability,

these compounds be applied in different formulations such as

nanopart ic les , nano- and microcapsules , nano- and

microemulsions, and so forth; and be used in integrated pest

management programs (Ebadollahi et al., 2021; Devrnja

et al., 2022).

Iran is rich in medicinal and aromatic plants, and more plants

contain various chemical compounds and biological activity

(Hassanpouraghdam et al., 2022). Ajwain, Carum copticum L.

(Apiaceae), is a traditional medicinal plant. Ajwain has small

white flowers and brown fruit, and there are five thin longitudinal

lines in light yellow color on the surface of the fruit. The seeds of C.

copticum are rich in fiber, minerals, vitamins, and antioxidants and

have many medicinal uses (Boskabady et al., 2014). In our previous

study, the toxicity of C. copticum EO-loaded nanogels was reported

against Sitophilus granarius (L.) (Coleoptera: Curculionidae) and T.

confusum adults. Moreover, the EO persisted for up to 20 days when

loaded in nanogels (Ziaee et al., 2014). Various techniques can be

used to encapsulate EOs, which can cause changes in the oil

efficiency, and potential activity against insect pests (Maes et al.,

2019). Therefore, in this study C. copticum essential oil–loaded

nanoparticles (OLNs) was synthesized by two-step procedure, that

is, droplet constitution and droplet solidification via ionic gelation;

then physicochemical characterizations of the OLNs was evaluated

considering the following parameters: ultraviolet and visible (UV–

Vis) spectrophotometry, Fourier-transform infrared spectroscopy

(FTIR), laser light scattering (LS), transmission electron microscopy

(TEM), and scanning electron microscopy (SEM). Moreover, the

insecticidal activity of the EO and OLNs and effects on the progeny

production of R. dominica and T. confusum were evaluated.
2 Materials and methods

2.1 Insect rearing

The colony of lesser grain borer, R. dominica, and the confused

flour beetle, T. confusum were obtained from cultures kept in the

toxicology laboratory at the Shahid Chamran University of Ahvaz,

Ahvaz, Iran, for at least 3 years. Rhyzopertha dominica was reared

on whole wheat (variety Chamran), and T. confusum was reared on

a diet containing a mixture of wheat flour and brewer yeast (10:1 w:

w). The rearing conditions were 27 ± 1°C and 65 ± 5% relative

humidity (RH) in continuous darkness. Unsexed adults (7–14 days

old) were used for the bioassays.
2.2 Carum copticum EO extraction

Carum copticum seeds were purchased from a local market in

Mashhad, Iran. The seeds were ground and hydrodistilled for 4h

using a clevenger-type apparatus at 100°C to extract the EO.

Anhydrous sodium sulphate was used to remove water, and the

obtained oil was kept in a refrigerator at 4°C. The density of C.

copticum EO was measured as 0.947 g/L.
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2.3 Chitosan-based nanoparticles
preparation loaded with Carum
copticum EO

The nanoparticles were synthesized with the technique of

Keawchaoon and Yoksan (2011) and Ahmadi et al. (2018) with

some modifications. Chitosan (Mw = 340 g/mol) was purchased

from Sigma-Aldrich Chemicals Co. (Saint Louis, MO, USA). Tween

80 and sodium tripolyphosphate (TPP) were purchased from Merck,

Germany. Chitosan (1.2% w/v) was dissolved in 40 mL of acetic acid

solution (1% v/v) under a magnetic stirrer for 20 min. The emulsifier

Tween 80 (HLB: 15.0, 0.306 g) was added to the chitosan solution and

stirred for 1h until a homogeneous solution was obtained. The EO was

added in different ratios, namely, 0, 0.24, 0.48, and 0.60 g, to provide the

weight ratios of chitosan to oil of 1:0, 1:0.50, 1:1, and 1:1.25,

respectively. The oil was added to the solution and stirred for 20 min

at a speed of 500 rpm. Subsequently, the TPP solution was prepared

separately by dissolving TPP (0.5% w/v), and the TPP solution was

added drop wisely to the EO solution loaded with chitosan Tween 80

and stirred at a speed of 500 rpm for 30 min. The solution was

centrifuged at 10,000 rpm, 5°C for 10 min, and washed with distilled

water three times to separate the unloaded oil (C. copticum oil). The

prepared suspension was freeze-dried using freeze dryer (ALPHA 1-2

LD plus, Christ Co. Germany) at −35°C for 72h.
2.4 Characterization of Carum copticum
EO-loaded nanoparticles

2.4.1 Fourier-transform infrared spectroscopy
The chemical structure of all usedmaterials, including Tween 80, TPP,

chitosan, C. copticum EO, and OLNs was characterized by the FTIR

technique. FTIR spectra were recorded as KBr discs using a PerkinElmer

FTIR spectrometer (USA) at a resolution of 4 cm−1 from4000 to 400 cm−1.
2.4.2 EO-loading efficiency
The unloaded nanoparticles were considered as a blank for basic

corrections. The colorimetric assay at 273 nm was carried out for

absorbency, and the spectrum was collected at 200–400 nm (Ziaee

et al., 2014). To separate the unloaded oil (supernatant) from

prepared nanoparticles, oil-loaded nanoparticles were centrifuged

at 2684g, 5°C for 10 min. The absorbency of the solution was

determined at 273 nm by UV–VIS spectrophotometer (UNICO

Model 2100 series, Dayton, NJ, USA), and the result was compared

with that of the standard curve. The process was replicated three

times. The loading efficiency (LE) of EO was calculated using Liu

et al. (2005) equation:

LE =
mass of oil added into the solution

mass of oil in supernatant after centrifugation 
� 100
2.4.3 Particle size and morphology of Carum
copticum EO-loaded nanoparticles

An LS instrument (Scatterscop Qudix, Seoul, South Korea) was used

to determine themedian particle size and size distribution of nanoparticles.
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Dynamic light scattering was performed at a 90° and at temperature of 25°

C. All samples were analyzed in triplicate, and their average was reported.

TEM was performed using the Transmission electron microscope (Zeiss

LEO906E, FreiburgimBreisgau, Germany) at an accelerating voltage of 80

kV. For this purpose, the samples were prepared by depositing a drop of

nanoparticles containing phosphotungstic acid (2%) onto copper grids,

and the extra liquid was removed by a filter paper. Then, the grids were

allowed to air dry at room temperature. The structure of nanoparticles was

investigated using SEM (Zeiss LEO 1455 VP, Freiburg im Breisgau,

Germany) at 30k V acceleration voltage.
2.5 Insecticidal activity of chitosan-based
nanoparticles loaded with Carum
copticum EO

The insecticidal activity of EO and OLNs was assessed to protect

wheat grains (Chamran variety, 11% moisture content) against R.

dominica and T. confusum adults. Wheat grains (100 g) were

poured into 250-mL glass jars and treated with 1000 and 2000

mg/kg of EO or OLNs for 1:0.50, 1:1, and 1:1.25 ratios of chitosan to

oil. The concentration of 1000 mg/kg was equal to 195.7, 327.4, and

378.3 mg/kg EO and 2000 mg/kg was equal to 391.4, 654.8, and

756.6 mg/kg EO for 1:0.50, 1:1, and 1:1.25 ratios of chitosan to oil,

respectively. The untreated wheat grains and treated with unloaded

nanoparticles were considered as the negative and positive control

groups, respectively. Caps were screwed and jars were shaken for 3

min to distribute the nanoparticles in the entire wheat grains.

Subsequently, 20 adults were placed in each jar separately. The

jars were kept in darkness at 27°C and 60% RH. The treated and

untreated wheat grains were replicated five times and arranged in a

completely randomized design. Adult mortality was recorded 2 and

7 days after exposure, whereas progeny was recorded after 65 days.
2.6 Statistical analysis

The mortality and progeny data were checked for normality using

Shapiro–Wilk’s test at P = 0.05. No mortality was reported in the

negative control group (untreated wheat grains) of both species, so

there was no need to correct mortality counts. Mortality data, for each

exposure time, and progeny data were subjected to one-way ANOVA.

Means were separated by Tukey–Kramer (HSD) test. In addition, at

each concentration level, independent sample t-test was used to

determine whether there was a significant difference between EO and

OLNS (Sokal and Rohlf, 1995). All statistical analysis were performed

using SPSS software version 16.0 at P = 0.05 (IBMCorp, 2007).
3 Results

3.1 Chitosan-based nanoparticles
preparation loaded with Carum
copticum EO

The C. copticum EO loaded-chitosan/TPP nanoparticles were

synthesized by a two-step procedure, that is, droplet constitution
frontiersin.org
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and droplet stability. The constitution of the EO droplets in

chitosan solution was obtained by an oil-in-water emulsion. The

TPP is present in the bulk of the nanoparticles that are bridged

between the positive charges of the chitosan chains. The negatively

charged C. copticum EO, on the other hand, linked chitosan on the

surface of the nanoparticles. Each droplet was placed by ionic cross-

linking of protonated amino groups (NH3
+) along chitosan

molecules circumambient the C. copticum EO droplet and

polyphosphate groups (P3O10
5−) of TPP molecules (Figure 1).
3.2 Fourier-transform
infrared spectroscopy

Figure 2 shows FTIR spectra of chitosan particles, TPP, C.

copticum oil, and oil-loaded chitosan nanoparticles. In general,

chitosan particles show characteristic peaks at 3435 cm−1 (OH

and NH2 stretching), 2923 cm−1 (CH stretching), 1655 cm−1 (NH

bending), 1088 cm−1 (C-O-C, C-N stretching), and 591 cm−1

(pyranoside ring stretching vibration), and new peaks appeared

around 1316–1076 cm−1 (P─O and P═O) (Figure 2A). The C.

copticum EO shows that characteristic peaks at 3450 cm−1 refer to

the stretching vibrations of the OH group of the EO. The peak at

3020 cm−1 is related to the stretching vibrations of the CH group of

aromatic compounds in the EO. Characteristic peaks were at 2925

cm−1 (CH stretching), 1589 cm−1 (NH bending), and 1384 cm−1

(Figure 2B). TPP spectra indicates 1211 cm−1 (P═O stretching),

1127 cm−1 (symmetric and antisymmetric stretching vibrations in

PO2 group), 1093 cm−1 (symmetric and antisymmetric stretching

vibrations in PO3 group), and 800 cm−1 (antisymmetric stretching

of the P─O─P bridge) (Figure 2C). Moreover, in comparison with
Frontiers in Plant Science 04
the FTIR spectra of chitosan particles, the addition of EO resulted in

a marked increase in the intensity of the CH stretching peak at

2867–2925 cm−1 (Figure 2D).
3.3 EO-loading efficiency

About 84% of the EO was loaded into nanoparticles when the

weight ratio of chitosan to oil was 1:0.5; the percentage of loaded C.

copticum oil was in the range of 34.33–84.16%. The mean particle

size of OLNs ranged from 120.0, when no oil was loaded in the

nanoparticles, to 223.6 for the weight ratio of 1:1.25 (chitosan to

oil) (Table 1).
3.4 Particle size and morphology of Carum
copticum EO-loaded nanoparticles

The average size of the oil-loaded nanoparticles ranged from

125.3 to 223.6 nm using the LS technique. The size of the particles

was increased with increasing oil content from 0.24 to 0.6 g in

chitosan particles (Table 1).

The morphology of nanoparticles was observed by TEM and

SEM analysis (Figures 3, 4). The unloaded and OLNs had a

spherical shape. The unloaded nanoparticles were lighter in color,

which indicated the absence of EO inside these particles

(Figure 3A). Moreover, the size of nanoparticles increased by

increasing the EO content. In all samples, individual particles

form bonds with each other resulting in aggregates (Figures 3B-

D). SEM images indicated that chitosan particles have a nearly

smooth and spherical appearance (Figure 4).
A

B

C

FIGURE 1

Schematic illustration of (A) oil in chitosan droplets, (B) oil-loaded chitosan particles, and (C) chemical structure of chitosan ionically cross-linked
with TPP.
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3.5 Insecticidal activity of chitosan-based
nanoparticles loaded with Carum
copticum EO

The mortality percentage of R. dominica adults exposed to EO

and OLNs in concentrations of 1000 and 2000 mg/kg is presented in

Table 2. At a concentration of 1000 mg/kg, there was significant

differences among different treatments of EO (F3, 16 =165.744; P<

0.001) and OLNs (F3, 16 =138.458; P< 0.001), and 1:1.25 weight ratio

was the most effective in controlling R. dominica adults, 2 days after

exposure. The higher susceptibility was recorded when R. dominica

adults were exposed to the EO than OLNs, 2 days after exposure.

Although, the adults’ mortality increased overtime 7 days after

treatment and there was significant differences among different
Frontiers in Plant Science 05
treatments of EO (F3, 16 =119.538; P< 0.001) and OLNs (F3, 16

=82.5877; P< 0.001). At this time interval, the mortality percentage

of R. dominica adults was significantly higher in wheat treated with

OLNs compared with the control and EO. In addition, at the

concentration of 2000 mg/kg, there were significant differences

among different treatments of EO (F3, 16 =475.933; P< 0.001) and

OLNs (F3, 16 =187.143; P< 0.001) in controlling R. dominica adults,

2 days after exposure. The toxicity of OLNs was significantly higher

than EO against R. dominica adults leading to 54, 67, and 74%

mortality after 7 days of exposure to chitosan nanoparticles at 1:0.5,

1:1, and 1:1.25 chitosan to oil weight ratios, respectively. While at

this concentration, the EO caused 43, 56, and 62% mortality in the

tested species (Table 2).

The mortality percentage of T. confusum adults exposed to EO

and OLNs is presented in Table 3. The EO caused moderate

mortality at a low concentration of 1000 mg/kg against T.

confusum adults, and there was significant differences among

different treatments of EO (F3, 16 =217.524; P< 0.001) and OLNs

(F3, 16 =84.923; P< 0.001), 2 days after exposure. The mortality did

not exceed 32% after 2 days of exposure to EO and reached 38%

after 7 days of adults’ exposure. At 7-day exposure time, there were

significant differences among different treatments of EO (F3, 16

=97.125; P< 0.001) and OLNs (F3, 16 =183.792; P< 0.001). In the case

of OLNs, the mortality was 27% at the highest oil content after 2

days of exposure, while the insecticidal activity of nanoparticles

increased over time, and 47% mortality was reported after 7 days of

exposure. At 2000 mg/kg of EO, adult mortality was 38% after 2

days of exposure (F3, 16 =109.467; P< 0.001), while it reached 44%

after 7 days (F3, 16 =196.121; P< 0.001). In addition, there were

significant differences among different treatments of EO (F3, 16
TABLE 1 Loading efficiency (LE) % ( ± SE) and mean particle size of
Carum copticum OLNs.

Chitosan to oil weight
ratios

LE (%) Mean particle size
(nm)

1:0 (control) – 120.0 ± 6.93b

1:0.5 84.16 ± 1.64a 125.3 ± 9.02b

1:1 71.16 ± 0.72b 138.3 ± 12.57b

1:1.25 34.33 ± 0.44c 223.6 ± 11.40a

df treatment, error 2, 6 3, 8

F, P 586.691,<
0.001

22.531,< 0.001
Means followed by the same lowercase letter within each column are not significantly different
using Tukey-Kramer (HSD) test at 0.05.
FIGURE 2

FTIR spectra of (A) chitosan particles, (B) Carum copticum EO, (C) TPP, and (D) OLNs (oil-loaded chitosan nanoparticles with chitosan to EO weight
ratio of 1:0.5).
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=73.750; P< 0.001) and OLNs (F3, 16 =186.051; P< 0.001) in

controlling T. confusum adults, 7 days after exposure. The highest

T. confusum mortality (57%) was reported when adults were

exposed to wheat grains treated with 2000 mg/kg OLNs at a

1:1.25 chitosan to oil weight ratio after 7 days of exposure (Table 3).

In both tested species, the number of progeny in the treatments

showed a significant decrease compared with the control. In

addition, the number of progeny decreased significantly with

increasing the ratio of EO to chitosan and concentration level.

For R. dominica, there were significant differences among different

treatments of EO at the concentration of 1000 mg/kg (F3, 16

=101.014; P< 0.001) and 2000 mg/kg (F3, 16 =165.083; P< 0.001).

In most cases, OLNs significantly reduced the production of

progeny than the EO in both storage beetles. The significant

differences in progeny number were reported when R. dominica

adults were exposed to 1000 mg/kg (F3, 16 =143.467; P< 0.001) and

2000 mg/kg (F3, 16 =191.440; P< 0.001) of OLNs. For T. confusum,

significant differences were noted in the number of progeny found

on wheat treated with OLNs at concentration level of 1000 mg/kg

(F3, 16 =300.848; P< 0.001) and 2000 mg/kg (F3, 16 =409.529; P<

0.001) (Table 4).
4 Discussion

The loading percentage decreased with the increase in the

weight ratio of EO to chitosan. It is in accordance with the

findings of Keawchaoon and Yoksan (2011), who reported

increases in LE with increasing initial carvacrol content in oil-
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loaded chitosan/TPP nanoparticles. Decreases in the LE of oregano

EO in chitosan/TPP nanoparticles with increasing the weight ratio

of EO to chitosan was reported by Hosseini et al. (2013), in which

the highest efficiency percentage was detected at the 1:0.1 weight

ratio of chitosan to EO. The decrease in LE of the nanoparticles can

be due to the saturation of the EO loading into chitosan

nanoparticles (Hosseini et al., 2013), as well as limitation of EO

loading in chitosan nanoparticles (Esmaeili and Asgari, 2015).

In our study, chitosan particles show peaks at 3435 cm−1 (OH

and NH2 stretching), 2923 cm−1 (CH stretching), 1655 cm−1 (NH

bending), 1088 cm−1 (C─O─C, C─N stretching), and 591 cm−1

(pyranoside ring stretching vibration). Keawchaoon and Yoksan

(2011) reported the peaks at 3500–3250 (OH), 2927 (CH

stretching), 1634 (amide I), 1539 (amide II), 1155 (P O) [39–41],

1072 (COC), and 890 cm−1 (pyranose ring) in chitosan

nanoparticles. In addition, chitosan particles shows new peaks at

1316–1076 cm−1 (P─O and P═O), this peak implying the complex

formation via electrostatic interaction between phosphoric groups

of TPP and NH3
+ ions within the nanoparticles (Yoksan et al.,

2010). The C. copticum oil-loaded chitosan nanoparticles showed

similar FTIR spectra to that of chitosan particles. It was revealed

that the C. copticum EO has been loaded into the chitosan

nanoparticles without any chemical reaction. Therefore, the

structure and function of the EO have not changed in the process

of synthesizing nanoparticles; as a result, its insecticidal activity.

The CH stretching peak at 2867–2925 cm−1, indicating an increase

in the content of ester groups, which might come from EO

molecules. The use of CH stretching peak as a probe band to

determine the loaded EO content was in accordance with
FIGURE 3

TEM micrographs at 80 kV of Carum copticum oil–loaded nanoparticles using an initial weight ratio of chitosan to oil of (A) 1:0, (B) 1:0.5, (C) 1:1, and
(D) 1:1.25.
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Keawchaoon and Yoksan (2011) research, who reported that the

increase in the intensity of CH stretching at 2870–2959 cm−1 in oil-

loaded chitosan/TPP nanoparticles indicating the presence of

carvacrol oil in the chitosan nanoparticles.

Chitosan nanoparticles loaded with oregano EO exhibited a

regular distribution and spherical shape with a size range of 40–80

nm. The size of unloaded chitosan nanoparticles was smaller than

the oil-loaded ones, which may be attributed to the presence of oil in

the particles (Hosseini et al., 2013). The size of the chitosan particles

increased with the amount of EO in nanoparticles (Keawchaoon

and Yoksan, 2011). The mean particle size of oregano EO-loaded

chitosan particles increased as an increase in initial OEO content

(Hosseini et al., 2013). Moreover, our findings showed that the

larger particles might be according to the agglomeration of the

particles. TEM images also confirmed the aggregation of particles,

which increased the particle size. It was pointed out that the larger
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diameter of particles might result from the swelling chitosan layer

surrounding the individual chitosan particles (Yoksan et al., 2010;

Keawchaoon and Yoksan, 2011). Ahmadi et al. (2018) prepared

Achillea millefolium (L.) oil-loaded chitosan nanocapsules with

spherical shapes and a compact structure. In our study, SEM

images of the chitosan nanoparticles loaded with C. copticum EO

demonstrated the regular distribution of the particles and spherical

shape with smooth surfaces. Spherical with smooth surface particles

were obtained when chitosan nanoparticles were functionalized

with b-cyclodextrin containing carvacrol and linalool. The

smooth surface indicates the absence of pores on the surface of

the nanoparticles, which can improve protection against

degradation and volatilization processes under environmental

conditions (Campos et al., 2018).

The effects of the C. copticum oil-loaded nanoparticles were

evaluated considering the mortality percentage of R. dominica and
A

B

FIGURE 4

SEM micrographs of Carum copticum oil–loaded nanoparticles using an initial weight ratio of chitosan to oil of (A) 1:0.5, and (B) 1:1.
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T. confusum adults in wheat grains treated with the formulations.

All the treatments resulted in significantly higher mortality than the

negative (untreated wheat) and positive (wheat treated with

unloaded chitosan nanoparticles) control groups. EO of C.

copticum has been reported as an effective botanical insecticide

against stored-product insect pests (Sahaf et al., 2007; Upadhyay

et al., 2007; Sahaf and Moharramipour, 2008; Shojaaddini et al.,

2008; Habashi et al., 2011; Ziaee et al., 2014). Sahaf et al. (2007)

documented high fumigant toxicity of C. copticum EO against
Frontiers in Plant Science 08
Sitophilus oryzae (L.) (Coleoptera: Curculionidae) and Tribolium

castaneum (Herbst) (Coleoptera: Tenebrionidae). They stated that

T. castaneum was more tolerant than S. oryzae. The EO of C.

copticum was noted to be highly effective against different life stages

of Plodia interpunctella (Hubner) (Lepidoptera: Pyralidae)

(Shojaaddini et al., 2008). Our results show that C. copticum EO

has insecticidal potential against R. dominica and T. confusum

adults, but the activity decreased with time. Developing the EO in

chitosan nanoparticles prepared an effective alternative control
TABLE 2 Mean mortality % ( ± SE) of Rhyzopertha dominica exposed to wheat treated with Carum copticum EO and OLNS.

Time (day) Chitosan to EO weight ratios 1000 mg/kg
t8

2000 mg/kg
t8

EO OLNS EO OLNS

2 1:0 (control) 0.00 ± 0.00d 0.00 ± 0.00d – 0.00 ± 0.00d 0.00 ± 0.00d –

1:0.5 20.0 ± 1.58c 18.0 ± 1.22c 1.00 39.0 ± 1.0c 36.0 ± 1.87c 1.414

1:1 30.0 ± 1.58b* 24.0 ± 1.87b 2.449 47.0 ± 1.22b 45.0 ± 1.58b 1.00

1:1.25 38.0 ± 1.22a* 33.0 ± 1.22a 2.887 55.0 ± 1.58a 57.0 ± 1.22a 1.00

F3, 16 165.744 138.458 475.933 187.143

P < 0.001 < 0.001 < 0.001 < 0.001

7 1:0 5.0 ± 1.58d 5.0 ± 2.23c 0.001 5.0 ± 1.58c 5.0 ± 2.23c 0.001

1:0.5 24.0 ± 1.87c 36.0 ± 2.50b* 3.893 43.0 ± 1.22b 54.0 ± 1.87b* 4.919

1:1 34.0 ± 1.0b 47.0 ± 1.22a* 8.222 56.0 ± 1.00a 67.0 ± 2.54a* 4.017

1:1.25 44.0 ± 1.0a 51.0 ± 2.91a* 2.271 62.0 ± 3.0a 74.0 ± 1.87a* 3.394

F3, 16 119.538 82.5877 321.600 209.441

P < 0.001 < 0.001 < 0.001 < 0.001
fr
For each exposure time, means followed by the same lower case letter within each column are not significantly different using Tukey–Kramer (HSD) test at 0.05. For each ratio, differences
between EO and OLNS denoted with an asterisk indicate a significant difference using t-student test at 0.05. Where no letters exist, no significant differences were noted.
TABLE 3 Mean mortality % ( ± SE) of Tribolium confusum exposed to wheat treated with Carum copticum EO and OLNS.

Time (day) Chitosan to EO weight ratios 1000 mg/kg
t8

2000 mg/kg
t8

EO OLNS EO OLNS

2 1:0(control) 0.00 ± 0.00d 0.00 ± 0.00d – 0.00 ± 0.00c 0.00 ± 0.00d –

1:0.50 14.0 ± 1.0c 12.0 ± 1.22c 1.265 25.0 ± 2.23b 25.0 ± 1.58c 0.001

1:1 24.0 ± 1.0b 21.0 ± 1.87b 1.414 31.0 ± 1.87b 32.0 ± 1.22b 0.447

1:1.25 32.0 ± 1.22a* 27.0 ± 1.22a 2.880 38.0 ± 1.22a 37.0 ± 1.22a 0.577

F3, 16 217.524 84.923 109.467 196.121

P < 0.001 < 0.001 < 0.001 < 0.001

7 1:0 5.0 ± 1.58d 3.0 ± 2.00d 0.784 5.0 ± 1.58c 3.0 ± 2.00c 0.784

1:0.50 20.0 ± 1.58c 32.0 ± 1.22c* 6.00 31.0 ± 2.44b 44.0 ± 1.00b* 4.914

1:1 28.0 ± 1.22b 39.0 ± 1.00b* 6.957 38.0 ± 1.22ab 52.0 ± 2.54a* 4.950

1:1.25 38.0 ± 1.22a 47.0 ± 1.22a* 5.196 44.0 ± 2.44a 57.0 ± 1.22a* 4.747

F3, 16 97.125 183.792 73.750 186.051

P < 0.001 < 0.001 < 0.001 < 0.001
For each exposure time, means followed by the same lower case letter within each column are not significantly different using Tukey–Kramer (HSD) test at 0.05. For each ratio, differences
between oil and OLNS denoted with an asterisk indicate a significant difference using t-student test at 0.05. Where no letters exist, no significant differences were noted.
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agent for managing storage beetles. Our previous reports

highlighted that myristic acid–chitosan nanogels loaded with C.

copticum EO were highly toxic compared with the EO on S.

granarius and T. confusum (Ziaee et al., 2014).
5 Conclusion

Chitosan nanoparticles provide an ideal delivery system for EO

release. The present work successfully developed C. copticum EO-

loaded chitosan particles, as confirmed by an absorption band at

273 nm (UV–VIS spectrophotometer). Moreover, FTIR spectra of

the loaded nanoparticles indicated that the characteristic absorption

peaks related to the presence of EO in the nanoparticles. The LE of

the nanoparticles ranged from 34.33 to 84.16%. The particles were

spherical with an average size of 125-223 nm, indicating that the

size increased with an increasing amount of EO. The toxicity of

OLNs against both tested storage beetles increased with increasing

time at a 7-day time interval as a grain protectant. According to our

results, the prepared formulation with the weight ratio of chitosan

to the EO of 1:1 and a TPP concentration of 0.5% (w/v) was the

optimal formulation. The results open windows for studies on the

practical utilization of OLNs for managing stored-product insect

pests. The fate of tested formulations and organoleptic properties of

treated food materials should be considered before their application.

Moreover, further research is necessary to assess the cytotoxic

activity and bioavailability of OLNs. To commercialize the

formulation containing plant EO as an active ingredient, the cost
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and economic feasibility of the formulation should be taken

into consideration. Plants should be cultivated on a field, near the

production facility to achieve cost-effective and large-

scale production systems. One of the other challenges of

commercializing this formulation is prolonging the residual effect

of the active ingredient, which should be carefully studied. If all the

limitations and challenges ahead for the commercialization of

OLNs are overcome, we can have promising prospects for bio-

insecticide production.
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