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Overexpression of soybean
GmNAC19 and GmGRAB1
enhances root growth and
water-deficit stress tolerance
in soybean

Mitra Mazarei1,2, Pratyush Routray1, Sarbottam Piya1,
C. Neal Stewart Jr1,2* and Tarek Hewezi1*

1Department of Plant Sciences, University of Tennessee, Knoxville, TN, United States, 2Center for
Agricultural Synthetic Biology, University of Tennessee, Knoxville, TN, United States
Soybean (Glycine max) is an important crop in agricultural production where

water shortage limits yields in soybean. Root system plays important roles in

water-limited environments, but the underlying mechanisms are largely

unknown. In our previous study, we produced a RNA-seq dataset generated

from roots of soybean at three different growth stages (20-, 30-, and 44-day-old

plants). In the present study, we performed a transcriptome analysis of the RNA-

seq data to select candidate genes with probable association with root growth

and development. Candidate genes were functionally examined in soybean by

overexpression of individual genes using intact soybean composite plants with

transgenic hairy roots. Root growth and biomass in the transgenic composite

plants were significantly increased by overexpression of the GmNAC19 and

GmGRAB1 transcriptional factors, showing up to 1.8-fold increase in root

length and/or 1.7-fold increase in root fresh/dry weight. Furthermore,

greenhouse-grown transgenic composite plants had significantly higher seed

yield by about 2-fold than control plants. Expression profiling in different

developmental stages and tissues showed that GmNAC19 and GmGRAB1 were

most highly expressed in roots, displaying a distinct root-preferential expression.

Moreover, we found that under water-deficit conditions, overexpression of

GmNAC19 enhanced water stress tolerance in transgenic composite plants.

Taken together, these results provide further insights into the agricultural

potential of these genes for development of soybean cultivars with improved

root growth and enhanced tolerance to water-deficit conditions.

KEYWORDS

soybean, GmNAC19, GmGRAB1, GmTUBBY, overexpression, root growth, seed yield,
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Introduction

Plant root systems exhibits diversity in morphology, physiology,

and architecture, which are collectively impacted by variable and

unpredictable soil environment. Root uptake of belowground

resources, such as water and nutrients, are fundamental to plant

productivity. Roots play important roles in water-limited

environments as robust root growth could enhance crop

production in water-deficient soil. While roots are underground,

unseen, and relatively unappreciated, they represent the foundation

for crop yield (Franco et al., 2011; Schmidt, 2014; Rellán-Álvarez

et al., 2016; Lynch, 2019; Maurel and Nacry, 2020).

Soybean (Glycine max) is one of the most important crops

globally. However, soybean production is often impacted by various

biotic and abiotic stress factors. Among them, water shortage is an

important limiter for soybean yield, which is especially important

during pod filling stage (Frederick et al., 2001; Brevedan and Egli,

2003; Liu et al., 2003; Manavalan et al., 2009; Xionga et al., 2021).

Advanced technologies have yielded information for development

of drought-tolerant soybean cultivars, either through molecular

breeding or genetic engineering approaches (Arya et al., 2021;

Saleem et al., 2022).

Several studies have used bioinformatic tools such as differential

gene expression analysis and homologous sequence similarity to the

genes with known function in rice and Arabidopsis to identify

candidate genes for root growth and water-deficit tolerance in

soybean. These systematic-based analyses detected transcriptional

factors of the MYB, bHLH, AP2-EREBP, NAC, WRKY, bZIP, and

C2H2-zinc finger gene families as prime factors (Le et al., 2011; Le

et al., 2012; Neves-Borges et al., 2012; Chai et al., 2015; Ha et al.,

2015; Song et al., 2016; Hussain et al., 2017; Melo et al., 2018; Zhou

et al., 2020; Shahriari et al., 2022; Xuan et al., 2022). However, the

majority of these studies lack the functional characterization of

these candidate genes. To date, the molecular functions of a limited

member of the transcription factors have been shown in soybean

(Chen et al., 2007; Zhang et al., 2009; Gao et al., 2011; Hao et al.,

2011; Quach et al., 2014; Fuganti-Pagliarini et al., 2017; Ning et al.,

2017; Shi et al., 2018; Nguyen et al., 2019; Wei et al., 2019; Yang

et al., 2019; Yang et al., 2020; Wang et al., 2020; Wang et al., 2021;

Chen et al., 2021; Leng et al., 2021; Yuan et al., 2021).

The objective of this study was to identify candidate genes with

special reference to root growth and water-deficit tolerance in

soybean. We (i) used transcriptome analysis of the RNA-seq data,

(ii) identified the candidate genes, and (iii) examined the

functionality by overexpressing individual genes in transgenic

composite soybean plants. Our results provide important insights

into the potential applications of these genes for line development

with desire traits in this economically important crop.
Materials and methods

Selection of candidate genes

We previously produced RNA-seq data from roots of soybean

(‘Williams 82’) at three different growth stages (20-, 30-, and 44-
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day-old plants) with three biological replicates for each time point

as described in Niyikiza et al. (2020). In the present study, we

performed a transcriptome analysis of the RNA-seq data generated

in Niyikiza et al. (2020). Genes with the highest expression levels at

each of the three growth stages were identified. Then, genes showing

high expression across the three growth stages were selected and

screened through translational literature for information about

genes that associate with root growth in plants.
Expression patterns of candidate genes

For expression profiling of the candidate genes, the publicly

available RNA-seq datasets were used. Description and accession

number of these RNA-seq datasets were provided in Piya et al.

(2023). Heatmap plot was created by the PhytoMine tool (https://

phytozome.jgi.doe.gov) presented at the Phytozome v12 website

(https://phytozome.jgi.doe.gov). Gene expression analysis and

heatmap plot construction were performed as described in Piya

et al. (2023).
Isolation of open reading frame (ORF) of
candidate root genes

Total RNA was isolated from root tissue of ‘Williams 82’

soybean using the RNeasy Plant Mini Kit (Qiagen, Valencia, CA,

USA). Then, first-strand cDNA was synthesized using High-

Capacity cDNA Reverse Transcription kit (Applied Biosystems,

Foster City, CA, USA). The ORF corresponding to each target gene

were amplified via PCR using gene-specific primers. Primers were

designed to create AscI (at the 5’ end) and AvrII or BamHI (at the 3’

end) restriction sites (Supplementary Table S1). The individual PCR

products were cloned into the pGEM vector (Promega, Madison,

WI, USA) for sequence confirmation.
Construction of the soybean
transformation vector

Sequence-confirmed ORF fragments were subcloned into the

binary vector pG2RNAi2 (GenBank KT954097) by replacing the

GUS linker with each target gene under the control of the soybean

ubiquitin (GmUbi) promoter and the RuBisCO small subunit (rbcS)

terminator. The binary vector contains the green fluorescence

protein (GFP) reporter under the control of the Cauliflower

mosaic virus (CaMV 35S) promoter and the nopaline synthase

(NOS) terminator as selective marker for transgenic hairy roots.
Generation of transgenic soybean
hairy roots

Agrobacterium rhizogenes strain K599 was used for the generation

of the soybean hairy roots as previously described (Rambani et al.,

2020a; Rambani et al., 2020b; Piya et al., 2022). The individual target
frontiersin.org
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genes cloned into the pG2RNAi2 binary vector and the empty

pG2RNAi2 vector were transferred into A. rhizogenes by the freeze-

thaw method. Transgenic composite hairy root plants were generated

by injecting A. rhizogenes containing different binary constructs in the

hypocotyl of 5-day-old ‘Williams 82’ seedlings. Transgenic composite

hairy root plants expressing the empty vector were also generated and

used as negative controls. About 25 transgenic soybean hairy root lines

for each construct were generated. The inoculated soybean seedlings

were maintained in growth chambers (Percival Scientific Inc. Perry,

IA, USA) at 26°C under a photoperiod of 16 h light/8 h dark cycle with

150 µmol/m2 s light intensity. Approximately, four to six weeks after

agroinoculation, transgenic hairy roots were detected based on GFP

expression, using an epifluorescent microscope model SZX12

(Olympus America, Center Valley, PA, USA) with a GFP filter set

at 487/509 nm excitation/emission wavelengths. The tap root and

GFP-negative hairy roots were excised.
Growth characteristics and
water-deficit treatment

The soybean composite plants with the GFP-positive hairy roots

were grown in 0.6 L pots containing potting mix (Sun Gro

Horticulture, Agawam, MA, USA) under growth chamber

conditions mentioned above. For hairy root growth under no stress,

maximum root length and root fresh/dry biomass of the soybean

composite plants with the GFP-positive hairy roots were measured by

ruler and weighing scale, respectively. For yield evaluation under no

stress, the soybean composite plants with the GFP-positive hairy roots

were transplanted into 4-liter pots containing potting mix and grown

in a greenhouse (photoperiod of 16 h light/8 h dark cycle and 25 °C

temperature with fluctuations from a minimum of 22 °C to a

maximum of 28 °C) to full maturity. The pod number, seed count,

and total seed weight per plant were measured. To assess the effects of

water-deficit stress, an experiment was performed in 0.6 L pots

(potting mix) in a growth chamber. Water deficit treatment on

composite plants with 10 GFP-positive hairy roots was applied by

withholding water for four weeks after plants were allowed to

acclimate for one-week in pots. The effect of water deficit stress was

assessed by monitoring wilting and survival of the plants.
Statistical analysis

Means were analyzed in SAS version 9.4 (SAS Institute Inc.,

Cary, NC, USA) using one-way ANOVA using Fisher’s least

significant difference method. Differences were considered

statistically significant at P ≤ 0.05.
Results

Selection of candidate genes

A transcriptome analysis of the RNA-seq data which potentially

included the entire expression profile of the soybean root genome at
Frontiers in Plant Science 03
three different growth stages (20, 30, and 44 day-old) was performed.

We first selected the top 600 genes from each of the three growth

stages with the most expression levels (Log2 RPKM of 10.81 to 6.71)

(Niyikiza et al., 2020). Venn diagrams for the top 600 genes were

constructed that showed 127 genes were common to the three growth

stages (Figure 1A). Several of these common genes (Supplementary

Table S2) corresponded to genes with function in root growth/

development and/or tolerance to stress response. A total of eight

genes from the common gene list were selected as candidate genes

(Figure 1B). Furthermore, in silico expression profile of these candidate

genes in different developmental stages and tissues showed that the

expression patterns of these genes were varied among different organs

and tissues (Figure 1C). NAC19, GRAB1, and Ring zinc finger were

most expressed in roots, displaying a distinct root-preferential

expression pattern. Expression of MYB78 and DUF1645 was higher

in roots among all the tissues. TUBBY and CLC had higher expression

in root hair compared to a low expression level in other tissues. EXPB2

had very low expression level in all the tissues.
Initial screening of the candidate genes
in soybean

Initially, soybean composite plants overexpressing the individual

CLC, EXPB2, RING-C3HC4 zinc finger, MYB78, DUF1645, NAC19,

TUBBY, and GRAB1 genes (Figure 1B) were generated. About 85% of

the hairy roots were transgenic exhibiting GFP fluorescence. Four

weeks after agroinoculation, the tap root and GFP-negative hairy

roots were eliminated (Supplemental Figure S1). Six independent

soybean composite plants per each construct with 10 GFP-positive

hairy roots were used for water-deficit tolerance assays. The plants

were grown in potting mix supplemented with water for one week in

the growth chamber before the onset of the water-deficit stress. Then,

the plants were left in the growth chamber without water. After three

weeks of withholding water, wilting of the plants was visible.

However, after four weeks of withholding water, only transgenic

composite plants transformed with NAC19, TUBBY, and GRAB1

genes survived (Supplemental Figure S2).
Selection of top performing
candidate genes

Based on the initial results (Supplemental Figure S2), we

selected NAC19 , TUBBY, and GRAB1 genes for further

exper iments . New sets of soybean composi te plants

overexpressing the individual NAC19, TUBBY, and GRAB1 genes

were generated. Visual estimation showed that about 90% of the

hairy roots were transgenic by exhibiting the GFP fluorescence.
Non-stress condition

For evaluation of root growth under non-stress condition, the

soybean composite plants at four weeks after agroinoculation

(Figure 2A) were grown for an additional three weeks. Eight
frontiersin.org
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independent soybean composite plants per each construct were used.

There were apparent morphological differences between transgenic

hairy roots transformed with NAC19 or GRAB1 and the control

plants (Figure 2B). Hairy roots of NAC19 or GRAB1 plants were 1.8-

fold longer compared to the controls (Figure 2C). Moreover, the

fresh/dry weights of hairy roots of GRAB1 plants were increased by

up to 1.7-fold compared to the controls (Figure 3).
Agronomic traits evaluation under
greenhouse conditions

For evaluation of seed production, six independent soybean

composite plants per construct were grown in the greenhouse to full

maturity (Figure 4). No visible morphological differences were

observed among the plants. The plants with transgenic hairy

roots transformed with NAC19 or GRAB1 gene produced more

pods (up to 1.8-fold), seeds (1.8-fold), and seed weight (1.9-fold) per

plant relative to controls. But, there was no significant difference in

the single seed weight compared to controls (Figure 4).
Water-deficit stress condition

For evaluation of water-deficit stress tolerance, the soybean

composite plants at four weeks after agroinoculation were used. Six
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independent soybean composite plants per construct with 10 GFP-

positive roots were used. The conditions for the plant growth and

water-stress treatment were as described above. After four weeks of

withholding water, only transgenic composite plants overexpressing

NAC19 gene survived (Figure 5).
Discussion

Water-deficit stress is a major abiotic factor that decreases

soybean growth and production (Xionga et al., 2021). Several

studies involving genetic mechanism of drought tolerance in

soybean have been conducted, but more research is needed to

explore and understand the genetic control of drought tolerant

traits in soybean (Arya et al., 2021). In this study, we performed a

comprehensive transcriptomic analysis of expressed genes in

soybean roots at different growth stages to identify genes with

probable association with growth and stress tolerance. Our findings

provide additional information for the elucidation of the growth

and stress responses in soybean.

Our RNA-seq analysis identified CLC and EXPB2 as candidate

genes, which have been shown to be involved in root elongation and

stress responses in soybean (Guo et al., 2011; Li et al., 2015; Wei

et al., 2016). It also identified members of various transcription

family members including zinc fingers, MYBs, DUFs, and NACs,

which are considered as the prime transcription factors associated
B

C

A

FIGURE 1

Candidate genes selected from transcriptome analysis of the RNA-seq data generated in Niyikiza et al. (2020). (A) Venn diagrams showing unique
and shared high expressed genes in the roots of soybean at 20, 30, and 44 days of growth stages. (B) The identity of the eight candidate genes.
(C) Expression profiling of the candidate genes using the publicly available RNA-seq datasets. Heatmap expression profiles of candidate genes in
different tissues of soybean. The abundance of each transcript is represented by the color bar. Red indicates higher and green indicates lower
expression levels.
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with root growth and stress response in soybean (Chai et al., 2015).

These findings further validate our RNA-seq approach for the

identification of candidate genes.

Yet, functional characterization of relevant genes is often

missing in gene discovery, which is absolutely required for crop

improvement. Many systematic studies have identified a number of
Frontiers in Plant Science 05
candidate genes for growth and water stress response, providing

useful genetic resources for functional analyses and future

development of improved soybean (Le et al., 2011; Le et al., 2012;

Neves-Borges et al., 2012; Chai et al., 2015; Ha et al., 2015;

Song et al., 2016; Hussain et al., 2017; Melo et al., 2018; Zhou

et al., 2020; Shahriari et al., 2022; Xuan et al., 2022). However, the
BA

FIGURE 3

Growth characteristics of transgenic soybean hairy roots overexpressing the candidate genes under non-stress conditions. (A) Representatives of
hairy roots fresh weight and (B) dry weight at eight weeks after agroinoculation. Bars represent mean values of eight biological replicates (composite
plants) ± standard error. Bars with different letters are significantly different at P ≤ 0.05 as tested by one-way analysis of variance followed by a
Fisher’s least significant difference.
B

C

A

FIGURE 2

Growth characteristics of transgenic soybean hairy roots overexpressing the candidate genes under non-stress conditions. (A) Representatives of
transgenic hairy roots at five weeks after agroinoculation. The tap root and GFP-negative hairy roots were excised. (B) Representatives of transgenic
hairy roots from (A) grown for an additional three weeks. (C) Average hairy roots lengths obtained from (B) composite plants. Bars represent mean
values of eight biological replicates (composite plants) ± standard error. Bars with different letters are significantly different at P ≤ 0.05 as tested by
one-way analysis of variance followed by a Fisher’s least significant difference. Scale ruler = 15 cm.
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functionality of majority of these candidate genes is yet to be

elucidated. For example, the NAC gene family known for their

involvement in plant growth and stress responses is one of the most

studied transcription factors in soybean. As such, numerous NAC

candidate genes for growth and water-stress tolerance were

identified in soybean (Le et al., 2011; Ha et al., 2015; Hussain

et al., 2017; Melo et al., 2018). Nevertheless, to date, the functions of

only a few NAC family members have been elucidated in soybean

(Hao et al., 2011; Quach et al., 2014; Yang et al., 2019; Yang et al.,

2020). Thus, more functional studies of GmNAC genes are needed

to explore their specific and redundant roles in stress tolerance in

soybean. We showed that overexpressing GmNAC19 using

transgenic hairy root system significantly increased root growth

under non-stress and enhanced tolerance under water-deficit

conditions. Yet, GmNAC19 overexpression resulted in increased

root length, but not root biomass weight. The number and length of

the roots have been considered as important factors for root system

architecture and higher root biomass weight is thought to be

associated with improved lateral root system (Lynch, 2019;

Maurel and Nacry, 2020). This may suggest that GmNAC19 is

mainly associated with deep root growth, rather than shallow root

growth trait. Furthermore, the GmNAC19-overexpressing lines

produced higher seed yield than controls grown to full maturity

in the greenhouse, a finding that may suggest a positive impact of

the increased root growth on seed production. Altogether, our

functional characterization of GmNAC19 provides additional

knowledge about potential applications of GmNAC genes for

development of improved soybeans.
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Likewise, overexpression of GmGRAB1 led to a significant

increase in root growth and seed yield under non-stress

conditions. However, under water-deficit conditions, GmGRAB1-

overexpressing lines did not exhibit enhanced stress tolerance.

GRAB proteins are novel members of the NAC transcription

factor (Xie et al., 1999). The GmGRAB1 identified in our study is

a homolog of rice OsNAC9, a NAC gene whose overexpression in

rice increased grain production under normal conditions and

enhanced stress tolerance under water-deficit conditions (Redillas

et al., 2012). Taken together, the present study provides further

insights into the possible conserved functionality of these

homologous NAC genes across plant species.

Additionally, our expression analysis indicated that both

GmNAC19 and GmGRAB1 are primarily expressed in roots,

displaying a distinct root-preferential expression. These findings

further suggest that GmNAC19 and GmGRAB1 may function in

roots. It also points out to the potential biotechnological use of their

promoters to direct gene expression to the targeted root tissues (Liu

and Stewart, 2016).

Our functional characterization involving overexpression of the

candidate gene GmTUBBY resulted in inconsistent findings. Initial

screening of our candidate genes led to selection of GmTUBBY

along with GmNAC19 and GmGRAB1 as potential genes for

enhancing water-deficit tolerance. However, further in-depth

functional analyses showed no significant changes in root growth

or water-deficit stress tolerance in GmTUBBY-overexpressing lines.

TUBBY-like proteins (TLPs) are transcription factors that have

been shown to play important roles in plant growth and
FIGURE 4

Agronomic trait evaluation of transgenic soybean hairy roots overexpressing the candidate genes under non-stress conditions. The composite
soybean plants were grown under greenhouse condition to full maturity. Bars represent mean values of six biological replicates (composite plants) ±
standard error. Bars with different letters are significantly different at P ≤ 0.05 as tested by one-way analysis of variance followed by a Fisher’s least
significant difference. Scale ruler = 15 cm.
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development and in responses to biotic and abiotic stresses,

including drought tolerance (Bhushan et al., 2007; Chen et al.,

2016; Xu et al., 2019; Li et al., 2021). However, there is not much

published information about TLPs and their association with

abiotic stress responses in soybean. Using bioinformatic tools, a

recent study identified 22 TLP genes in soybean genome (Xu et al.,

2022). The role of GmTLP8 in abiotic responses was further

investigated by overexpression of GmTLP8 in soybean showing

enhanced tolerance to drought and salt stresses (Xu et al., 2022).

These findings provided new insights into the function of TLPs in

abiotic stress responses in soybean. Based on the information

reported in Xu et al. (2022), the GmTUBBY gene identified in our

study corresponds to GmTLP13 whose function in soybean remains

to be elucidated. Furthermore, using publicly available gene

expression data, the GmTLP13 was found to be upregulated

under drought stress (Xu et al., 2022). The GmTLP13

upregulation in response to drought stress was further confirmed

by qRT-PCR experiments (Xu et al., 2022). Taken together, our

present study may also provide additional clues into the function of

the TLPs in stress responses in soybean. Further research on the

TLP genes enhance understanding of the factors associated with

stress tolerance in soybean.

In conclusion, we have shown that overexpression of GmNAC19

and GmGRAB1 can enhance root growth and/or tolerance to water-
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deficit stress in soybean. Additionally, GmNAC19 and GmGRAB1

likely function in roots, consistent with their root preferential

expression patterns. These results provide further insights into the

potential applications of these genes for development of improved

soybean cultivars. Future studies of the GmNAC19 and GmGRAB1

in stable transgenic soybean with subsequent evaluations under field

conditions will further elucidate their functionality in practical

agricultural setting. Also, further research on GmNAC19 and

GmGRAB1 for discovery of downstream target genes would lead

to the identification of suit of genes that may act in concert for

development of improved soybeans. These studies are expected to

yield insights into the mechanisms involved in root growth and

drought tolerance and provide information on potential strategies

for developing improved soybeans. Our study provides insights for a

more rigorous exploration of the role of GmNAC19 and GmGRAB1,

which may serve to engineer crops for higher productivity

and sustainability.
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FIGURE 5

Soybean composite plants with transgenic hairy roots overexpressing the candidate genes under water-deficit stress conditions. (A) Representatives
of composite plants before subjecting to water-deficit condition. (B, C) Representatives of composite plants subjected to water-deficit condition via
water deprivation for four weeks.
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