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Modeling stand biomass
for Moso bamboo forests
in Eastern China

Xiao Zhou1,2, Zixu Yin1,2, Yang Zhou1,2, Xuan Zhang1,2,
Ram P. Sharma3, Fengying Guan1,2* and Shaohui Fan1

1International Center for Bamboo and Rattan, Key Laboratory of National Forestry and Grassland
Administration, Beijing, China, 2National Location Observation and Research Station of the Bamboo
Forest Ecosystem in Yixing, National Forestry and Grassland Administration, Yixing, China, 3Institute of
Forestry, Tribhuwan University, Kathmandu, Nepal
Stand biomass models can be used as basic decision-making tools in forest

management planning. The Moso bamboo (Phyllostachys pubescens) forest, a

major forest system in tropical and subtropical regions, represents a substantial

carbon sink, slowing down the rise of greenhouse gas concentrations in the

earth’s atmosphere. Bamboo stand biomass models are important for the

assessment of the contribution of carbon to the terrestrial ecosystem. We

constructed a stand biomass model for Moso bamboo using destructively

sampled data from 45 sample plots that were located across the Yixing state-

owned farm in Jiangsu Province, China. Among several bamboo stand variables

used as predictors in the stand biomass models, mean diameter at breast height

(MDBH), mean height (MH), and canopy density (CD) of bamboo contributed

significantly to the model. To increase the model’s accuracy, we introduced the

effects of bamboo forest block as a random effect into the model through

mixed-effects modeling. Themixed-effects model described a large part of stand

biomass variation (R2 = 0.6987), significantly higher than that of the ordinary least

squares regression model (R2 = 0.5748). Our results show an increased bamboo

stand biomass with increasing MH and CD, confirming our model’s biological

logic. The proposed stand biomass model may have important management

implications; for example, it can be combined with other bamboo models to

estimate bamboo canopy biomass, carbon sequestration, and bamboo biomass

at different growth stages.
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Introduction

Forest absorbs a tremendous amount of carbon dioxide from

the atmosphere through photosynthesis, accumulates biomass in

the stem, branches, leaves, and roots, and contributes to the organic

carbon in the soil (Yen and Lee, 2011; Yen, 2016; Yuen et al., 2017).

Forests play an important role in the terrestrial carbon cycle and an

irreplaceable role in maintaining the global climate system and

slowing down the rise of atmospheric greenhouse gas concentration

(Chen et al., 2009; Jyoti Nath et al., 2009; Zachariah et al., 2016).

Consequently, many countries around the world have paid much

attention to the monitoring and evaluation of forest biomass.

Bamboo forests share a large part of the forest ecosystem in

subtropical and tropical regions (Scurlock et al., 2000; Cao et al.,

2011; Song et al., 2011; Song et al., 2017). According to the Ninth

Forest Inventory of China, bamboo forest covers an area of 6.41

million hectares (about 3.57% of total forest coverage), accounting

for approximately a quarter of the global forest coverage (FAO,

2010). Moso bamboo (Phyllostachys pubescens) is one of the most

important economic species in China. Relative to other woody

plants, Moso bamboo has many advantages due to its rapid growth,

high yield, and multiple uses (Scurlock et al., 2000; Lu, 2001). In

addition, the Moso bamboo forest has the capacity to accumulate

large biomass yields in a short growth period (Jyoti Nath et al., 2009;

Yen and Lee, 2011; Yang, 2016; Yen, 2016; Zhou et al., 2022a). Moso

bamboo forests help slow down the rise of greenhouse gas

concentration in the earth’s atmosphere, and therefore

quantifying bamboo forest biomass can be a fundamental basis

for assessing the contribution of the carbon cycle to terrestrial

ecosystems (Zheng et al., 1998; Yue et al., 2018; Zhou et al., 2022b).

Currently, many regions are suffering from a wood shortage, and

bamboo forests can be an alternative source of wood. This research

sought to quantify and model bamboo forest biomass and carbon

sequestration in China.

Biomass measurement is both a time- and labor-demanding

task because the entire bamboo stem needs to be felled, roots

extracted, dried, and weighed for biomass quantification, which is

difficult to do practically (Willebrand et al., 1993; Zhou, 2006a;

Zeng, 2015; Fu et al., 2016; Zhou et al., 2022a). The biomass models,

which are constructed based on sample data acquired from the

population of interest, have frequently appeared in modeling forest

productivity, nutrient cycling, and carbon sequestration by forest

ecosystems. At the same time, methods of constructing biomass

models have evolved from a simple least square regression to

complex nonlinear mixed-effects modeling and dummy variable

modeling (Zeng et al., 2011; Fu et al., 2012; Zeng, 2015; Zhou et al.,

2021; Zhou et al., 2022a; Zhou et al., 2022b; Zhou et al., 2022c).

Currently, the application of biomass models is increasingly used to

estimate the biomass of plant communities.

Biomass models are based on allometric functions (Chen et al.,

2009; Zeng et al., 2011; Fu et al., 2012; Zeng, 2015; Fu et al., 2016;

Lin et al., 2017). In recent years, research on plant biomass has

included (1) building an individual-based biomass model or its

application for estimating biomass in a large scale (e.g., biomass of a

stand, forest of region, province, or country) (Zhou 2006a, Zhou

et al., 2006b; Chen et al., 2009; Zeng et al., 2011; Fu et al., 2012;
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Zeng, 2015; Lin et al., 2017; Zeng et al., 2017); (2) constructing

compatible individual biomass model systems by considering

different growth conditions of different components of individual

plants (Fu et al., 2016; Yang, 2016; Zhou et al., 2022a); (3) studying

biomass or carbon storage of the forests managed with different

measures, different forest types, different site types, and different

stand densities (Zhou et al., 2006b; Yen and Lee, 2011; Mensah

et al., 2016; Yang, 2016; Qin et al., 2017; Castillo et al., 2018); and

(4) studying forest stand biomass accumulation using remote

sensing data by extracting important stand variables (e.g., tree

height, canopy density, crown width, etc.) (Gonzalez de Tanago

et al., 2017; Graves et al., 2018). The belowground component

(roots) of Moso bamboo plants is typically large and difficult to

distinguish because of the extensive spread of rhizomes, typical of

uniaxially scattered bamboo species, whereas the aboveground

component can be considered a single plant. The propagation

and regeneration of bamboo mainly depend on the spread and

growth of rhizomes, commonly referred to as whips, and the

emergence of shoots (culms). Aboveground bamboo culms are

similar to trees, while the belowground component does not

represent an individual plant (Zhou, 1998). Consequently,

individual-based total biomass models (aboveground +

belowground) cannot be constructed in the same way as for trees.

However, despite the potential value of biomass models for the

precise estimation of the stand biomass of Moso bamboo, no

models currently exist.

Bamboo stand biomass differs with stand structure, stand

development stage, and other stand features. For biomass

modeling, measurements were carried out in bamboo stands with

different site conditions to simulate the relationship between stand

biomass and variables affecting biomass variation. Biomass data are

generally hierarchically structured (multiple sample plots within the

same block and multiple blocks within a forest), and therefore the

observations are likely to be spatially correlated (Calama and

Montero, 2004; Fu et al., 2017; Zhang et al., 2017; Yang et al.,

2020). When traditional modeling methods, such as ordinary least

squares (OLS) regression, are used to estimate the model

parameters from such a hierarchically structured dataset, an

invalid hypothesis test is needed (West et al., 1984; Yang et al.,

2020). Mixed-effects modeling is a solution to the problem of

correlation among the observations within the same subject

(block or sample plot). Mixed-effects modeling takes into account

the randomness and stochasticity in the data and thus substantially

improves the prediction accuracy of the resulting models (Fu et al.,

2017; Pan et al., 2020; Yang et al., 2020; Zhou et al., 2021; Zhou

et al., 2022c). A stand-level mixed-effects biomass model is

necessary for the precise estimation of Moso bamboo stand

biomass and carbon sequestration.

To help overcome the problems resulting from the hierarchical

data structure and the absence of bamboo stand biomass estimation

models, this study aims to (1) construct a stand biomass model for

the Moso bamboo forest using mixed-effects modeling and (2)

evaluate the important factors affecting Moso bamboo stand

biomass. The presented model will be used for the estimation of

Moso bamboo stand biomass and potentially become a reliable tool

for carbon accounting and support for bamboo forest management.
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Materials and methods

Study area

This study was conducted using data from Yixing’s state-owned

forest farm located in Wuxi City, Jiangsu Province, China

(Figure 1). The area has a mid-subtropical marine monsoon

climate where the annual average maximum temperature is 20°C–

24°C and the annual average minimum temperature is 12°C–14° C.

Total area of the forest farm is 3,273 ha, including 3,191 ha of forest.

There is an estimated 42 million ha of Moso bamboo (Phyllostachys

pubescens) forest, representing one-third of the total forest area in

Jiangsu Province (Huang, 2021).

The traditional management practices employed in the Moso

bamboo forests of Jiangsu Province include harvesting mature bamboo

culms, winter and spring shoots, shrubs and grass, and tourism activities.

Yixing forest farm does not fertilize Moso bamboo forests, but human

disturbance to the bamboo forest does occur. The stand density of Moso

bamboo is reported to be 2,000–4,000 plants/hm2, with a mean DBH of

approximately 9.8 cm and an age structure expressed in du of 3:4:3 for I

du, II du, and III du, respectively (1-year-old bamboo culms are referred

to as 1 du, 2–3 years as 2 du, and 4–5 years as 3 du).
Data collection

Data from 45 temporary sample plots established across Moso

bamboo forests in 2022 (Figure 1) were used. The sample plot size

was 20 × 20 m, nested within bamboo forest blocks; altogether, 45
Frontiers in Plant Science 03
sample plots were nested within five blocks. Blocks were based on

different slopes, aspects, and positions of bamboo stands. Plots were

positioned randomly to represent bamboo stands with different site

conditions. Sample plots were established in stands not suffering

considerable damage due to disease, pests, and other factors.

Selected sample plots were assumed to provide representative

information for the varieties of stand structure and density,

bamboo stand height and age, and site productivity. Destructive

sampling and data collection were carried out by the International

Center for Bamboo and Rattan (ICBR). Within each sample plot, all

the standing living bamboo stems with a diameter at breast height

(DBH) > 5 cm were measured for DBH, height (H), and height-to-

crown base (HCB). Because of the unique growth characteristics of

Moso bamboo forests, which involve a vegetative cycle of 2 years

(on- and off-year), stand age was expressed as “du” (Tang et al.,

2016). One “du” (I) represents 1–2 years, and 2 and 3 “du” (II and

III) correspond to 3–4 and 5–6 years, respectively (Tang et al.,

2016). The canopy density (CD) of the bamboo forest was

determined using a digital camera with a fish-eye lens to take

vertical snapshots of the forest canopy between 8:00 and 10:00 a.m.

A total of 10 observations were taken 1.5 m above the ground. The

CD of sample plots was obtained using image analysis (Table 1)

(Zhou et al., 2022b; Zhou et al., 2022c). Figure 2 shows the

relationship between different variables and stand biomass.

Estimation of aboveground biomass

Moso bamboo stands were allocated to du groups (I du, II du,

and III du). The DBH and age (du) were measured in each block
FIGURE 1

Location (upper left) of the study area: Yixing state-owned forest farm (upper right) in east China, and spatial distribution of five blocks and 45
sample plots (bottom).
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(five blocks), and the mean DBH for each age was determined. Four

culms with mean DBH at each age in each block were cut at ground

level (5 blocks * 4 culms * 3 du groups). A total of 60 bamboo culms

were harvested.

Each culm was sampled, and the weight of each section was

determined. Subsamples were taken from the upper, middle, and

lower parts of each 2-m section of the bole, and depending on the

diameter, 500–1,000 g was sampled after mixing. The standard

branch assessment method was adopted for determining bamboo

branch biomass (Zhou, 2006a; Zhou et al., 2006b; Yang, 2016). After

bamboo stems were divided into 2-m sections, three standard

branches were selected according to the average base diameter

and length in each section, a fresh weight for each of them was

taken, and the mean weight was obtained. The number of live
Frontiers in Plant Science 04
branches in each section was used to obtain the total fresh weight of

branches in each section. After mixing 500–1,000 g branch samples

were collected and dried to estimate dry matter. To measure leaf

biomass the leaves of selected standard branches were removed,

fresh weight was obtained, and a 100–200-g subsample was taken

for drying. Drying was performed at 85°C until a constant weight

was achieved. Drying took 3–4 days for culm samples, 2–3 days for

branches, and 1–2 days for leaves. We used the following formula to

determine the dry weight of each sample:

f (culm, branch, leaf ) =o
n

i=1
organdry

organselect�wet

organtotal�wet
(1)

where n refers to the culm number of divided or standard branches,

organ refers to different organs (culm, branch, and leaf), dry refers
TABLE 1 Summary statistics of Moso bamboo variables measured.

Variables Min Max Mean SD

N (individuals ha -1) 1,500 4,500 2,762.7778 668.3857

MDBH (cm) 5.9892 11.7517 9.7836 1.0686

MH (m) 7.0405 13.0567 10.9323 1.1106

MHCB (m) 3.1676 8.5550 6.3057 1.0106

CD 0.3 0.8 0.5436 0.1310

MA (du) 1.4918 2.5 1.7921 0.1829

MAG (kg) 9.4112 39.9894 22.9000 5.2069

AGB (kg ha−1) 348.2150 5,502.5574 2,449.8198 1,489.8548

BGB (kg ha−1) 150.3734 3,568 1,524.6638 758.5164

SB (t ha−1) 5.2832 22.6764 10.2648 3.1749
min, minimum; max, maximum; SD, standard deviation; MDBH, mean diameter at breast height; MH, mean total height; MHCB, mean height-to-crown base; CD, canopy density; MA, mean
age; MAG, mean aboveground biomass; AGB, aboveground biomass; BGB, belowground biomass.
FIGURE 2

Relationship of stand biomass (SB), total aboveground biomass (AGB), and total belowground biomass (BGB) with each of the five stand variables:
mean diameter at breast height (MDBH), mean total tree height (MH), mean height-to-crown base (MHCB), mean age (A), and canopy density (CD).
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to sample dry weight, select-wet refers to sample fresh weight, and

total-wet refers to total fresh weight.

The total dry biomass of individual bamboo culms was obtained

by summing the biomass of each organ.

Aboveground bamboo biomass data were used to calibrate the

model proposed by Zhou (2006a) to estimate the aboveground

biomass of each bamboo culm in combination with other variables,

such as DBH and age. The aboveground biomass (AGB) of the

individual was estimated using Eq. (2) (Zhou, 2006a). Total

aboveground biomass was obtained by upscaling. There was very

little litter present in sample plots, and there was no undergrowth

present, so neither was included in the study.

AGBij = b1DBH
b2
ij

b3Aij

Aij + b4

 !b5

(2)

where AGBij is the aboveground biomass of individual Moso

bamboo in the jth stem of the ith sample plot, is DBHij the

diameter at breast height of individual Moso bamboo in the jth

stem of the ith sample plot, and Aij is the bamboo degree at breast

height of Moso bamboo in the jth stem of the ith sample plot.
Estimation of belowground biomass

In November 2022, 1 m3 of soil was excavated from the center

of each sample plot, and roots were extracted, cleaned, and weighed.

This was replicated three times for each sample plot. Root

subsamples were taken for drying and estimation of dry matter.

Belowground biomass (BGB) for each sample plot was obtained

using the following formula:

BGBij =
25
3 o

3

n=1
Aijn (3)

where Aijn represents the dry weight of belowground biomass in the

nth earthwork of the jth sample plot in the ith block, and BGBij

represents the dry weight of the jth sample plot in the ith block.

The formula for obtaining total stand biomass is as below:

SBij = 25 ∗o
n

k=1

AGBij + BGBij (4)

where k is the number of Moso bamboo culms in each sample plot,

and SBij is the stand biomass of Moso bamboo in the jth sample plot

of the ith block.
Modeling approach

Selecting basic model
We selected three biomass models representing different forms

(linear, empirical, and exponential) (Table 2) from the literature

(Zeng et al., 2011; Fu et al., 2012; Zeng, 2015; Fu et al., 2016; Zhou

et al., 2022a) and used them as base models. Diameter at breast

height is convenient to measure and strongly correlated with
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biomass; consequently, we used MDBH as a predictor variable

(X = MDBH) in our models to identify the best-performing model.

Each model was independently fitted to the entire dataset and

compared using the standard statistical indicators (Eqs. 5–8).

MD =
1
no

n

i=1
(SBij −dSBij) (5)

R2 = 1 −o
n

i=1
(SBij −dSBij)

2=o
n

i=1
(SBij −

o
n

i=1
SBij

n
)2 (6)

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
no

n

i=1
(SBij −dSBij)

2

s
(7)

TRE =o
n

i=1
SBij −cSB ij

��� ���=on
i=1

cSB ij (8)

where SBij is the stand biomass of the jth sample plot in the ith block,

and n is the number of sample plots. MD is the mean deviation

(residual), RMSE is the root mean square error, TRE is the total

relative error, and R2 is the coefficient of determination.

Additional predictor variables
In addition to MDBH, Moso bamboo biomass could be largely

affected by the size and vigor of a stand or individual bamboo, site

quality, and stand density or competition (Rijal et al., 2012; Fu et al.,

2013; Fu et al., 2017). A total of 13 variables, including seven stand-

and individual-level variables and six variables describing site

quality (Table 3), were evaluated for their potential contributions

to the variations of SB using the best model. The random effect of

the block was added to the model to reflect site quality.

We selected the predictor variables to be included in the SB

models using graphical analysis and consideration of the correlation

statistics of the variables included in the analysis (Uzoh and Oliver,

2008). Moreover, different combinations of stand variables and

their transformations were evaluated based on RMSE and Akaike’s

information criterion (AIC). The best-performing expanded base

model was then used to construct the nonlinear mixed-effects stand

biomass model.

Nonlinear mixed-effects stand biomass model
The nonlinear mixed-effects stand biomass (NLME SB) model

was constructed by introducing block-level random effects into the
TABLE 2 SB candidate stand models considered.

Model No. Model Model form

I.1 SBij = b0 + bx Linear

I.2 SBij = bxa Empirical

I.3 SBij = aexp( − βx) Exponential
SBij , stand biomass jth sample plot nested in the ith block; x, vector of stand variables; b0 , b , a ,
a0, and a1are parameter vectors.
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expanded base model. The NLME model alternatives with all the

possible expansion combinations of the fixed-effects parameters

with the random effects were fitted to the data, and a model variant

with the smallest AIC and the largest log-likelihood (LL) was

selected for further analyses. To avoid the problems caused by

over-parameterization, we performed the likelihood-ratio test

(LRT) (Fang and Bailey, 2001).

Our preliminary analysis showed that spatial correlations had little

influence on the SBmodel, but there was significant heteroscedasticity.

We then introduced the variance–covariance matrix (Eq. 9) to reduce

heteroscedasticity (Davidian and Giltinan, 2003).

Ri = s 2G0:5
i GiG

0:5
i (9)

where Ri is the variance–covariance matrix of the error within

sample i, s 2 is a scaling factor of the error dispersion, which is equal

to the residual variance of the estimated model (Grégoire et al.,

1995), Gj is the diagonal matrix describing heteroscedasticity of the

sample plots, and Gi is a matrix describing autocorrelations of the

observations within the block, which was not significant. Therefore,

Gi was assumed to be an identity matrix.

We evaluated the effectiveness of three commonly used variance

functions (Eqs. 10–12) in reducing heteroscedasticity (Fu et al., 2020;

Yang et al., 2020), an exponential function, a power function, and a

constant plus power function. We added each of the functions to the

optimal model that was selected as above, and AIC and Log-likelihood

(LL) were used to evaluate the effectiveness of each function.

Var(xij) = s 2 exp (2gMDBHij) (10)
Var(xij) = s 2MDBH2g
ij (11)

Var(xij) = s 2(g1 +MDBH2g2
ij )2 (12)

whereMDBHij is the mean diameter at breast height of the jth sample

plot in the ith block, and g, g1, and g2 represent the parameters to

be estimated.
NLME SB estimation

The maximum likelihood with the Lindstrom and Bates

algorithm implemented in the R software (version 4.1.0) nlme

function (Fu et al., 2013; Yang et al., 2020; Zhou et al., 2021) was

used to estimate all the NLME model variants. Many studies (Fu

et al., 2013; Yang et al., 2020; Zhou et al., 2021) have described

Lindstrom and Bates algorithms and nlme functions.
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Model evaluation

The effectiveness of the NLME SB model can be evaluated using

independent data. However, additional data acquisition is costly and

limited, and therefore, we used the leave-one-out cross-validation

(LOOCV) approach because it provides an unbiased error estimate

(Fu et al., 2020; Yang et al., 2020; Zhou et al., 2021). The common

statistical criteria (Eqs. 5–8) were used to evaluate the prediction

performance of the stand biomass model developed in this study.
Results

Base model

The best base stand biomass model was selected using four

statistical criteria (Eqs. 5–8). Fit statistics frommodel I.2 showed the

smallest RMSE and TRE and the largest R2 (Table 4), which was

ultimately used as a basis for constructing a NLME stand biomass

model for Moso bamboo.
Inclusion of stand covariates

We used only those stand variables that had no collinearity and

contributed significantly to the models. In addition to MDBH, other

selected variables are MH and CD, which were assumed to describe

the stand development stage and stand vigor, respectively. Model

I.2, containing MDBH and MH as covariates, showed the smallest

RMSE and TRE and the largest R2. The final expanded base model

(Eq. 13) was then ultimately expanded as a NLME SB model.

SBij = b0CD
b1
ij MDBHb2

ij MHb3
ij (1 + xij) (13)

where SBij is the stand biomass of the jth sample plot nested in the ith

block; CDij is the canopy density of the j
th sample plot nested in the

ith block, MDBHij is the mean diameter at breast height of the jth

sample plot nested in the ith block, MDBH ij is the mean height of

the jth sample plot nested in the ith block, and b0−b4 are

model parameters.
NLME SB model

There were 15 combinations of the random effects with four

fixed parameters (b0−b4) of the expanded base model (Eq. 13). All
TABLE 3 Stand-level variables evaluated for stand biomass models.

Effects by
group

Variables

Stand or tree
size and vigor

Stand density (N), canopy density (CD), sample plot arithmetic mean diameter (AMD), sample plot quadratic mean diameter (QMD), sample plot
dominant bamboo diameter (DD), sample plot arithmetic mean height (AMH), mean age, mean height-to-crown (MHCB)

Site quality Sample plot dominant bamboo height (DH), latitude (LE), longitude (LG), aspect (AT), slope (SE), elevation (EN)
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TABLE 6 Log-likelihood ratio test (L-ratio) for all the parameter combinations containing random effects.

The fixed parameter associated with random effect AIC LL L-ratio p-value

b1 193.5683 −90.78417

b0b1 195.5684 −90.7842 5.5104e−05 0.9941

b1 b2 195.5683 −90.78416 1.0082e−05 0.9975

b1 b3 195.5683 −90.78417 2.1984e−06 0.9988

b0b1b2 197.5684 −90.7842 5.5097e−05 1

b0 b1 b3 197.5684 −90.7842 5.5875e−05 1

b1 b2b3 197.5683 −90.78417 1.7601e−06 1

b0 b1 b2 b3 199.5684 −90.7842 5.6052e−05 1
F
rontiers in Plant Science
 07
LL, log-likelihood; AIC, Akaike’s information criterion; L-ratio, log-likelihood ratio.
TABLE 5 The random effect is associated with a fixed parameter of the expanded base model (Eq. 13) and fit statistics (Eqs. 4–7) of each mixed-effects
model variant.

The fixed parameter associated with random effect MD RMSE TRE R2

b0 0.0182 1.8969 3.1816 0.5748

b2 0.0213 1.5970 2.2344 0.6987

b2 −0.0213 1.6379 2.3532 0.6830

b2 −0.0215 1.6370 2.3506 0.6834

b0 b1 −0.0213 1.5969 2.2342 0.6987

b0 0.0184 1.8969 3.1818 0.5748

b0 0.0184 1.8969 3.1818 0.5748

b1 −0.0212 1.5970 2.2345 0.6987

b1 b3 −0.0213 1.5970 2.2344 0.6987

b2 −0.0215 1.6370 2.3506 0.6834

b0 −0.0213 1.5969 2.2342 0.6987

b0 b1 b3 −0.0213 1.5969 2.2342 0.6987

b2 0.0184 1.8969 3.1818 0.5748

b1 b2 b3 −0.0213 1.5969 2.2342 0.6987

b0 b1 b2 b3 −0.0213 1.5969 2.2342 0.6987
MD, mean residual; RMSE, root mean square error; TRE, total relative error; R2, coefficient of determination.
TABLE 4 Evaluation statistics of base models.

Model Parameter estimates MD RMSE TRE R2

b0 b1
I.1 −5.5239 (3.7444) 1.6138*** (0.3805) −4.3027e−15 2.6960 6.5596 0.2949

I.2 0.2429 (0.2390) 1.6386*** (0.4257) 0.00284 2.6891 6.5239 0.2986

I.3 1.9277* (0.8443) −0.1694*** (0.0432) −0.0035 2.6922 6.5401 0.2969
MD, mean residual; RMSE, root mean square error; TRE, total relative error; R2, coefficient of determination.
***p< 0.0001; **p< 0.001; *p< 0.05.
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the NLME model combinations converged with the meaningful

parameter estimates (Table 5). The LRT test suggested that the

stand biomass model with parameters b1associated with a random

effect provided better performance (Table 6). Thus, the final NLME

SB model was:

SBij = b0CD
b1
ij MDBH(b2+m1)

ij MHb3
ij (1 + xij) (14)

Among the three variance functions evaluated (Eqs. 10–12), the

power exponential form (Eq. 10) applied to MDBH accounted for

the variance heteroscedasticity most effectively [Table 7;

Figure 3 (right)].

All the parameter estimates obtained for the OLS regression

model (Eq. 13) and NLME model (Eq. 14) were significantly

different from zero (p < 0.05). After the substitution of the

estimated parameter values in Eq. (14), the model becomes:

SBij = 0:1863CD0:3558
ij MDBH1:2123

ij MH0:6083
ij (1 + xij)

where

xij ∼N(0, 1:965)

Equation (14) becomes:

SBij = 0:1271CD0:1666
ij MDBH(1:0456+m1)

ij MH0:8902
ij (1 + xij)

Where

mi = ½m1� ∼ N½0, by = 0:0382�

xij ∼N(0,cRij = 2:7338bG0:5
ij
bG ij
bG0:5
ij )

Ĝ ij = diag½0:0555exp(0:7043MDBHi1),…0:0555exp(0:7043MDBHin))

Gij = Iij

We examined the simulated effects of the predictor variables on

the SB (Figure 4). This analysis shows each covariate had a

significant contribution to the SB variations. The SB increased

with increasing MH and CD, which indicates that MH and CD

had a significant influence on the SB.

The curves were simulated using Eq. (13) (extended SB

model without random effects) passed almost through the

middle of the data clouds (Figure 5), indicating that the model

was biologically plausible and the model parameters could be

easily interpreted.
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Model evaluation

We evaluated the expanded base models using the LOOCV

approach. The prediction improvement was substantial when the

block-level random effect was added to the expanded base model

(Figure 6). Model validation showed that both the OLS SB model

(Eq. 13) and the NLME SB model (Eq. 14) described a large

proportion of the variation in stand biomass with no apparent

trend in prediction errors (Figure 6).
Discussion

Increasing attention has recently been directed toward the

bamboo forest for its numerous advantages over other woody

plants. Moso bamboo plays an important role in the global

carbon cycle, including the accumulation and storage of carbon

that limit the concentration of CO2 in the atmosphere (Zachariah

et al., 2016; Lin et al., 2017; Xu et al., 2018). There is a lack of

methods and models to obtain biomass amount and carbon storage

of the bamboo forests, which we have proposed in this study, i.e., a

nonlinear mixed-effects stand biomass model for estimating the

stand biomass of Moso bamboo. Among several predictor variables

evaluated, our model performed the best with three variables

(MDBH, MH, and CD) used as predictor variables and one

random component added to describe the block-level variations

of the bamboo stand biomass. The random block effect included in

our model has described site quality and stand competition,

effectively improving the model prediction accuracy.

Our models show that stand biomass is significantly related to

MDBH and MDC, with the former showing a positive correlation

with bamboo stand biomass, indicating MDBH’s promotion of the

stand biomass. DBH is an indispensable variable used for biomass

estimation and clearly reflects stand vigor (Zeng et al., 2011; Fu et al.,

2012; Zeng, 2015; Fu et al., 2016; Zhou et al., 2022a). For a defined

bamboo stand density, the larger the MDBH, the greater the biomass

of the stand. Some studies have shown that mean bamboo height

might be a key index for evaluating the vitality and quality of

bamboo (Zhang et al., 2014; Zeng, 2015; Fu et al., 2016; Fu et al.,

2017; Pan et al., 2020). Greater MH indicates greater competitiveness

and vitality of the forest with relatively high biomass.

Our study also revealed a significant impact of CD on stand

biomass (Figure 4), as this clearly reflects the site quality and vigor
TABLE 7 Comparisons among three variance functions (exponential function, power function, and constant plus power function; Eqs. 10, 11, and 12,
respectively) for the NLME SB model.

Variance function AIC LL LRT p-value

None 193.5683 −90.78417

Equation (9) 187.0951 −86.54754 8.473256 0.0036

Equation (10) 187.544 −86.77198 8.024384 0.0046

Equation (11) 189.5439 −86.77196 8.024412 0.0181
AIC, Akaike’s information criterion, LL, log-likelihood; LRT, likelihood ratio test.
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of bamboo forests. However, despite its importance, this was not

considered in any of the previous stand biomass modeling studies.

The results of this study suggest this approach will be of interest to

other researchers working with bamboo forests. The positive

relationship between CD and stand biomass reflects higher light

interception, higher photosynthesis, transpiration, and other

physiological functions (Lawlor, 2009). Interception of solar

radiation is a major driver of crown width and DBH growth

within a stand (Essery et al., 2008). Better growth and survival of

bamboo culms will increase stand biomass.

We also considered site variables that might affect the biomass

of Moso bamboo, including slope, slope direction, and slope

position. Growth of bamboo in sunny aspects may be better than

in shady (Che et al., 2022; Wang et al., 2022). A lower slope angle

can also enhance plant growth and biomass accumulation.

However, the precision of our model after the inclusion of these

variables did not significantly improve. This may be due to the block
Frontiers in Plant Science 09
effect that was included in the model as a random effect, which

significantly accounted for the effect of site quality.

Stand density (stems/ha) can significantly affect stand biomass

(Zheng et al., 1998; Yue et al., 2018; Zhou et al., 2022b). However,

we did not consider stand density in this study, assuming that CD

would adequately reflect the degree of stand crowding (Fu et al.,

2013; Zhou et al., 2022c). Our analysis showed a greater correlation

between CD and SB than between CD and N.

Although adding more variables to a model might improve

accuracy to some extent, this can lead to nonconvergence and

biased parameter estimation caused by excessive parameterization

(Fu et al., 2013; Fu et al., 2017; Zhou et al., 2021), which in this

example would increase inventory costs. Consequently, prediction

models with the appropriate number of variables are a major

concern for forest managers (Calama and Montero, 2005; Adame

et al., 2008). We retained three variables in our final stand biomass

model to address this concern.
FIGURE 4

Effects of CD and MH on the stand biomass. The curves were produced using the expanded OLS model (Eq. 13). The mean values of the observed
data were used for other variables.
FIGURE 3

Residuals distribution of the NLME SB model (left: without variance function; right: variance function included).
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The block-level random effects added to the MDBH predictor

provided the best model, as a sense of MDBH difference might have

been expressed by the random effect, and the change in MDBHmay

be closely related to the size of the stand. The application of a NLME

stand biomass model after the inclusion of the random effect and

the variance function confirmed the model’s promising accuracy.

Therefore, we recommend using the NLME SB model (Eq. 13 + Eq.

9) to estimate Moso bamboo stand biomass.
Frontiers in Plant Science 10
The NLME SB model is suitable for a range of site

conditions, including stand density ranging from 1,500 to

4,500 plants/ha, relatively gentle slopes (0°–20°), and a DBH

range of 6.0–11.8 cm. While this model has important

management and research implications and can help ensure

the sustainabili ty of Moso bamboo forests for future

generations, it needs to be validated in other stands with

similar site conditions.
A B

FIGURE 6

The residuals predicted by leave-one-out cross-validation (LOOCV) for each sample plot (A) OLS SB model (Eq. 13); (B) NLME SB (Eq. 14), with
variance (Eq. 10) included.
FIGURE 5

The simulation curves produced with Eq. (13) overlaid on the measured data.
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Our model can assist managers by estimating the biomass of

bamboo forests and helping with decisions regarding selective

cutting to remove larger stems and retain viable smaller stems. Its

use in stands with different site conditions will only be advisable

after further research. It may be possible to use remote sensing

(Grégoire et al., 2017; Fu et al., 2018; Yang et al., 2020) to assist

bamboo stand biomass modeling research while reducing research

costs (Askne et al., 2017; Fu et al., 2018).
Conclusion

Three stand variables strongly correlated with stand biomass

were initially incorporated into a least squares regression model for

predicting the stand biomass of Moso bamboo. The inclusion of a

block-level random effect into a mixed-effects model further

improved the predictability of stand biomass. Stand biomass

increased with increasing CD and MH, indicating the biological

plausibility of the model. This stand biomass model was able to

accurately estimate bamboo canopy biomass, carbon sequestration,

and biomass at different growth stages, and with further

development and validation, it could be a potentially useful

decision-aid tool for bamboo forest managers.
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