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Based on machine learning
algorithms for estimating
leaf phosphorus concentration
of rice using optimized
spectral indices and
continuous wavelet transform

Yi Zhang †, Teng Wang †, Zheng Li , Tianli Wang and Ning Cao*

College of Plant Science, Jilin University, Changchun, China
Remotely estimating leaf phosphorus concentration (LPC) is crucial for

fertilization management, crop growth monitoring, and the development of

precision agricultural strategy. This study aimed to explore the best prediction

model for the LPC of rice (Oryza sativa L.) using machine learning algorithms fed

with full-band (OR), spectral indices (SIs), and wavelet features. To obtain the LPC

and leaf spectra reflectance, the pot experiments with four phosphorus (P)

treatments and two rice cultivars were carried out in a greenhouse in 2020-

2021. The results indicated that P deficiency increased leaf reflectance in the

visible region (350-750 nm) and decreased the reflectance in the near-infrared

(NIR, 750-1350 nm) regions compared to the P-sufficient treatment. Difference

spectral index (DSI) composed of 1080 nm and 1070 nm showed the best

performance for LPC estimation in calibration (R2 = 0.54) and validation (R2 =

0.55). To filter and denoise spectral data effectively, continuous wavelet

transform (CWT) of the original spectrum was used to improve the accuracy of

prediction. The model based on Mexican Hat (Mexh) wavelet function (1680 nm,

Scale 6) demonstrated the best performance with the calibration R2 of 0.58,

validation R2 of 0.56 and RMSE of 0.61 mg g−1. In machine learning, random

forest (RF) had the best model accuracy in OR, SIs, CWT, and SIs + CWT

compared with other four algorithms. The SIs and CWT coupling with the RF

algorithm had the best results of model validation, the R2 was 0.73 and the RMSE

was 0.50 mg g−1, followed by CWT (R2 = 0.71, RMSE = 0.51 mg g−1), OR (R2 =

0.66, RMSE = 0.60 mg g−1), and SIs (R2 = 0.57, RMSE = 0.64 mg g−1). Compared

with the best performing SIs based on the linear regression models, the RF

algorithm combining SIs and CWT improved the prediction of LPC with R2

increased by 32%. Our results provide a valuable reference for spectral

monitoring of rice LPC under different soil P-supplying levels in a large scale.

KEYWORDS

continuous wavelet transform, leaf phosphorus concentration, machine learning, rice,
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1 Introduction
The fast growth of the global demand for agricultural

production is increasing the chemical fertilizer application

(Tilman et al., 2011; Mueller et al., 2012; Demay et al., 2023). In

intensive cropping systems, phosphorus (P) fertilizer as a

nonrenewable resource requires more precise management

because of its different effects on yield and the environment

(Sharpley and Withers, 1994; Tilman et al., 2002; MacDonald

et al., 2011; Townsend and Porder, 2012). However, limiting

information for regional soil P fertility status restricts the rational

P management strategy development. Globally, imbalance P

application within agricultural regions is increasing soil

degradation with deficit application, or environmental pollution

with an excessive application (Bennett et al., 2001; Carpenter, 2008;

MacDonald et al., 2011; Bindraban et al., 2020). The lack of an

effective method for non-destructive measurements in situ of P

limits the holistic understanding of P requirement for crop and soil

P-supplying level in a large scale. Therefore, non-destructive

measurements are essential for devising precision agricultural

policies and the best management practices to optimize the

application of P fertilizer to improve grain yield.

As the most promising technology, hyperspectral technology

can acquire variation in crop nutrient content timely and

nondestructively (Takebe et al., 1990; Hansen and Schjoerring,

2003; Feng et al., 2008; Pimstein et al., 2011). Many studies have

documented that leaf or canopy spectral reflectance data can be

used to evaluate the nitrogen (N) status of crops, and the N

deficiency influences the spectral reflectance of crops in visible

region and NIR regions (Daughtry et al., 2000; Zhao et al., 2003; Xue

et al., 2004; Zhao et al., 2005; Tian et al., 2014; Zhao et al., 2018).

The spectral reflectance of crop leaves is known to be correlated

with P status (Milton et al, 1991; Osborne et al., 2002; Yaryura et al.,

2009; Pimstein et al., 2011; Mahajan et al., 2017). Generally, P

deficiency promoted the visible accumulation of anthocyanin

(AnC) (Jiang et al., 2007). AnC is a water-soluble pigment, which

shows different colors with the change of soil P availability, and

further changes the spectral reflectance of the plant (Viña and

Gitelson, 2011). Compared with the spectral study of N, however,

studies on crop P content are insufficient. Hence, the development

of a leaf phosphorus concentration (LPC) diagnostic model by

spectral reflectance technology plays an important role in precision

P fertilizer management.

The spectral indices (SIs) are widely used to estimate the P

concentration of crops at local, and regional scales (Mahajan et al.,

2014; Mahajan et al., 2017). Many studies have shown that the SIs

can be used to estimate the P concentration of wheat (Mahajan

et al., 2014), litchi (Li et al., 2018a), and rice (Mahajan et al., 2017).

However, the literature has shown that the relationship between the

P concentration and SIs is still inconsistent. In previous studies,

Mahajan et al. (2014) proposed a new normalized difference

vegetation index (NDVI) of two band combinations (1080 nm,

1460 nm) for P prediction, and the correlation coefficient (R2) was

0.42. Mahajan et al. (2017) found that NDVI with bands at 1260 nm

and 670 nm has a higher prediction accuracy of canopy P status (r =
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0.67, p<0.01). Li et al. (2018a) indicated linear regression model

constructed by using the ratio of reflectance difference index

(RRDI1465, 1605, 1665) can well predict leaf P content of litchi (R2cv

= 0.95, RMSEcv = 0.01), and the selection of sensitive bands and

estimation accuracy of LPC were significantly affected by the

interrelationship among LPC, pigments, and N. To ensure the

performance of SIs, therefore, it is important to select the

sensitive bands and suitable algorithms to create the optimized

SIs models. To develop optimized SIs and improve the model

accuracy of vegetation properties, considering all suitable

combinations of the band based on established index

formulations are widely used (Mariotto et al., 2013; Rivera et al.,

2014; Yang et al., 2021b). However, due to the influence of many

factors, such as different crops, growing seasons, and external

environment, there is a complex nonlinear relationship between P

concentration and spectral characteristics. Thus, it is still unclear

whether the SIs can estimate the plant properties with high

estimation accuracy (Verrelst et al., 2015; Verrelst et al., 2019).

Additionally, to capture accurate and effective spectral information,

continuous wavelet analysis (CWA) is becoming a promising tool

for estimating biochemical constituent concentrations from leaf

reflectance spectra (Cheng et al., 2011). The continuous wavelet

transform (CWT) decomposes the leaf reflectance spectra into

several scale components, which are composed of wavelet features

as a function of wavelength and scale (Cheng et al., 2011; Li et al.,

2018b). CWT has been widely used for estimating the leaf water

content and nitrogen status, and was proven to be effective and have

higher model accuracy compared to SIs (Cheng et al., 2011; Li et al.,

2018b; Li et al., 2022).

In recent years, for modeling and analyzing crop growth and

vegetation parameters, machine learning has been widely applied

(Zhai et al., 2013; Heckmann et al., 2017; Wang et al., 2018; Han

et al., 2019). A partial least square regression (PLSR) model was

established by Chen et al. (2002) for estimating P concentration in

sugarcane leaves, and the R2 was 0.99. Gao et al. (2019) used the

support vector machine (SVM), random forest (RF), and artificial

neural network (ANN) algorithms to create models for forage P

content estimation, and the SVM model performed best. In

addition, the coupling of SIs with machine learning algorithms

can improve the accuracy obviously in crop parameter estimation,

such as leaf water content (Zhang et al., 2021), and above-ground

biomass (Wang et al., 2016; Yang et al., 2021b). The input variables

of machine learning can be optimized by using the SIs, such as

dimension and multicollinearity reduction (Yang et al., 2021b).

However, the previous studies showed the different performances of

various models. Therefore, selecting suitable input variables to feed

machine learning algorithms is critical for estimating rice LPC.

Previous studies have investigated the full spectrum and feature

bands as input variables for machine learning algorithms to

estimate the crop LPC. However, limited studies reported the

sensitive bands, optimized SIs, and spectral transformation

techniques coupling with machine learning algorithms in the

estimation of rice LPC. To improve modeling precision and

dimension reduction for rice LPC, therefore, there is a need to

combine spectral index, wavelet analysis, and machine learning

algorithms. In this study, we applied the rice leaf reflectance under
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different P application rates and explored the optimal prediction

model for LPC by using five machine learning algorithms fed with

full-band, spectral indices, and continuous wavelet features. This

research aimed to provide a basic reference for LPC spectral

monitoring of rice under different soil P-supplying levels in a

large scale. The specific objectives were (1) to evaluate the

performance of SIs and CWT of original spectrum in estimating

rice LPC and (2) to compare the full-band, optimized results of SIs

and CWT coupled with five machine learning algorithms in

predicting rice LPC.
2 Materials and methods

2.1 Experimental design and
growth conditions

The pot experiments of rice were carried out in the greenhouse

of Inner Mongolia Agricultural University (111°42′ E, 40°48′ N)
during 2020-2021 in Hohhot, Inner Mongolia, China. The air

temperature and humidity in the greenhouse were maintained at

25-28 °C and 60-70%. The photoperiod was 12h light and 12h dark

per day (LD 12:12) in white fluorescent light (about 150 μmol/

m²/s).

Pot experiments with four P treatments, which are 0, 20, 40, and

80 kg P2O5 ha-1, respectively (P0, P1, P2, and P3), and two rice

cultivars (Longjing 31 and Wuyoudao 4) were conducted. The pot

size was 40 × 20 × 20 cm. The experiment was a randomized

complete block design with ten replicates. Soil pH, organic matter,

total N, total P, available N, and available P were 7.8, 17.1 g kg-1,

0.67 g kg-1, 0.31 g kg-1, 29.8 mg kg-1, and 8.9 mg kg-1, respectively.

Phosphorus fertilizer applications such as monopotassium

phosphate were performed before sowing.
2.2 Spectral data collection

The spectral reflectance of rice leaves in the upper, middle, and

lower layers (Figure 1) were measured at the critical stage of P

nutrition (tillering stage with six leaves) using a ground object

spectrometer PSR+3500 (Spectral Evolution Inc., Lawrence, MA,

USA). This instrument records reflectance between 350-2500 nm

with a sampling interval of 1 nm and spectral resolution of 3 nm@

700 nm, 8 nm@1500 nm, and 6 nm@2100 nm respectively. Output

data were composed of the reflectance of 2151 spectral channels.

Before measuring, flip the leaf clip and calibrating with the

whiteboard in the pistol grip. Put the leaf into the leaf clip during

measurement. The observation angle was 90°, the area of view was

about 0.5 cm2 and all spectral measurements were measured

between 11:30 a.m. to 2:00 p.m. on clear sunny days

(Darvishzadeh et al., 2008; An et al., 2020). Each leaf was

measured with three replicates, and the average value was taken

as the spectral reflectance of the rice leaf.
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2.3 Plant sampling and LPC measurements

After spectral data collection, rice leaves in the same layer were

collected for measuring leaf dry mass and LPC. All plant samples

were oven-dried at 105 °C for 0.5 h and then dried at 75 °C until a

constant weight was reached for biomass measurements. After

calculating the biomass, the samples were ground to a fine

powder (0.25 mm sieve) and the molybdate-blue colorimetric

method was used for determining the LPC (mg g−1) of each

sample (Murphy and Riley, 1962).

A total number of 456 rice leaf samples were collected during

the 2 years of the experiment. The pooled data were divided

randomly into an independent calibration dataset (70% of the

pooled data, 319 samples) and a validation dataset (30% of the

pooled data, 137 samples). The calibration dataset was used to

establish the models, and the validation dataset was used to validate

the models.
2.4 Spectral indices and continuous
wavelet transform analysis

2.4.1 Spectral indices (SIs)
A large number of SIs have been created to estimate the nutrition

parameters of crops. Especially the two-band SIs including ratio

spectral index (RSI), difference spectral index (DSI), and normalized

differential spectral index (NDSI) are the most classic SIs algorithms

(Jordan, 1969; Rouse et al, 1974; Tucker, 1979). The calculation
FIGURE 1

Diagram of different layers of rice leaf.
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formula of these SIs are shown as follows.

RSI= Rl1
Rl2

(1)

DSI=Rl1−Rl2 (2)

NDSI= Rl1−Rl2
Rl1+Rl2

(3)

Rl1 and Rl2 represent the reflectance of any two single bands in

the range of 350-2500 nm, respectively, and a self-developed code in

MATLAB R2021b software (The MathWorks Inc., Massachusetts,

USA) was used to select the bands. The relationships between rice

LPC and three SIs were analyzed for determining the optimal

estimation model of LPC.

2.4.2 Continuous wavelet transform
(CWT) analysis

CWT is a signal analysis and processing tool which can realize

multi-frequency and multi-scale decomposition of spectral

information. It decomposes the signal into a series of wavelet

functions obtained by the same wavelet basis function. The

component in each scale can be directly compared with the input

data of spectral reflectivity. At the same time, more valuable spectral

information can be obtained (Rivard et al., 2008; Cheng et al., 2011).

Usually, choosing the appropriate wavelet function is the primary

task of the transform process. In this study, fifteen wavelet functions

in MATLAB R2021b were used and ten scales were calculated for

each wavelet function. The Mexican Hat (Mexh) wavelet functions

smooth the spectral data with the Gaussian function and then

calculate the second derivative. It can filter and denoise spectral data

effectively (Singh et al., 2013). According to the results of R2

between wavelet functions and the LPC of rice , the

transformation effect based on the Mexh function produced the

highest model accuracy. Therefore, Mexh was selected as the basic

funct ion of CWT in this study and was real ized in

MATLAB R2021b.
2.5 Machine learning algorithms

2.5.1 Partial least squares regression (PLSR)
PLSR is that the eigenvalues are reduced to a small group of

unrelated features through a certain operation process, and the least

square regression method is performed on these features, which can

solve the problems of multi-collinearity between features and

feature dimension greater than the sample numbers (Ramadan

et al., 2005). In this study, the PLSR program was applied using

Python (version 3.7.0, The Python Software Foundation, USA)

software, and the parameters were the default settings.

2.5.2 Least absolute shrinkage and selection
operator (LASSO)

LASSO is a biased estimation algorithm for solving multiple

collinear problems (Tibshirani, 2011). Its basic principle is to add

L1 regularization constraints to the parameters based on
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conventional linear regression, to simplify the refined model and

prevent over-fitting of the model. The LASSO program was

conducted using Python software, and the selection parameter

was set to ‘cyclic’, which means that the update of the regression

coefficient in each iteration is based on the last operation.

2.5.3 Random forest (RF)
The RF regression model is based on the decision tree, random

attributes are introduced to construct an integrated evaluator

(Breiman, 2001). Each decision tree learns independently and

predicts independently. The prediction results are determined by

averaging over all the trees (Liaw andWiener, 2002; Hao et al., 2015;

Yang et al., 2021b). In this paper, the RF program was applied using

Python software, and the parameters were the default settings.

2.5.4 Support vector machine (SVM)
SVM is based on the structural risk minimization principle and

statistical learning theory, which is suitable for machine learning of

small samples (Cortes and Vapnik, 1995). In this study, the kernel

function selected when using SVM is the radial basis kernel function

(Radial Basis Function), which is suitable for solving partial

nonlinear problems. The SVM program was applied using Python

software, and the parameters were the default settings in this study.

2.5.5 Back propagation artificial neural network
(BPANN)

As an artificial intelligence method, BPANN uses an error

backpropagation algorithm to obtain the multilayer feedforward

neural network (Ramadan et al., 2005). It has a strong nonlinear

fitting ability and is widely used. BPANN program was conducted

using Python software, and the parameters were the default settings.

The LPC of rice was taken as the dependent variable. The

independent variables were the original full band (all 2151 bands

ranging from 350-2500 nm, OR), optimized SIs (10 best features),

optimized CWT (10 best features), and the combination of SIs and

CWT (20 input features, SIs + CWT), respectively. And then the

PLSR, LASSO, RF, SVM, and BPANN models were established. A

flowchart of the rice LPC estimation model construction is shown

in Figure 2.
2.6 Model accuracy evaluation

The accuracy and simplicity of the model were evaluated by the

determination coefficient (R2), root mean square error (RMSE, mg

g−1), and Akaike information criterion (AIC). The calculation

formula is shown as follows:

R2=1− on
i=1

(yi−xi)
2

on
i=1

(xi−�x)
2 (4)

RMSE=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
on

i=1
(yi−xi)

2  

n

q
(5)

AIC=2k+n* ln (
on

i=1
(yi−�x)

2

n ) (6)
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where �x represents the average of measured values. xi and yi
represent the measured values and predicted values of LPC,

respectively. n is the number of samples, and k is the number of

features. The smaller RMSE with larger R2 values means better

model estimation accuracy. AIC is an index for evaluating the

model complexity, and the smaller value means a lower risk

of overfitting.

Cross-validation can evaluate the machine learning model skills,

which have a lower bias than other methods. The 10-fold coefficient of

variation generally attains the lowest mean squared error and variance

(Gao et al., 2019). For evaluate the model performance, the coefficient

of determination (R2) and root mean squared error (RMSE) of the ten

iterations were calculated in this study. Higher R2 and smaller RMSE

indicate that the model has higher accuracy.

Taylor diagram provides a visual framework for the

comparative assessment of different model results. The diagram

can also be used to quantify the degree of correspondence between

the predicted value of the models and the observations. It uses three

statistics, the Pearson correlation coefficient, RMSE, and standard

deviation (amplitude of variations) between predicted and observed

values (Taylor, 2001). In this study, the Taylor diagram was used to

evaluate the accuracy of the LPC estimation models based on the

machine learning algorithms.
Frontiers in Plant Science 05
2.7 Statistical analysis

A one-way ANOVA was used to compare the means of LPC

among different rice varieties, leaf layers, and P treatment based on

the least significant difference at a 0.05 level of probability with

DSS Statistics.
3 Results

3.1 Variations in LPC and
spectral reflectance

Figure 3A shows the rice LPC in different P fertilizer

applications, there was a significant difference among different P

treatments. And the variation trend of LPC was P3 > P2 > P1 > P0.

In terms of different leaf layers (Figure 3A), the rice LPC decreased

from the upper to the lower layer, and there was no significant

difference except for the P0 treatment. The effect of the P

application rate on the spectral reflectance of rice leaves in

Longjing 31 (LJ31) and Wuyoudao 4 (WYD4) were analyzed, and

there was no significant difference between the two rice

varieties (Figure 3B).
FIGURE 2

Flowchart of the methodology.
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Figure 4 shows the original spectral reflectance of rice leaves in

different P treatments in the range of 350-2500 nm. The results

showed the P application rate significantly affected the leaf

reflectance spectra, and the effects were different in the visible

region (350-750 nm) and NIR regions (750-1350 nm). The

spectral reflectance of rice leaf was at a low level (25%) in the

visible region. The P deficiency mainly increased the leaf reflectance

(P1 > P2 > P3) at 550 nm. In the NIR regions, in contrast to the

visible region, the leaf spectral reflectance was higher, and the P

deficiency decreased leaf reflectance (P3 > P2 > P1 > P0). Figure 5

shows the original spectral reflectance of rice leaves in different

layers. The results showed there was no difference in spectral

reflectance between the three layers. Thus, all rice leaf data in
Frontiers in Plant Science 06
different layers were pooled into one data set, and randomly

allocated for model training and testing.
3.2 Estimation of rice LPC using
spectral indices

To understand the relationships between LPC and RSI, DSI, and

NDSI, the contour maps of the determination coefficient (R2)

between three SIs and LPC were plotted in Figure 6. As

illustrated, the performance of RSI was almost the same as NDSI,

and the sensitive regions were mainly located in the NIR regions.

The “hot spot” occurred in the area of the combination of 980-1140

nm (horizontal axis) and 960-990 nm (vertical axis). The R2 for the

relationships between LPC and RSI, NDSI in the ranges were higher

than 0.4. The sensitive band ranges for DSI were mainly

concentrated on 1100-1400 nm (horizontal axis) and 1000-1300

nm (vertical axis). Overall, DSI consisting of 1089 nm and 1070 nm

is the best performing spectral index for the estimation of LPC.

Based on the best performing SIs, rice LPC was estimated. The

best correlations with LPC were selected to construct the traditional

linear regression models (Figure 7). The results showed that the DSI

(1089, 1070 nm) had higher R2 (0.54) in different calibration

datasets compared to the RSI (1009, 990 nm) and NDSI (1009,

990 nm). The models were validated by the validation dataset.

Relationships between the observed data and the predicted value of

LPC by using the three SIs were illustrated in Figure 8. The results

showed that the DSI had the best performance with an R2 of 0.55

and RMSE of 0.67 mg g−1 compared to RSI and NDSI. Therefore,

the changes in LPC caused by different P supply levels can be

estimated by optimized spectral index (DSI). However, the

estimation accuracy of the linear regression models based on SIs

was not high, and the calibration R2 lower than the validation R2.

These results showed the SIs models were underfitting and unstable.
A B

FIGURE 3

Comparison of LPC in different (A) P treatment and leaf layers, (B) rice varieties. Different letters above the bars are significantly different in different
P treatments (P< 0.05). NS and ** indicate no significant difference and significance at P< 0.01.
FIGURE 4

Original spectral reflectance of rice leaves in different P treatments.
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A B C

FIGURE 6

Contour maps of the determination coefficient (R2) between LPC and (A) RSI, (B) DSI, and (C) NDSI values.
FIGURE 5

Original spectral reflectance of rice leaves in different leaf layers.
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3.3 Estimation of rice LPC using
continuous wavelet transform

Figure 9 shows the relationships between using CWT of

reflectance spectra on ten scales based on Mexh function and

LPC of rice. Between 400 and 1700 nm, four wavelet features

were observed that strongly correlated with the LPC of rice. The

feature regions were centered at 400 nm, 1000 nm, 1470 nm, and

1680 nm. An optimal wavelet feature was selected on each scale to

construct the LPC estimation model. The wavelet feature at 1680

nm and scale 6 provided the strongest correlation, with calibration

R2 of 0.58, validation R2 of 0.56, and RMSE of 0.61 mg g−1 (Table 1).

These results represent that the R2 values are improved by using

CWT analysis compare with SIs (validation R2 = 0.55).
3.4 Estimation of rice LPC using machine
learning algorithms

Figure 10 shows the statistical comparison results between 20

estimation models and the observations. The models constructed
Frontiers in Plant Science 08
using RF - CWT (point N) and RF – SIs + CWT (point S) were

closer to the observation data (point A) on the Taylor diagram, and

thus these two models are relatively superior to the other models.

And the standard deviation of RF – SIs + CWT was closer to 1,

which means the model has the best prediction performance. The

accuracy of the 20 models for rice LPC was evaluated with 10-fold

cross-validation (Table 2). The result indicates that the RF

algorithm fed with the combination of SIs and CWT (RF – SIs +

CWT) significantly improved estimation accuracy. In the validation

set, R2 and RMSE were 0.73 and 0.50 mg g−1, respectively and the

model presents the lowest AIC of -3402.43 (Table 2).
4 Discussion

Rice growth is directly affected by soil P-supplying levels

(Schachtman et al., 1998; Shen et al., 2011; Jiang et al., 2021). As

an important indicator of crop growth, the changes in LPC can be

obtained by spectral sensing technology. Previous research has

discovered that various crops have varied P spectral response

characteristics (Milton et al, 1991; Yaryura et al., 2009;
A B C

FIGURE 8

Validation of the estimation models for LPC based on optimized (A) RSI, (B) DSI, and (C) NDSI.
A B C

FIGURE 7

The relationships between LPC and optimized (A) RSI, (B) DSI, and (C) NDSI for the calibration dataset.
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Pacumbaba and Beyl, 2011). Our study measured the rice leaves in

three layers at the tillering stage. The results showed the rice LPC

decreased from the upper to the lower layer, and there was a

significant difference between the upper and the lower layer in the

P0 treatment. These results demonstrated the P would transfer from

old leaves to new leaves when rice is suffered from extreme P

deficiency. Previous studies indicated that P remobilization from

aging organs to young organs occurred generally during the late

vegetative and reproductive growth of plants (Veneklaas et al., 2012;

Wang et al., 2021). In this study, the leaf samples were taken at the

middle vegetative growth of rice, so there was no significant

difference among the three layers under other P treatments. And

the P deficiency decreased all rice leaves reflectance in the NIR

regions (750-1350 nm), which is similar to the findings of

Pacumbaba and Beyl (2011). In addition, many studies have

investigated the N nutrition of plants, the sensitive bands of crop

N concentration range from 340 nm to 900 nm (Li et al., 2014; Yang

et al., 2021a). P concentration of the crop was slightly different from

the N, the sensitive bands of crop P concentration were located

from the visible region to NIR regions (Osborne et al., 2002;
Frontiers in Plant Science 09
Yaryura et al., 2009; Ramoelo et al., 2011; Mahajan et al., 2014).

In our study, the sensitive bands of LPC were located in the NIR

regions (750-1350 nm).

In general, N deficiency increases the leaf reflectance in green

and red edge areas, which is due to the decrease of chlorophyll

content in leaves (Daughtry et al., 2000; Zhao et al., 2003; Zhao

et al., 2005). In P deficiency, one of the characteristic responses of

plants is the visible accumulation of anthocyanin (AnC) (Jiang et al.,

2007). Existing studies suggested that the AnC spectral feature of

plant leaves was peaking around 550 nm in the visible region, and

the spectral reflectance of AnC increased sharply near 700nm

(Gitelson et al., 2001; Liu et al., 2015; Wang et al., 2020).

Moreover, the peak magnitude was closely related to the content

of AnC (Gitelson et al., 2001), and also with the increasing of AnC

content, the reflectivity of leaves decreased (Liu et al., 2015). The

AnC spectral features of plant leaves are similar to our results,

which the leaf reflectance decreased with increasing P application

rate in the visible region. Therefore, we considered that the spectral

reflectance of P is affected by the AnC content of leaves in the visible

region. Several studies found that the green (540-560 nm) and red
TABLE 1 Calibration and validation of LPC estimation models based on continuous wavelet function (Mexh).

Feature (wavelength in nm, scale)
Calibration dataset Validation dataset

Fitted equation R2 R2 RMSE

Mexh (1550 nm, 1) y = 647.56x + 1.80 0.50 0.48 0.73

Mexh (982 nm, 2) y = -36.31x + 2.99 0.51 0.49 0.71

Mexh (983 nm, 3) y = -16.51x + 2.55 0.50 0.47 0.73

Mexh (982 nm, 4) y = -6.70x + 3.14 0.50 0.50 0.70

Mexh (982 nm, 5) y = -4.25x + 3.15 0.50 0.49 0.71

Mexh (1680 nm, 6) y = 22.74x + 0.15 0.58 0.56 0.61

Mexh (1679 nm, 7) y = 15.42x - 0.06 0.53 0.52 0.66

Mexh (1679 nm, 8) y = 11.69x - 0.20 0.52 0.51 0.69

Mexh (982 nm, 9) y = -1.88x + 2.92 0.51 0.50 0.71

Mexh (982 nm, 10) y = -1.72x + 2.80 0.52 0.52 0.67
fr
FIGURE 9

Correlations between CWT and LPC at different transform scales.
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TABLE 2 10-fold cross-validation results of machine learning models.

Variables No. of bands
or features Models

Calibration dataset Validation dataset
AIC

R2 R2 RMSE

OR 2151

PLSR 0.49 0.52 0.72 1210.55

LASSO 0.47 0.46 0.76 1259.86

RF 0.95 0.66 0.60 1044.27

SVM 0.52 0.54 0.70 1184.86

BPANN 0.48 0.50 0.96 1472.91

SIs 10

PLSR 0.45 0.47 0.73 -3058.87

LASSO 0.43 0.41 0.77 -3010.22

RF 0.81 0.57 0.64 -3178.87

SVM 0.53 0.52 0.68 -3123.58

BPANN 0.48 0.51 0.68 -3143.67

CWT 10

PLSR 0.59 0.55 0.67 -3137.09

LASSO 0.12 0.08 0.95 -2718.64

RF 0.97 0.71 0.51 -3385.95

SVM 0.50 0.43 0.77 -3010.22

BPANN 0.74 0.61 0.62 -3207.83

SIs + CWT 20

PLSR 0.57 0.54 0.67 -3117.09

LASSO 0.42 0.40 0.78 -2978.49

RF 0.95 0.73 0.50 -3402.43

SVM 0.51 0.44 0.77 -2990.22

BPANN 0.73 0.59 0.62 -3187.83
F
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FIGURE 10

Precision comparison of the 20 LPC estimation models based on Taylor diagram.
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(640-760 nm) bands were sensitive regions to AnC in plant leaves

(Gitelson et al., 2006; Merzlyak et al., 2008; Liu et al., 2015; Wang

et al., 2020). In contrast, our results showed the NIR regions (990

nm, 1009 nm, 1070 nm, and 1089 nm) were important to LPC

estimation in rice by using SIs. In the optimal CWT, the sensitive

bands also were 982 nm, 983 nm, 1550 nm, 1679 nm, and 1680 nm.

And according to the feature importance of the RF model

(Figure 11), 922 nm, 1134 nm, 983 nm, 923 nm, and 1185 nm

were the sensitive bands for rice LPC estimation. The results are

similar to the findings of other crops, the NIR was the best sensitive

region for P estimation. For example, Ramoelo et al. (2011)

indicated that the spectral absorption features used for P

estimation of forage were mainly located in the NIR regions.

Mahajan et al. (2014) found that the combination of reflectance

in NIR and shortwave infrared (SWIR) regions significantly

improved the accuracy of P content prediction of wheat.

Therefore, NIR regions are more suitable for predicting the LPC

of rice at tillering stage.

CWT has significant advantages in effectively obtaining spectral

information, denoising, and dimensionality reduction of

hyperspectral data (Ebrahimi and Rajaee, 2017; Li et al., 2022).

Some previous studies confirmed CWT increased the estimation

accuracy of crop leaf nitrogen status in rice, wheat, and summer

maize (Li et al., 2018b; Li et al., 2022). Moreover, the Mexh wavelet

family is often used as a CWT analysis method. Singh et al. (2013)

found that in the quantification of crop leaf pigments, the model

obtained by using the Mexh wavelet family has the highest accuracy

compared with original spectra and other transformations of

spectral reflectance data (Singh et al., 2013). Our study also found

that the coefficient of correlation between the spectral data and rice

LPC was improved by the CWT (Mexh function) of the original

spectral data.

Machine learning methods have also been applied to predict the

crop growth information and vegetation parameters, such as leaf

water content (Zhang et al., 2021), and above-ground biomass
Frontiers in Plant Science 11
(Wang et al., 2016; Yang et al., 2021b) to further improve the

accuracy of modeling. The estimation accuracy is affected by crop

species, vegetation parameters, spectral index, and the type of

machine learning algorithm (Chen et al., 2002; Gao et al., 2019).

Previous studies showed the different performances of various

algorithms. In the current study, PLSR, LASSO, RF, SVM, and

BPANN algorithms were used to estimate the rice LPC. The effects

of the five machine learning algorithms were different, and the four

input variables (OR, SIs, CWT, and SIs + CWT) had a great

influence on the estimation effect of the models. The numbers of

input features of the models coupled with SIs and CWT were

significantly less than that of OR, but the accuracy was improved.

The results mean that the dimensionality reduction of input

variables is crucial for machine learning algorithms (Yang et al.,

2021b). Reducing the dimension can decrease the invalid bands and

autocorrelation caused by massive data input, to make the machine

learning model more accurate and efficient. In addition, compared

with other machine learning algorithms, RF has fewer parameters

(Wang et al., 2016). Hence, by incorporating the optimal features of

SIs and CWT, the RF model was significantly improved. These

results suggest that incorporating suitable input variables could

significantly improve model accuracy and robustness. In addition,

to determine the stability of the model, independent validation for

the RF model was also conducted. The results were similar to the

cross-validation results.

In sum, the combination of spectral index, wavelet analysis, and

machine learning algorithms provides an efficient method for

improving the estimation accuracy of rice LPC. Our findings may

be useful for real time monitoring and diagnosis of rice phosphorus

nutrition, and to provide a basic guideline for the best management

practices of rice P fertilizer in the future.
5 Conclusions

In this study, we integrated SIs and CWT of the original

spectrum with machine learning algorithms to offer an optimal

prediction model for rice P concentration. The SIs + CWT coupling

with the RF model can significantly increase rice LPC estimation

accuracy while significantly reducing the number of input variables.

The prediction accuracy of LPC with R2 was increased by 32%

compared with the linear regression models. This study provides a

new perspective to effectively estimate the P concentration in rice

leaves. However, this study only aimed at the tillering stage of

potted rice. Hence, in order to improve the applicability and

prediction accuracy of the model, more data fusion approaches

and new machine learning methods should be considered.
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