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Plant root pathogens invade the soil around plant roots, disturbing the systemic

balance, reducing plant defenses, and causing severe disease. At present, there

are few studies on the severity of plant diseases caused by pathogen invasion in

different seasons and how pathogens affect root microecology. In this study, we

compared the levels of nutrients in the root tissues of the two groups of plants.

We used 16S and ITS amplicon sequencing with Illumina NovaSeq 6000 to

compare seasonal changes in the composition and structure of microbial

communities from healthy roots of bamboo Bambusa pervariabilis ×

Dendrocalamopsis grandis and roots infected by the soilborne pathogen

Fusarium proliferatum. We have found that the invasion of the pathogen led to

a substantial decrease in nutrient elements in bamboo roots, except for nitrogen.

The pathogen presence correlated with seasonal changes in the bamboo root

microbiome and decreased bacterial richness in diseased plants. The root

microbial community structure of healthy plants was more stable than that of

their diseased counterparts. Furthermore, we identified the lesion area and

relative abundance of F. proliferatum were significant predictors of disease

progression. The potassium tissue content and the disease lesion area were

identified as factors linked with the observed changes in the bamboo root

microbiome. This study provides a theoretical foundation for understanding

the seasonal dynamics F. proliferatum, an economically important soilborne

pathogen of hybrid bamboo grown in Sichuan Province, China.
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1 Introduction

Plant soil-borne diseases are spread by pathogens infecting the

roots and stems of plants through the soil and cause yield and

quality losses that threaten the ecology and economy of agriculture

and forestry (Gao et al., 2014). Many economically important soil-

borne plant pathogens are fungi, such as Fusarium spp.,

Thielaviopsis sp., Gaeumannomyces graminis, Verticilium spp.,

Phytophthora spp., Pythium spp., and Rhizoctonia solani (Otten

and Gilligan, 2006; Pane et al., 2013; Aleandri et al., 2015). These

pathogens overwinter in the soil, and when the weather and soil

characteristics are optimal, the pathogens will reproduce, spread,

and infect plant roots, causing root rots, wilt complex disease, red

crown rot, seedling blight, and southern blight (Ochi, 2017;

Sánchez-Espinosa et al., 2020; Choi et al., 2021; Zhang X. et al.,

2021; Zitnick-Anderson et al., 2020; Mageshwaran et al., 2022). The

occurrence of soil-borne diseases is affected by climate changes such

as temperature and humidity. The changes in temperature and

humidity in different seasons will lead to changes in the abundance

of pathogens in the soil, thus affecting the occurrence of plant

diseases (Serrano et al., 2020). The increase in minimum and

maximum temperatures may contribute to the increase in the

severity of plant diseases (Mohammed et al., 2018; Prahl et al.,

2023). An in-depth understanding of the relationship between the

abundance of pathogens and the severity of plant diseases in

different seasons is beneficial to the control of plant diseases.

In addition to environmental factors, the outcome of the

soilborne pathogen infection depends on the host plant and its

microbiome (Carrion et al., 2019). Underground plant parts are

colonized by diverse communities of microorganisms that typically

enter plants through the root system and subsequently infiltrate

neighboring plant tissues (Wang Z. et al., 2021). Numerous

microbial taxa associated with the rhizosphere (soil adhering to

roots), the rhizoplane (root surface), and the endosphere (root

interior tissues) have been demonstrated to play an important role

in plant resistance to pathogens and serve as the first (rhizosphere)

and second (rhizoplane and endosphere) lines of defense for plants

(Alvin et al., 2014; Ge et al., 2022). Root microorganisms can

improve plant growth by promoting nutrient absorption and

synthesizing important phytohormones. They can also act as

biological control agents, indirectly improving plant growth and

minimizing pathogen intrusion by producing antibiotics,

competing with plant pathogens for nutrition, and inducing host

systemic resistance (Khare et al., 2018; Ali et al., 2021). Pathogens

enter the plant’s internal tissues, including vascular tissues and

intercellular spaces, to obtain more nutrients to avoid harsh and

fluctuating environmental conditions (Fatima and Senthil-Kumar,

2015). The growth activity of the host will be disturbed by the

pathogen’s invasion. When the pathogen invades the host plant

from the root, it breaks the system balance and promotes disease

development, and the community of plant root microorganisms will

change significantly (Li et al., 2021; Mannaa and Seo, 2021). For

example, the pathogen Ilyonectria mors-panacis in the root system

of Panax notoginseng with root rot was more abundant than that in

the healthy roots of P. notoginseng (Wang P. et al., 2021). The

bacterial diversity in the roots of healthy tobacco plants was more
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abundant than that in the roots of tobacco plants suffering from wilt

(Ahmed et al., 2022). The pathogen invasion of plant roots can

affect the nutrient balance of plant roots and the stability of

microbial community structure and diversity. Current studies

have not fully explored the potential effects of plant pathogen

invasion on root nutrition and root microbial communities under

different seasonal variations.

Fusarium sp. is one of the most important macrofungal genera

distributed in the world (He et al., 2021; Shan et al., 2021; Yang

et al., 2022). Fusarium can infect many kinds of plants (food crops,

medicinal plants, economic crops, and ornamental plants), which

can cause disease in plants and seriously limit plant growth (Nayaka

et al., 2011; Erazo et al., 2021). Fusarium mainly inhabits soil in the

form of chlamydospores. Mycelium penetrates the root and extends

into the root tissue to infect the vascular bundle system of the host

plant. Fusarium continually produces toxic metabolites and leads to

systematic yellowing, wilting, and death of plants (Lievens et al.,

2008; Tan et al., 2022). Fusarium mycelia and spores overwinter in

rhizosphere soil in the winter (December-February). Fusarium

invades the young root epidermis or wound of the host in the

following spring (March-May). It colonizes and propagates in the

root system and blocks vascular tissue in the summer (June-

August). And the growth of Fusarium gradually enters a decline

period in the autumn (September-November) (Kazan and

Gardiner, 2018; Malik et al., 2018; Gálvez and Palmero, 2022).

Plant diseases caused by Fusarium can lead to plant death in severe

cases, reduce plant yields, and hinder the development of

agriculture and forestry.

Bambusa pervariabilis × Dendrocalamopsis grandis is the main

cultivated bamboo species, which is generated by crossing Bambusa

pervaiabilis Mc-Clure (as the female parent) and Bambusa grandis

Keng f. (as the male parent) and is used when returning farmland to

forests and building ecological barriers in the Yangtze River basin

(Peng et al., 2020). Due to the well-developed root system and dense

branches and leaves of hybrid bamboo, it can be used for

afforestation along rivers. It has the advantages of windbreak and

sand fixation, soil and water conservation, and improvement of the

ecological environment. Bamboo can be used for papermaking,

handicrafts, musical instruments, etc., with high economic and

social value. Bamboo can also prevent soil erosion, help maintain

the biodiversity of forest land, and provide ecological services (Fang

et al., 2021). In recent years, B. pervariabilis × D. grandis has

suffered from the effects of a variety of fungi, which led to the

occurrence of a variety of diseases, such as shoot blight (Zhu et al.,

2009), wilt (Ma et al., 2008), and stem rot (Xie et al., 2016), and

hindered the growth of hybrid bamboo. In June 2020, the hybrid

bamboo basal rot caused by Fusarium proliferatum was found in

Renshou County, Sichuan Province, China. The damaged area was

about 68 hectares, the incidence rate was 34.8%, and approximately

5% of the hybrid bamboo died (Li et al., 2022). The occurrence and

spread of hybrid bamboo fungal diseases have led to the death of

many hybrid bamboo forests, which seriously threatens ecological

and economic development.

To better understand the effects of pathogens on plant roots, we

advanced three hypotheses stating that 1) the relative abundance of

F. proliferatum fluctuates seasonally leading to variation in the
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severity of basal rot of bamboo, and 2) the invasion of the pathogen

affects the absorption of nutrient elements by plant roots and

disturbs the plant root microbiome, and 3) the key influencing

factors affect changes in root microbial communities. We tested

these hypotheses by exploring the relationship between pathogen

abundance and disease severity in different seasons and identify the

dynamic changes and differences in nutrient elements between

healthy bamboo roots and those with basal rot in different

seasons. We also compared the composition and structural

differences of microbial communities between healthy and

diseased bamboo roots and identified key factors influencing the

root microbiome. The results of this study provide a theoretical

foundation for understanding the seasonal dynamics F.

proliferatum, an economically important soilborne pathogen of

hybrid bamboo grown in Sichuan Province, China
2 Materials and methods

2.1 Experiment site

The experiment site was located in Huaning Village (29°41′N,
104°11′E) in Renshou County, Sichuan Province, China. The area is

characterized by the humid subtropical monsoon climate, with an

average annual temperature of 17.4°C, an average annual rainfall of

1009.4 mm, an average annual sunshine of 1196.6 h, and a frost-free

period of 312 days. It is suitable for growing various bamboos

species, including Dendrocalamus latiflorus, Bambusa emeiensis,

Phyllostachys violascens, and hybrid bamboos that cover an area of

194 hectares.

Three plots, D1, D2, and D3, were established at the three

vertices of an equilateral triangle with a side length of 20 m, and

each plot was 20 m × 20 m. Similar approach was used to establish

the H1, H2, and H3 plots for sampling healthy hybrid bamboo

plants at a site located 1 km away from the disease area (Figure

S1A). Using the “S” sampling method (Li et al., 2020), two hybrid

bamboos with typical symptoms of basal rot were randomly selected

from each of the plots D1, D2, and D3 and named D1-1, D1-2, D2-

1, D2-2, D3-1, and D3-2, and the D samples were from diseased

plants. Two healthy hybrid bamboos were randomly selected from

each of the three plots H1, H2, and H3, and named H1-1, H1-2, H2-

1, H2-2, H3-1, and H3-2, and the H samples were from healthy

plants. Twelve plants were selected from six plots.
2.2 Collection of bamboo roots

According to the growth characteristics of hybrid bamboo and

climate change, samples were collected in spring (April), summer

(July), autumn (October) in 2021, and winter (January) in 2022

(Figures S1B–I). The air temperature and humidity of the healthy

plants and diseased plants were recorded by an air temperature and

humidity monitor (HOBO, USA) (Table S1). After removing the

dead branches and fallen leaves on the surface of the soil, roots with

soil were collected at a depth of 0-20 cm in a circular range with a

diameter of 0.5 m centered on the bamboo trunk. The soil on the
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surface of the roots was washed clean with sterile water, and the

water on the surface was absorbed by sterile filter paper, which was

put into 50-mL sterile centrifuge tubes and stored in liquid nitrogen.

At the same time, the incidence of hybrid bamboo plants in six plots

(D1, D2, D3, H1, H2, and H3) was observed. The lesion of basal rot

was long, shuttle-shaped, to rectangular, and the area of the lesion

was calculated by measuring the length and width of the lesion

(Miller and Johnson, 2014). The following equation was used to

calculate the percentage of plaque area:

Percentage of lesion area 

=  
lesion length� lesion width

lesion length� bamboo girth length
� 100%
2.3 Determination of root
nutrient elements

Root nitrogen content was determined by the Kjeldahl method

(Kjeltec™ 8200, Foss, Hilleroed, Denmark) (Liu et al., 2014). Root

phosphorus content was determined by the molybdenum-antimony

anti-absorbance photometric method (U-2900UV/VIS, Hitachi,

Tokyo, Japan) (Janket et al., 2021). Root potassium content was

determined by flame atomic absorption spectrophotometry (M410,

Sherwood Scientific, Cambridge, UK) (Weng et al., 2022). Iron,

copper, calcium, zinc, manganese, and magnesium contents in roots

were determined by flame atomic absorption spectrometry (iCE™

3300 AAS, Thermo Scientific, Waltham, MA, USA) (Fauziah et al.,

1990; Mandizvo and Odindo, 2019; He et al., 2022).
2.4 DNA extraction and sequencing
of root samples

The DNA of the collected hybrid bamboo roots was extracted

using the CTAB method (Lutz et al., 2011), and the purity and

concentration of DNA were detected by agarose gel electrophoresis.

Using the genomic DNA diluted with sterile water to 1 ng/μl as a

template, Bacterial 16S V3-V4 variable sequences 341F (5′-
CCTAYGGGRBGCASCAG-3′) (Muyzer et al., 1993) and 806R

(5′-GGACTACNNGGGTATCTAA-3′) (Caporaso et al., 2011)

and fungal ITS1-5F amplification region ITS5-1737F (5′-
GGAAGTAAAAGTCGTAACAAGG-3′) and ITS2-2043R (5′-
GCTGCGTTCTTCATCGATGC3′) (Liu et al., 2022) primers

were used for PCR amplification. The total volume of the PCR

reaction was 30 μL, Phusion Master Mix (2×) 15 μL, PrimerF (1

μM) 1 μL (1 μM), PrimerR (1 μM) 1 μL (1 μM), gDNA (1 ng/μL) 10

μL (5–10 ng), ddH2O complement the 30 μL system. The reaction

procedure was as follows: pre-denaturing at 98°C for 1 min; 30

cycles including (98°C, 10 s; 50°C, 30 s; 72°C, 30 s); 72°C, 5 min. The

obtained PCR products were detected by 2% agarose gel

electrophoresis (voltage 120 v, 30 min). The qualified PCR

products were mixed, and then the PCR products were detected

by 2% agarose gel electrophoresis, and the target bands were

recovered by the Universal DNA purification and recovery kit.
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The NEB Next® Ultra DNA Library Prep Kit (Illumina, San Diego,

CA, USA) was used for library construction, and the Agilent 5400

was used for detection and Q-PCR quantification. After the library

was qualified, the Illumina NovaSeq 6000 (Illumina, San Diego, CA,

USA) was used for on-machine sequencing. The high-throughput

sequencing raw data of root bacteria and fungi were uploaded to the

NCBI database, SRA: PRJNA936465 and PRJNA936468.
2.5 Sequence analysis

The data of each sample was split from the Raw PE, spliced, and

filtered, and chimera sequences were removed to get Effective Tags.

The Uparse algorithm (Edgar, 2013) was used to cluster all the

Effective Tags of all samples, and by default, the sequence was

clustered into OTUs (Operational Taxonomic Units) based on 97%

identity. The species annotation analysis of the OTUs sequence was

carried out by the Mothur method and the SSUrRNA database

(Quast et al., 2013) of SILVA138 (Wang et al., 2007) (the threshold

was set at 0.8–1). The taxonomic information was obtained, and the

community composition of each sample was counted at each

taxonomic level: kingdom, phylum, class, order, family, genus,

and species. The phylogenetic relationships of all OTUs

representative sequences were obtained by comparing multiple

sequences with MUSCLE (Edgar, 2004) software.
2.6 Bioinformatics analysis

Using NovoGene ’s f ree onl ine plat form (ht tps : / /

magic.novogene.com/), the abundance of Fusarium fungus OTUs in

the roots of healthy and diseased plants sampled in different seasons

was counted. One-way ANOVA and Duncan (a = 0.05) tests were

performed to study the differences in lesion area at the stem base of

diseased bamboo plants across different seasons and the differences in

root nutrient elements, microbial a diversity index, and relative

abundance of Fusarium spp. in roots between the healthy and

diseased plants sampled across different seasons. Taking disease,

season, and their interaction as independent factors, the differences

in root nutrient elements and root microbial community a diversity

between healthy plants and diseased plants in different seasons were

studied by the generalized linear model. All analyses were conducted by

SPSS 22 (IBM Corporation, NY, United States) and GraphPad Prism

v8.0.2 (Halifu et al., 2019). A principal component analysis (PCA)

based on a standardized method was used to analyze the nutrient

elements of roots. The beta diversity of root microorganisms was

analyzed by principal coordinate analysis (PCoA) based on

binary_jaccard distance. The single factor similarity analysis

(ANOSIM) method was used to analyze the influence and

significance of different seasons and diseases on the beta diversity of

the root microbial community. The linear discriminant analysis effect

size (LEfSe) method was used to analyze the biomarkers between root

microbiomes with an LDA Score > 4. DESeq2 was used to analyze the

difference in genus abundance between diseased plants and healthy

plants in the same season (Acharya et al., 2019). The two tools Variance

inflation factor (VIF) and biological and environmental analysis
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(BioENV) in R (Version 2.15.3) were used to analyze the internal

influencing factors and the relationship between influencing factors

and species abundance, exclude the autocorrelated influencing factors,

and retain the influencing factors that have the greatest impact on flora.

Canonical correlation analysis (CCA) and Spearman correlation

analysis were used to analyze the relationship between root nutrient

elements, disease incidence index, air temperature, air relative

humidity, and root microbial groups. PICRUSt2 and FUNGuild were

used to predict the function of bacterial and fungal OTUs, respectively.

All microbiome analyses were conducted through NovoGene’s free

online platform. An overview of the sequencing data was included in

the Supplementary Material (Figure S2).

The sequences of potential Fusarium fungi OTUs were

searched by nucleotide BLAST in the National Biotechnology

Information Center (NCBI) database (GenBank) for sequence

comparison, and the top five representative sequences with the

highest similarity were downloaded. Alignment was manually

edited as needed, multiple sequences were compared using

ClustalW (Larkin et al., 2007), and downloaded sequences were

aligned and cut using MEGA 11. The Evolview web server was

used to view and edit the constructed phylogenetic tree

(Subramanian et al., 2019).
3 Results

3.1 Changes in lesion area at the
base of the bamboo stem and
root nutrient elements

The results showed that the lesion area at the base of bamboo

stalks of diseased plants in spring was significantly different from

that in the other three seasons (Figure 1A). At the beginning of the

disease, the lesion area at the base of the bamboo stalk in the spring

was the smallest. The growth rate of the lesion area in the summer

was the fastest, 2.6 times faster than in the spring. In the autumn

and winter, the lesion area of diseased plants increased slowly, only

by 7.5% and 5%, respectively, and the difference was insignificant.

In addition, using principal component analysis (Figure 1B), it was

found that there were significant differences between the nutrient

elements of the roots of healthy and diseased bamboo plants in

different seasons.

In the four seasons (Figures 1C–K), the contents of N, P, K, Ca,

Mg, Fe, Cu, Zn, and Mn in the roots of healthy bamboo plants were

higher than those of diseased plants. The season significantly

affected the content of N in roots, but there was no significant

difference between healthy and diseased plants. In addition, the

interaction between different seasons and disease status significantly

affected the contents of P, K, Mg, Fe, Cu, Zn, and Mn in the roots,

while having no significant effect on the contents of N and Ca.

From spring to summer, the content of P, K, Ca, Mg, Fe, Cu, Zn,

and Mn in the roots of both healthy and diseased bamboo plants

increased at the fastest rate, with their contents in the roots of

healthy bamboo plants in the summer being 2.49 (P), 2.90 (K), 2.71

(Ca), 3.21 (Mg), 4.33 (Fe), 4.44 (Cu), 2.76 (Zn), and 3.08 (Mn) times

higher than the content in the roots of healthy bamboo plants in the
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FIGURE 1

Percentage diagram of lesion area at the stem base of diseased plants in different seasons and the nutrient content of plant roots in different
seasons. (A) Percentage diagram of lesion area of hybrid bamboo. (B) Principal component analysis (PCA) diagram of root nutrient elements, with an
ellipse representing a 95% confidence interval. One-way similarity analysis (ANOSIM) is used to check the differences between each root sample
group obtained in PCA using the Bray_Curtis distance matrix. (C) nitrogen content in roots; (D) phosphorus content in roots; (E) potassium content
in roots; (F) calcium content in roots; (G) magnesium content in roots; (H) iron content in roots (I) copper content in roots; (J) zinc content in roots;
(K) manganese content in roots. Values are means ± SE and N = 6 repetitions in each season. According to one-way ANOVA, different letters
indicate significant differences between treatments when p<0.05. The significance values of the generalized linear model are as follows: n.s., not
significant; *, 0.01<p ≤ 0.05; **, 0.001<p ≤ 0.01; ***, p ≤ 0.001. HR1- healthy plant roots collected in the spring; HR2- healthy plant roots collected
in the summer; HR3- healthy plant roots collected in the autumn; HR4- healthy plant roots collected in the winter. DR1- roots of diseased plants
collected in the spring; DR2- roots of diseased plants collected in the summer; DR3- roots of diseased plants collected in the autumn; DR4- roots
of diseased plants collected in the winter.
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spring. The nutrient elements in the roots of diseased bamboo

plants in the summer were 2.00 (P), 2.49 (K), 2.74 (Ca), 3.83 (Mg),

7.37 (Fe), 3.85 (Cu), 2.78 (Zn), and 2.79 (Mn) times higher than

those in the roots of diseased plants in the spring. Meanwhile, there

were significant differences in the contents of P, K, Ca, Mg, Fe, Cu,

Zn, and Mn between the roots of healthy plants and those of

diseased plants in the summer. The contents of nutrient elements in

the roots of healthy plants were 1.82 (P), 1.46 (K), 1.23 (Ca), 1.37

(Mg), 1.46 (Fe), 2.40 (Cu), 1.41 (Zn), and 2.10 (Mn) times higher

than those in diseased plants in the summer, respectively.
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3.2 Diversity of root microbial community

According to the generalized linear model, the Shannon index,

Observed_species index, and Chao1 index (Figures S3A, B) showed

that seasons significantly affected root bacterial and fungal

communities (Figures 2A–D). The interaction between season

and disease degree affected the diversity of the root bacterial

community but did not affect the diversity of the root fungal

community. According to one-way ANOVA, the bacterial

microbial communities in the roots of healthy plants had no

significant differences in different seasons, while the bacterial
A B

D

E F

C

FIGURE 2

a a diversity index (Shannon and Observed_species index) and b diversity index principal coordinate analysis (PCoA) of bacterial and fungal
communities in the roots of healthy and diseased plants sampled in different seasons. (A) Shannon index of root bacterial community; (B)
Observed_species index of root bacterial community; (C) Shannon index of root fungal community; (D) Observed_species index of root fungi
community; (E) Principal coordinate analysis (PCoA) diagram of root bacterial community; (F) Principal coordinate analysis (PCoA) diagram of root
fungal community. One-way similarity analysis (ANOSIM) is used to check the differences between each processed microbial sample group obtained
in PCoA using the binary_jaccard distance matrix. Each process was repeated six times. Values are means ± SE and N = 6 repetitions in each season.
According to one-way ANOVA, different letters indicate significant differences between treatments when p<0.05. The significance values of the
generalized linear model are as follows: n.s., not significant; *, 0.01<p ≤ 0.05; **, 0.001<p ≤ 0.01; ***, p ≤ 0.001. HR1- healthy plant roots collected
in the spring; HR2- healthy plant roots collected in the summer; HR3- healthy plant roots collected in the autumn; HR4- healthy plant roots
collected in the winter. DR1- roots of diseased plants collected in the spring; DR2- roots of diseased plants collected in the summer; DR3- roots of
diseased plants collected in the autumn; DR4- roots of diseased plants collected in the winter.
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microbial communities in the roots of diseased plants had

significant differences in autumn and winter. In the winter, the

Shannon index, Observed_species index, and Chao1 index between

healthy plants and diseased plants were significantly different. The

fungal microbial communities of healthy and diseased roots varied

in different seasons. In the same season, the Shannon index of

fungal communities in healthy and diseased plant roots was

significant, but the Observed_species index and Chao1 index were

not. The Shannon index of root bacterial and fungal communities

was highest in the summer.

According to PCoA (Figures 2E, F), the microbial communities

of healthy bamboo roots and diseased bamboo roots were far apart

in different seasons, indicating that different seasons greatly

influenced the distribution of microbial communities in roots.

However, in the same season (spring, summer, and winter), the

bacterial communities of healthy bamboo roots and diseased roots

were close to each other and far apart in the autumn, while the

fungal communities of healthy bamboo roots and diseased roots

were close in the same season. These results showed that the health

and disease of plant roots had little effect on microbial

community distribution.
3.3 Abundance and composition of root
microbial groups

In different seasons, the most abundant bacteria in the root

bacterial phylum were Proteobacteria (42.56%), Actinobacteria

(17.21%), and Acidobacteriota (7.68%), accounting for 67.46%

(Figure S3C). In the spring and autumn, the relative abundance of

Proteobacteria in the roots of healthy plants increased by 2.69% and

5.02%, respectively, compared with that in the roots of diseased

plants. In contrast, in the summer and winter, the relative abundance

of Actinobacteria in the roots of healthy plants increased by 5.45%

and 4.85%, respectively, compared with that in the roots of diseased

plants. In the spring, autumn, and winter, the relative abundance of

Acidobacteriota in the roots of healthy plants increased by 6.09%,

5.56%, and 4.13%, respectively, but decreased by 0.14% in the

summer. The most abundant fungi in the root system in different

seasons were Basidiomycota (60.67%) and Ascomycota (28.02%),

with both accounting for 88.70% (Figure S3D). In the summer, the

relative abundance of Basidiomycota in the roots of healthy plants

increased by 38.43% compared with the roots of diseased plants. In

the spring and winter, the relative abundance of Ascomycota in the

roots of healthy plants increased by 18.04% and 25.33%, respectively,

compared with the roots of diseased plants.

According to the heat maps of the top 30 dominant genera, it

was found that seasonal changes and pathogen invasion could cause

great differences in the abundance of bacteria and fungi in plant

roots. The top three dominant bacterial taxa in the roots of healthy

bamboo plants were Bradyrhizobium sp., Acidibacter sp., and

Acidothermus sp. The top three dominant bacteria genera in the

root systems of diseased plants were Bradyrhizobium sp., Dongia

sp., and Azospirillum sp. Compared to healthy plants, the relative

abundance of Bradyrhizobium sp., Dongia sp., Kibdelosporangium

sp., and Azospirillum sp. in the roots of diseased plants increased the
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most in the spring, summer, autumn, and winter, respectively, with

increases of 2.40%, 11.00%, 10.60%, and 16.97% (Figure 3A). The

relative abundance of Serendipita sp., Marasmiellus sp., and

Blumeria sp. were the top three dominant genera in the roots of

both healthy and diseased plants. Compared with healthy plants,

the relative abundance of Marasmiellus sp. in the roots of diseased

plants increased the most in the spring, autumn, and winter,

increasing by 69.68%, 21.26%, and 74.84%, respectively, while

decreasing by 43.39% in the summer. Interestingly, during the

summer, the relative abundance of Fusarium sp. in the roots of

diseased plants increased by 7.87% and that of Trichoderma sp.

decreased by 3.34% (Figure 3B).
3.4 Significant analysis of differences
among root microbial groups, the
abundance of Fusarium, and the
phylogeny of Fusarium

There were 36 biomarkers with statistical differences, including

13 genera of root bacteria with significant differences (Figure 4A)

and 23 genera of root fungi with significant differences (Figure 4B).

At the genus taxonomic level of bacteria, in the roots of diseased

plants, Kibdelosporangium sp. was a differential indicator in the

spring, and Amycolatopsis sp. , Tetrasphaera sp. , and

Kibdelosporangium sp. were differential indicators in the autumn.

At the genus taxonomic level of fungi, in the spring,Mycena sp. and

Serendipita sp. were differential indicators in the roots of diseased

plants. In the summer, Exophiala sp. and Fusarium sp. were

differential indicators in the roots of diseased plants. In the

winter, Claroideoglomus sp. and Serendipita sp. were differential

indicators in the roots of diseased plants. According to the LDA

value, the difference indicator genera of healthy plants and diseased

plants in the same season were screened out. By using Deseq2

analysis, the relative abundance ratio of indicator genera between

diseased plants and healthy plants showed that nine bacterial

indicator genera were positive, four bacterial indicator genera

were negative, eight fungal indicator genera were positive, and

four fungal indicator genera were negative (Table S2, Table S3).

In different seasons, the abundance of Fusarium sp. in the roots

of healthy bamboo plants and diseased bamboo plants was

significantly different (P<0.05) (Figure 4C). The Fusarium

abundance in the roots of diseased plants was 13.81, 65.30, 2.22,

and 1.22 times higher than that in the roots of healthy bamboo

plants in the spring, summer, autumn, and winter, respectively. The

Fusarium abundance in the roots of diseased plants in the summer

was 8.22 times higher than in the spring. The phylogenetic analysis

provides abundant information by providing more powerful

indications for the possible species or species complexes that the

selected OTUs may represent. A total of 30 OTUs at the Fusarium

level were screened from the root fungal microbial community data,

of which only 14 OTUs were sequenced to the species level, while 16

OTUs were only annotated to the Fusarium genus. According to the

phylogenetic tree (Figure 4D), 30 OTUs of the genus Fusarium had

been annotated to 16 species, among which the pathogen

F. proliferatum was annotated.
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3.5 Correlation analysis between
the influencing factors and root
microbial groups

The root nutrient elements N, P, K, Ca, Mg, Fe, Cu, and Zn with

VIF<20 were screened by VIF analysis. BioENV analysis was used to

screen the combination of root nutrient elements with the strongest

correlation with the root microbial community. The correlation

between nutrient elements K, Fe, and Cu and the root bacterial

community was strong (R2 = 0.28), and the correlation between

nutrient elements N and Fe and the root fungal community was

strong (R2 = 0.21). CCA analysis was used to analyze the relationship

between the most relevant nutrient element combination, disease

incidence index, air temperature, air relative humidity, and root

microbial community structure (Figures 5A, B). It was found that

49.6% of the root bacterial microbial changes could be explained by
Frontiers in Plant Science 08
the influencing factors, and the nutrient element K (R2 = 0.54 P<

0.001) was the dominant influencing factor for the root bacterial

microbial community structure. 56.36% of the microbial changes of

root fungi could be explained by the influencing factors, in which the

lesion area (R2 = 0.51 P< 0.001) was the dominant influencing factor

for the structure of the root fungal microbiota community.

By Spearman analysis, it was found that Dongia sp. and

Actinoallomurus sp. were significantly positively correlated with

K, while Azospirillum sp., Lechevalieria sp., Peptoclostridium sp.,

Haemophilus sp., Fenollaria sp., Acidipila.Silvibacterium sp., and

Streptococcus sp. were significantly negatively correlated. At the

level of root fungi genus, Blumeria sp., Fusarium sp., Trichoderma

sp., Exophiala sp., and Pleurophragmium sp. were significantly

positively correlated with the lesion area, while Serendipita sp.,

Hypochnicium sp., Stictis sp., Phlebia sp., and Claussenomyces sp.

showed a significant negative correlation (Figures 5C, D).
A

B

FIGURE 3

The top thirty genus-level clustering heat maps for bacterial and fungal communities of healthy and diseased plant roots sampled in different
seasons. (A) Cluster heat map of root bacteria; (B) Cluster heat map of root fungi. Heat maps were clustered based on genus level. HR1- healthy
plant roots collected in the spring; HR2- healthy plant roots collected in the summer; HR3- healthy plant roots collected in the autumn; HR4-
healthy plant roots collected in the winter. DR1- roots of diseased plants collected in the spring; DR2- roots of diseased plants collected in the
summer; DR3- roots of diseased plants collected in the autumn; DR4- roots of diseased plants collected in the winter.
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A B
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FIGURE 4

Species analysis of intergroup differences between bacterial and fungal communities of healthy and diseased plant roots sampled in different
seasons, the relative abundance of Fusarium, and the phylogenetic tree of Fusarium in the roots. (A) LDA value map of root bacterial community in
different seasons; (B) LDA value map of root fungal community in different seasons. LDA discriminates the microbial groups that play a significant
role in the statistics of multiple groups. The greater the LDA score obtained by LDA analysis (linear regression analysis), the greater the influence of
representative species abundance on the different effects. The LDA value chart only shows the taxa that meet the LDA significance threshold > 4.0.
(C) Relative abundance plots of Fusarium in the roots; using one-way ANOVA, different letters indicate significant differences between treatments at
p<0.05. (D) Phylogenetic tree of Fusarium in the roots. Different colors for different species indicate branches of the developmental tree. HR1-
healthy plant roots collected in the spring; HR2- healthy plant roots collected in the summer; HR3- healthy plant roots collected in the autumn;
HR4- healthy plant roots collected in the winter. DR1- roots of diseased plants collected in the spring; DR2- roots of diseased plants collected in the
summer; DR3- roots of diseased plants collected in the autumn; DR4- roots of diseased plants collected in the winter.
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3.6 Functional prediction of fungal
and bacterial taxa

As found by PICRUSt2 analysis (Figure 6A), Nucleotide_

Metabolism, Folding_Sorting_and_Degradation, Replication_

and_Repa i r , T r an s l a t i on , Ene rgy_Metabo l i sm , and

Metabolism_of_Cofactors_and_Vitamins were high in relative

abundance in the root bacterial community of healthy bamboo

plants in the winter, while Cellular_Processes_and_Signaling,

Metabolism, Membrane_Transport, and Carbohydrate_Metabolism

had a high relative abundance in the roots of diseased plants in the

winter, and Amino_Acid_Metabolism had a high relative abundance

in the roots of diseased plants in the summer. According to FUNGuild

analysis (Figure 6B), Arbuscular_Mycorrhizal and Fungal_Parasite

had a high relative abundance in the roots of healthy plants in the

spr ing . Undefined_Saprotroph, Soi l_Saprotroph, and

Animal_Endosymbiont had a high relative abundance in the roots

of healthy plants in the autumn. Leaf_Saprotroph had a high relative

abundance in the roots of healthy bamboo plants in the winter.

Lichenized had a high relative abundance in the roots of diseased
Frontiers in Plant Science 10
plants in the summer. Ectomycorrhizal and Plant_Pathogen had a

high relative abundance in the roots of diseased plants in the autumn.
4 Discussion

4.1 Root pathogens decreased the content
of nutrient elements in roots

The nutritional status of plants can act as the primary line of

defense against diseases, ultimately determining the susceptibility or

resistance of plants to invasive pathogens (Tripathi et al., 2022). In

this study, the contents of P, K, Ca,Mg, Fe, Zn, andMn in the roots of

healthy and diseased plants were the highest in the summer and the

lowest in the spring. We speculated that the plant grew vigorously in

the summer and that the root system absorbed a lot of nutrients for

the growth and development of the plant. We observed that nutrient

elements such as N, P, K, Ca, Mg, Fe, Cu, Zn, and Mn were lower in

the roots of diseased plants sampled in different seasons compared to

healthy plants. Previous studies have shown that pathogenic fungi
A B

DC

FIGURE 5

CCA maps and heat maps of the correlation analysis of bacterial and fungal communities with influencing factors in the roots of healthy and
diseased plants sampled in different seasons. (A) CCA diagram of root bacterial community; (B) CCA diagram of root fungal community; (C)
Spearman analysis heat map of root bacterial community; (D) Spearman analysis heat map of root fungal community. Spearman correlation was
used to analyze the correlation between influencing factors and the top 30 genera in relative abundance. The Spearman correlation significance
values are: *0.01<p ≤ 0.05; ** 0.001<p ≤ 0.01; *** p ≤ 0.001. HR1- healthy plant roots collected in the spring; HR2- healthy plant roots collected in
the summer; HR3- healthy plant roots collected in the autumn; HR4- healthy plant roots collected in the winter. DR1- roots of diseased plants
collected in the spring; DR2- roots of diseased plants collected in the summer; DR3- roots of diseased plants collected in the autumn; DR4- roots
of diseased plants collected in the winter.
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compete with plants for nutrients, which leads to a decrease in

nutrient availability and disease resistance due to nutrient

deficiency (Graham, 1983). For instance, it has been reported that

magnesium deficiency in plants infected with corn stunt spiroplasma

CSS and scarcity of zinc lead to pathogenic microorganisms using the

host’s metalloprotein as a source of metal (De Oliveira et al., 2002; De

Oliveira et al., 2005; Neumann et al., 2017). Furthermore, root

necrosis limits plant root growth and nutrient and water

absorption (Zhang Y. et al., 2021; Liao et al., 2022). Plant nutrient

status plays a significant role in the susceptibility or resistance of

plants to invasive pathogens, and certain nutrient elements have been

found to affect pathogen invasion and colonization of phloem tissues

(Broders et al., 2009). Pathogens can also degrade cell walls or affect

membrane permeability, inducing nutritional deficiencies (Fatima

and Senthil-Kumar, 2015). A study has found a decrease in the

nutrient elements in the fine roots of diseased conifers (Bauch and

Schröder, 1982). And the results of this study are consistent with

previous studies (Sarkar and Joshi, 1977; Bauch and Schröder, 1982).

Pathogens invade the host, which affects the full absorption and

utilization of nutrients by plant roots, reduces plant defense abilities,

and causes more serious harm from pathogens. In this study, we have

not explored how pathogen invasion affects the nutrient content of

host roots. We need to further explore the influence of pathogen

invasion on plant nutrition in the future.
4.2 The pathogen presence correlates with
changes in the diversity and structure of
the bamboo root microbiome

The study has shown that the diversity of microbial

communities in the roots of healthy plants is more abundant than
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that in diseased plants (Wang et al., 2021). In this study, the

Shannon index of healthy and diseased plants was the highest in

the summer and the lowest in the winter, indicating that the

microbial community diversity of plant roots was the most

abundant in the summer. We found that the alpha diversity

indices (Shannon index, Observed_species index, and Chao1

index) of bacterial and fungal communities in the roots of healthy

plants were higher than those in diseased plants, except for the

Observed_species index and Chao1 index of root bacteria in the

autumn and fungal communities in the winter.

By comparing the dominant genera in the bacterial and fungal

communities between healthy and diseased plant roots collected in

different seasons, we found that most of the dominant bacteria in both

healthy and diseased roots were beneficial bacteria. For instance,

Bradyrhizobium sp. and Azospirillum sp. are root-stem growth-

promoting bacteria that are important in promoting plant growth

and development (Ahemad, 2014). Acidothermus sp. (Lin et al., 2022;

Yang et al., 2022), Dongia sp. (Han et al., 2019), and

Kibdelosporangium sp. (Abd El-Aziz et al., 1997) can improve plant

resistance to biotic and abiotic stresses. The beneficial genus Serendipita

sp. (S. herbamans) belongs to the root colonizing fungus, which could

compete with the pathogen for niches and inhibit the invasion of the

pathogen (Hallasgo et al., 2022). Previous studies have shown that

plants invaded by pathogens can use various chemical stimuli to recruit

beneficial microorganisms from the environment (Hongwei et al.,

2021; Tao et al., 2022). The results of this study are consistent with

previous studies. Under the influence of different seasons and pathogen

invasion, the community structure of plant root microorganisms was

affected, and the beneficial dominant genera in healthy plants and

diseased plants were abundant in different seasons.

According to Lefse analysis and Deseq2 analysis, it was found

that the relative abundance of differential indicator species in root
A B

FIGURE 6

PICRUSt2 and FUNGuild function prediction analysis diagram of bacterial and fungal communities in the roots of healthy and diseased plants
sampled in different seasons. (A) PICRUSt2 function prediction analysis diagram of root bacterial community. The heat map was clustered based on
level 1. (B) FUNGuild function prediction analysis diagram of root fungi community. According to a confidence ranking, the prediction of fungal
function was annotated at the Highly Probable level. The heat map was clustered based on guild. HR1- healthy plant roots collected in the spring;
HR2- healthy plant roots collected in the summer; HR3- healthy plant roots collected in the autumn; HR4- healthy plant roots collected in the
winter. DR1- roots of diseased plants collected in the spring; DR2- roots of diseased plants collected in the summer; DR3- roots of diseased plants
collected in the autumn; DR4- roots of diseased plants collected in the winter.
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fungal communities changed more than that of bacterial groups,

and the changes of fungal communities and bacterial communities

in diseased plants were greater than those in healthy plants. These

results indicated that pathogen invasion had a great effect on the

community structure of plant root microorganisms, especially on

the community structure of fungi (Chen et al., 2020). Through the

significant differences between healthy plants and diseased plants,

we can screen for beneficial microorganisms that may strengthen

the defense ability of plants, increase the disease resistance of plants

at the microbial level, and consolidate the micro-ecological balance

of plant roots. For example, Bradyrhizobium sp. (Siddiqui et al.,

2001; Chattopadhyay et al., 2022) and Amycolatopsis sp. (Alipour

Kafi et al., 2021; Basavarajappa et al., 2023) have the potential to

promote plant growth and biocontrol. The beneficial fungus

Serendipita acts as a differential indicator of diseased plant roots

(Mohamed et al., 2020). Ma et al. (2023) found that taxa of

differential abundance may play a key role in maintaining plant

health, and our findings support previous studies.

The predicted functional survey showed that when the soil-

borne pathogen invaded the host, the bacterial community in the

root of diseased bamboo mainly carried out amino acid metabolism

in the summer. It is speculated that there may be a certain

relationship between amino acid metabolism and the occurrence

of the disease. Solıś-Garcıá et al. (2021) found that the enrichment

of amino acids may occur in the roots of plants with root rot, and

our research results support this study. In healthy plants, the root

fungal community was mainly composed of various saprotrophs.

Saprophytic fungi can participate in a variety of degradation and

metabolic activities. Kusstatscher et al. (2019) found an increase in

saprophytic fungi in healthy samples. The function of plant

pathogens in the roots of diseased plants was obviously higher

than that of healthy plants, which is consistent with the research

results of Xie et al. (2022).
4.3 The abundance of pathogens in
different seasons determined the process
of plant diseases

We found that the lesion area in plant roots, the relative

abundance of Fusarium, and root nutrient elements affected the

distribution and structure of the root microbial community. In the

spring, the relative abundance of Fusarium in the roots of healthy

plants and diseased plants was lowest, and in the summer, the

relative abundance of Fusarium in the roots of diseased plants was

highest. In the summer, the percentage of lesion area was positively

correlated with the relative abundance of Fusarium. A higher

abundance of Fusarium fungi was associated with a larger

necrotic area of plant rhizomes, indicating that the abundance of

Fusarium fungi was one of the main factors promoting disease

development. A phylogenetic tree analysis of Fusarium revealed the

presence of many Fusarium species in hybrid bamboo roots,

including F. proliferatum, the main pathogen of root rot in hybrid

bamboo. Therefore, controlling the abundance of Fusarium fungi is

crucial to preventing diseases. Previous studies have found that

microspore content in soil is significantly positively correlated with
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the incidence of cotton Verticillium wilt. Reducing the quantity of

microsclerotia in the soil is the fundamental method to control

Verticillium wilt (Liu et al., 2018). Liu et al. (2021) found that the

abundance of F. oxysporum was an important predictor of plant

health. Our research supports the results of these previous studies.
4.4 The content of K in roots and the
lesion area are the key factors influencing
the root microbial community

Nutrients and favorable environmental conditions in plants

contribute to the high-density growth and reproduction of

pathogens, eventually leading to serious diseases. In this study,

the lesion area, the relative abundance of Fusarium, air temperature,

air humidity, and root nutrients affected the distribution and

structure of root microbial communities. CCA correlation

analysis of the influencing factors and root microbial

communities showed that Fusarium, lesion area, air humidity, K,

Fe, and Cu were all positively correlated with bacterial communities

in the roots of healthy and diseased plants in the summer, while

Fusarium, lesion area, air humidity, air temperature, and Fe were

positively correlated with fungal communities in the roots of

healthy and diseased plants in the summer. The increase in air

temperature and relative humidity in the summer is conducive to

the growth of root microorganisms, including the proliferation of

pathogens, which results in serious plant disease.

The beneficial Actinoallomurus sp. (Inahashi et al., 2015) and

Dongia sp. could produce active antibacterial substances, which

were posit ively correlated with K. Harmful bacteria ,

Peptoclostridium sp. (Stevenson et al., 2016), Streptococcus sp.

(Chen et al., 2023), and Haemophilus sp. (Myers, 2020), were

negatively correlated with K. Potassium plays an important role

in plant cell physiology. K is an essential macronutrient that

performs critical functions related to enzyme activation,

osmoregulation, turgor generation, cell expansion, membrane

potential regulation, and pH homeostasis (Ragel et al., 2019).

Potassium (K), when present in sufficient concentrations,

increases the plant’s polyphenol concentration, which plays a key

role in defense mechanisms (Tripathi et al., 2022). The lesion area

was significantly positively correlated with the harmful fungi

Blumeria sp., Fusarium sp., and Exophiala sp. (Thitla et al., 2022).

We speculate that the pathogens invade the host, which leads to

damage to the plant’s defense system, and a large number of

harmful fungi in the soil invade the host, multiply in the host,

destroy the host’s tissue, and lead to the expansion of the lesion area.

Our results support the previous studies by Mannaa and Seo (2021)

and Popescu et al. (2022).

In summary, the relative abundance of pathogens in plant roots

was different in different seasons. The levels of Fusarium were the

highest in the summer, and the expansion rate of the lesion area was

the fastest, resulting in serious disease, while the expansion rate of

the lesion area was slow in the autumn and winter. The content of

nutrient elements and the composition of the root microbial

community were significantly affected by seasonal changes and

diseases K and lesion area are dominant influencing factors affecting
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the composition and structure of root microbial communities. The

highest lesion area of rhizomes and the abundance of Fusarium in

roots were observed during the summer, emphasizing the

importance of controlling the abundance of Fusarium fungi to

prevent diseases.
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The raw data of 16S rRNA totaled 4,483,656, and 3,093,359

valid sequences were obtained after quality control, splicing, and

chimera removal; the raw data of ITS totaled 4,504,231 and

3,451,386 valid sequences. The rarefaction curves of all samples

tended to be flat, and the number of OTU features of samples would

not increase sharply with the increase in sequencing number,

indicating that the sequencing depth was sufficient to reflect the

species diversity of samples (Figure S2). Bacterial (n = 8401) and

fungal (n = 3897) OTUs were isolated from bamboo root

microorganisms in different seasons. There were 632 species in 66

phyla, 98 classes, 222 orders, 407 families, and 1080 genera in

bacterial community OTUs, and 1373 species in 16 phyla, 66

classes, 180 orders, 424 families, and 848 genera in fungal

community OTUs. According to the Venn diagram of each

sample obtained from OTUs (Figures S2C–H), there were 660

bacterial OTUs in common in 48 samples, 971 OTUs in healthy

plant root samples, and 800 OTUs in diseased plant root samples.

There were 84 fungal OTUs in common in 48 samples, 143 OTUs in

healthy plant root samples, and 149 OTUs in diseased plant

root samples.

SUPPLEMENTARY FIGURE 1

Sample plot setting and pictures of healthy and diseased plants collected in

different seasons. (A) Sampling plots of healthy plants and diseased plants; (B)
Healthy plants collected in spring; (C)Healthy plants collected in summer; (D)
Healthy plants collected in autumn; (E) Healthy plants collected in winter; (F)
Diseased plants collected in spring; (G) Diseased plants collected in summer;
(H) Diseased plants collected in autumn; (I) Diseased plants collected

in winter.

SUPPLEMENTARY FIGURE 2

Rarefaction curves, Petal, and Venn diagrams of bacterial and fungal

communities in the roots of healthy plants and diseased plants sampled in

different seasons. (A) Rarefaction curve of root bacteria; (B) Rarefaction curve
of root fungi. (C) Petal diagram of root bacterial communities; (D) Venn

diagram of root bacterial communities of healthy plants; (E) Venn diagram of
root bacterial communities of diseased plants; (F) Petal diagram of root fungal

communities; (G) Venn diagram of root fungal communities of healthy plants;
(H) Venn diagram of root fungal communities of diseased plants. HR1-

healthy plant roots collected in spring; HR2- healthy plant roots collected

in summer; HR3- healthy plant roots collected in autumn; HR4- healthy plant
roots collected in winter. DR1- roots of diseased plants collected in spring;

DR2- roots of diseased plants collected in summer; DR3- roots of diseased
plants collected in autumn; DR4- roots of diseased plants collected in winter.

SUPPLEMENTARY FIGURE 3

a diversity index (Chao 1 index) and top 10 phylum-level relative abundance

maps for bacterial and fungal communities of healthy and diseased plant
roots sampled in different seasons. (A) Chao 1 index of root bacterial

community; (B) Chao 1 index of root fungal community; (C) Phylum-level
relative abundance maps for root bacteria; (D) Phylum-level relative

abundance maps for root fungi. Each process was repeated six times.
Values are means ± SE and N = 6 repetitions in each season. According to

one-way ANOVA, different letters indicate significant differences between

treatments when p<0.05. The significance values of the generalized linear
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model are as follows: n.s., not significant; *, 0.01<p ≤ 0.05; **, 0.001<p ≤ 0.01;
***, p ≤ 0.001. Fungal and bacterial communities not identified to phylum taxa

were assigned to “other “. HR1- healthy plant roots collected in spring; HR2-

healthy plant roots collected in summer; HR3- healthy plant roots collected
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in autumn; HR4- healthy plant roots collected in winter. DR1- roots of
diseased plants collected in spring; DR2- roots of diseased plants collected

in summer; DR3- roots of diseased plants collected in autumn; DR4- roots of

diseased plants collected in winter.
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