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Sophoramoorcroftiana is a leguminous plant endemic to theQinghai-Tibet Plateau.

It has excellent abiotic stress tolerance and is considered an ideal species for local

ecological restoration. However, the lack of genetic diversity in the seed traits of S.

moorcroftiana hinders its conservation and utilization on the plateau. Therefore, in

this study, genotypic variation and phenotypic correlations were estimated for nine

seed traits among 15 accessions of S. moorcroftiana over two years, 2014 and 2019,

respectively from 15 sample points. All traits evaluated showed significant (P< 0.05)

genotypic variation. In 2014, accession mean repeatability was high for seed

perimeter, length, width, and thickness, and 100-seed weight. In 2019, mean

repeatability for seed perimeter and thickness, and 100-seed weight were high.

The estimates of mean repeatability for seed traits across the two years ranged from

0.382 for seed length to 0.781 for seed thickness. Pattern analysis showed that 100-

seed weight was significantly positively correlated with traits such as seed perimeter,

length, width, and thickness, and identified populations with breeding pool potential.

In the biplot, principal components 1 and 2 explained 55.22% and 26.72% of the total

variation in seed traits, respectively. These accessions could produce breeding

populations for recurrent selection to develop S. moorcroftiana varieties suitable

for restoring the fragile ecological environment of the Qinghai-Tibet Plateau.

KEYWORDS

Sophora moorcroftiana , seed traits, genotypic variation, image analysis,
digital technologies
1 Introduction

The Qinghai-Tibet Plateau, with an average altitude of more than 4,000 m above sea

level (m a.s.l.), is called the “Roof of the World” or the “Third-Pole on Earth” (Chen et al.,

2020). The area is approximately 2.5 million km2, accounting for a fourth of China’s total

territorial land (Dong et al., 2020; Shi et al., 2021). Owing to its characteristics of high
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terrain and low oxygen, the unique biological resources of the

Qinghai-Tibet Plateau play a vital role in global biodiversity (Tao

et al., 2020). At the same time, although different terrain and

topography create a large number of diverse habitats for plants,

the ecosystem in this region is fragile, and the vegetation is

extremely sensitive to global climate change (Chen et al., 2020;

Deng et al., 2020).

Sophora moorcroftiana (Benth.) Baker, is a perennial deciduous

dwarf shrub of the legume family endemic to the Qinghai-Tibet

Plateau. It has strong ecological adaptability, such as drought

resistance, barren tolerance, and wind and sand resistance. It is

mainly distributed in the valleys and hillsides of the Yarlung Zangbo

River Basin at an altitude of 2,800–4,500 m above sea level (m a.s.l.)

and is a dominant pioneer plant among drought-tolerant shrubs

(Liu et al., 2020) and the preferred tree species for ecological

restoration in the plateau. Further, low-polarity compounds

contained in the seeds, such as matrine and sophocarpine, can be

used to treat Echinococcus granulosus infections (Luo et al., 2018).

Seeds provide plants with an evolutionary advantage that allows

them to survive and develop in drier places/times, store energy and

nutrients to support initial development and growth, increase

offspring fitness, and allow colonization and survival in adverse

environments (Niklas et al., 2008; Lamont and Groom, 2013;

Saatkamp et al., 2019). A range of seed morphological

characteristics (e.g., seed size and epidermal characteristics) and

physiological traits can coordinate the timing of seed germination

under conditions suitable for seedling establishment (Saatkamp et al.,

2019). In addition, both seed shape and size traits are useful for

analyzing plant biodiversity and can be used to characterize intra-

and inter-species variation as well as genotypic discrimination, and

their correlation information is important for breeding, targeting seed

yield and quality (Cervantes et al., 2016; Saatkamp et al., 2019;

Khamassi et al., 2021). For example, seed mass has been identified

as a key plant fitness-related trait, with larger seeds conferring

advantages to plants in properties such as drought tolerance during

seedling establishment, compared to small-seeded plants (Cochrane

et al., 2015). This trait may reflect a trade-off for plants to develop

short-term reductions in reproductive success (e.g., reduced seed

production) with reduced long-term risk (Venable, 2007).

Compared to other plant organs such as flowers and leaves,

using seed traits to characterize the genetic diversity of species has

certain advantages because seeds are relatively easier to collect and

store (Grillo et al., 2010). Pinna et al. (2014) used seed morphology

parameters to analyze the interspecific, specific, and intraspecific

levels of 10 Juniperus populations collected from the

Mediterranean. Khamassi et al. (2021) characterized and

evaluated the seed morphology of 24 local faba bean (Vicia faba)

accessions and found that accessions with a white hilum were

associated with lower mature grain content. Bacchetta et al.

(2008) measured seed morphological characteristics for 220

accessions in the Sardinian Germplasm Bank using digital image

analysis techniques and concluded that the method could be used to

identify very similar taxa in these species with an accuracy of

83.7%–100%. At present, the precise quantification of seed

morphological characteristics is facilitated by the development
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and use of digital techniques, quantification, and modeling

methods (Cervantes et al., 2016).

Therefore, in this study, the variation in seed morphological

characteristics of 15 S. moorcroftiana populations collected from

different locations on the Qinghai-Tibet Plateau was studied using

digital image analysis techniques. Our research focused on

estimating the genetic variation within and among populations.

In addition, a combination of potentially beneficial seed traits has

been evaluated in breeding programs. This study aimed to provide

data support for the genetic diversity and taxonomy of S.

moorcroftiana , and to provide valuable parameters and

information for the selection and breeding of strong adaptability

S. moorcroftiana varieties.
2 Materials and methods

2.1 Germplasm

The seed resources of 15 accessions were evaluated in this study.

S. moorcroftiana seeds were collected at 15 sampling points during

October 1–7, 2014, and October 1–7, 2019 (Figure 1). The collected

seeds were dried to a moisture content of 6%–8% and stored at 4°C

and 30%–50% relative humidity. The climate data of the sampling

points are provided by the meteorological data center of the China

meteorological administration.
2.2 Trait measurements

Nine seed traits were measured: SL, seed length (mm); SW, seed

width (mm); W/L, seed width to seed length ratio; HL, hilum length

(mm); HW, hilum width (mm); HW/HL, hilum width to hilum

length ratio; Pe, perimeter (mm); ST, seed thickness (mm) and SY,

100-seed weight (g). 100 seeds were manually counted. Use an

electronic balance (Sartorius, BSA224S-CW, China) for weighing.

Before trait measurements, a flatbed scanner (EPSON GT-15000)

was used to obtain digital images of the seed samples. During the

scan, the seeds were allowed to equilibrate before measurement

(room temperature was maintained at 20 ± 3°C and 40 ± 5% relative

humidity) (Grillo et al., 2010). The scanned image resolution was

200 dpi, and the number of pixels was 1024 × 1024.

Three replicates were scanned for each population and each

replicate included 100 seeds. Seed samples were prepared and

scanned according to methods described by Venora et al. (2007);

Bacchetta et al. (2008), and Dong et al. (2016). A WinSEEDLE 2011

image analysis system was used to process the acquired images

(Dong et al., 2016).
2.3 Data analysis

Data analysis was based on (1) variance component analysis to

assess the magnitude and significance of genotypic variation

between populations and (2) pattern analysis, including a
frontiersin.org
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combination of clustering and principal component analysis (PCA)

(Dong et al., 2016; Dong et al., 2019) to provide a graphical

summary of the multi-trait data matrices.

Data on seed traits from 15 S. moorcroftiana population

accessions were analyzed within and over two years (2014 and

2019). The analyses were conducted using the variance component

analysis procedure, residual maximum likelihood (REML), in

GenStat 7.1 (2003) (Dong et al., 2019). Analysis of data over the

years was performed using a mixed linear model (Dong et al., 2019).

All seed trait means were derived from the best linear unbiased

predictor (BLUP) analysis (White and Hodge 1989; Dong et al.,

2019). These BLUP values were used to build a population × trait

mean matrix adjusted for population × year interaction effects.

Referring to Fehr (1987) method, the estimated genotypic (s2
 g),

genotype × year interaction (s2
 g), experimental error (s 2

 e ), nl

(number of years), and nr (number of replications) obtained from

REML analysis were used to estimate the population accession

mean repeatability (R).

Accession mean repeatability within a single year:

R1 =
s  2
g

s  2
g + s  2

e
nr

(1)

Accession mean repeatability across years:

R2 =
s  2
g

s  2
g +

s  2
gl

nl
+ s  2

e
nlnr

(2)

Phenotypic correlation (rp) analysis was performed using

GenStat 7.1 (2003), and multivariate analysis of variance

(MANOVA) was used to assess accessions for 15 populations

over two years, resulting in the sum of the estimated cross-

products of the multi-trait data matrix.
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Pattern analysis is a combination of cluster analysis and

principal component analysis (PCA): a) based on the variance

components over the two years 2014 and 2019 to obtain an

adjusted mean matrix of genotype × trait BLUP and finally obtain

a graphical summary of accession traits for eight populations; and

b) to analyze the type of association (positive or negative) among

the nine seed traits in 2014 and 2019.
3 Results

3.1 Genotypic variance components and
the mean repeatability of nine seed traits
of S. moorcroftiana

The genotypic variance components of the nine seed traits in

2014 and 2019 showed significant differences (P< 0.05) for all the

traits evaluated in the 15 S. moorcroftiana accessions (Tables 1, 2).

In 2014, accession mean repeatability (R1) was high for seed

perimeter, length, width, and thickness, and 100-seed weight,

ranging from 0.933 to 0.992 (Table 1; Supplementary Figure 1A).

The R1 values for the hilum length, width, and hilum length/width

ratio were intermediate, ranging from 0.633 to 0.697. R1 for seed

width/seed length was the lowest at 0.058. In 2019, R1 for seed

perimeter and thickness, and 100-seed weight were high, ranging

from 0.846 to 0.991 (Table 2; Supplementary Figure 1B). R1 for seed

length, hilum length and width, and hilum length/width ratio were

intermediate, ranging from 0.604 to 0.767. R1 values for seed width

and seed width/length ratio were lower than those of the other traits

(0.489 and 0.054, respectively).

Analysis of variance for over two years, 2014 and 2019, showed

significant genotypic variation (P< 0.05) among the 15 S.
FIGURE 1

The distribution of 15 S. moorcroftiana accessions used in this study. The red dots represent the sampling points. LZX, Lin zhi; NML, Nan mu lin; GG,
Gong ga; RB, Ren bu; JC, Jia cha; LS, La sa; JD, Jin dong; BL, Bai lang; XTM, Xie tong men; DG, Dong ga; SJ, Sa jia; NM, Ni mu; SR, Sang ri; MR, Mi
rui; LZ, Lin zhou.
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moorcroftiana accessions for nine seed traits (Table 3). The mean

repeatability (R2) of hilum length/width and seed thickness was

higher than that of the other traits (0.757 and 0.781, respectively).

The R2 values for the hilum length and width, and 100-seed weight

were intermediate at 0.597, 0.643, and 0.626, respectively. R2 for

seed perimeter, length, width, and width/length ratio were lower

than those for the other traits, ranging from 0.097 to 0.493.
3.2 Pattern analysis and phenotypic
correlation of S. moorcroftiana

In 2014, based on phenotypic correlation analysis, there was a

positive correlation between 100-seed weight and seed perimeter,
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length, width, and thickness (Table 4). Seed perimeter, length, and

width also exhibited strong positive correlations at the phenotypic

level. In the biplot, principal components 1 and 2 explained 53.88%

and 24.26% of the total variation in seed traits, respectively

(Figure 2). The BLUP mean matrix of nine seed traits was used

for the cluster analysis grouping of 15 S. moorcroftiana accessions in

2014, truncated at the group three level. According to the trait

means for each group, Group 1 had the highest mean seed

perimeter, length, width, and width/length ratio, hilum length,

width, and length/width ratio, and 100-seed weight and included

two accessions (Supplementary Table 1).

In 2019, the phenotypic correlation analysis showed that 100-

seed weight, seed perimeter, length, width, and thickness showed

strong positive correlations at the phenotypic level (Table 5). In the
FIGURE 2

Biplot generated using standardized Best Linear Unbiased Predictor values for nine seed traits measured from 15 S. moorcroftiana accessions,
evaluated in 2014. Components I and II account for 53.88% and 24.26% of total variation, respectively. The different symbols indicate progeny
Groups 1 to 3 generated from cluster analysis.
TABLE 1 Average, maximum, minimum, least significant differences (l.s.d.0.05), estimated genotypic (s 2
g ) and experimental error (s 2

e ) variance

components and associated standard errors ( ± SE), and mean repeatability (R1) estimated from the 15 S. moorcroftiana accessions, evaluated in 2014.

Traits Perimeter Seed
Length

Seed
Width

Seed width/
Seed Length

Hilum
length

Hilum
width

Hilum width/
Hilum length

Seed
thickness

100-seed
weight

Average 14.661 4.453 4.405 0.990 1.790 1.295 0.725 3.594 0.791

Min 13.626 4.157 4.066 0.951 1.612 1.171 0.683 3.305 0.553

Max 15.262 4.644 4.611 1.023 1.918 1.516 0.797 3.711 0.900

l.s.d.0.05 0.491* 0.157* 0.143* 0.044* 0.117* 0.093* 0.040* 0.107* 0.064*

s2g
0.211 ±
0.091

0.016 ±
0.007

0.016 ±
0.007

0.001 ± 0.001
0.004 ±
0.002

0.133 ±
0.359

0.141 ± 0.097
0.010 ±
0.004

0.009 ± 0.004

s 2
 e

0.086 ±
0.023

0.007 ±
0.002

0.008 ±
0.002

0.007 ± 0.002
0.005 ±
0.001

0.152 ±
0.549

0.186 ± 0.016
0.004 ±
0.001

0.001 ± 0.003

R1 0.948 0.939 0.933 0.058 0.688 0.697 0.633 0.949 0.992
* indicates significance at P< 0.05.
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biplot, principal component 1 explained 70.74% of the total seed

trait variation and principal component two explained 15.39%

(Figure 3). The 15 S. moorcroftiana accession groups generated

from the cluster analysis were truncated at the two-group level. The

results showed that the second group had a higher seed perimeter,

length, width, thickness and width/length ratio, hilum length, and

100-seed weight (Supplementary Table 2).

In 2014 and 2019, based on the phenotypic correlation analysis,

100-seed weight showed a strong positive correlation with seed

perimeter, length, width, and thickness at the phenotypic level and a

strong negative correlation with hilum length/width ratio (Table 6).

In the biplot, principal components 1 and 2 explained 55.22% and

26.72% of the total variation in seed traits, respectively (Figure 4).

The 15 S. moorcroftiana accession groups generated from the

cluster analysis were truncated at the three-group level. The third

group of accessions had higher seed perimeter, seed length, width,

width/length ratio, thickness, and 100-seed weight, including five

accessions (Supplementary Table 3). Furthermore, in 2014 and
Frontiers in Plant Science 05
2019, the seed traits perimeter, hilum length/width ratio, seed

thickness, and 100-seed weight were all significantly correlated

with altitude, and hilum length/width ratio, seed thickness, and

100-seed were significantly correlated with the monthly average

maximum temperature, monthly average minimum temperature,

and monthly average temperature during the growing season

(Supplementary Figure 2).
4 Discussion

Numerous studies have shown that structural diversity in seed

traits helps characterize both intra- and inter-species variation.

Therefore, the study of macro- and micro-seed traits is important

in quantifying genetic diversity and plant taxonomy (Barthlott,

1981; Grillo et al., 2010).

Previous studies on S. moorcroftiana have mainly focused on its

population distribution (Liu et al., 2020; Xin et al., 2021; Yang et al.,
TABLE 3 Average, maximum, minimum, least significant differences (l.s.d.0.05), estimated genotypic (s 2
g ), genotype × year interaction (s 2

gy) and

experimental error (s 2
e ) variance components and associated standard errors ( ± SE), and mean repeatability (R2) estimated from the 15 S.

moorcroftiana accessions, evaluated across two years, 2014 and 2019.

Traits Perimeter Seed
Length

Seed
Width

Seed width/
Seed Length

Hilum
length

Hilum
width

Hilum width/
Hilum length

Seed
thickness

100-seed
weight

Average 14.778 4.522 4.470 0.989 1.782 1.297 0.729 3.652 0.830

Min 13.626 4.157 4.066 0.951 1.612 1.171 0.683 3.305 0.548

Max 15.340 4.706 4.720 1.023 1.918 1.516 0.806 3.846 0.995

l.s.d.0.05 0.551* 0.182* 0.181* 0.025* 0.108* 0.083* 0.035* 0.136* 0.134*

s2g
0.055 ±
0.017

0.043 ±
0.006

0.072 ±
0.005

0.068 ± 0.000
0.180 ±
0.002

0.260 ±
0.221

0.016 ± 0.062
0.058 ±
0.001

0.099 ± 0.006

s 2
 e

0.154 ±
0.054

0.016 ±
0.006

0.111 ±
0.004

0.042 ± 0.001
0.080 ±
0.003

0.450 ±
0.142

0.382 ± 0.135
0.004 ±
0.001

0.003 ± 0.001

s2gy
0.005 ±
0.001

0.005 ±
0.002

0.008 ±
0.003

0.046 ± 0.001
0.052 ±
0.004

0.069 ±
0.030

0.003 ± 0.080
0.004 ±
0.003

0.015 ± 0.009

R2 0.441 0.382 0.493 0.097 0.597 0.643 0.757 0.781 0.626
* indicates significance at P< 0.05.
TABLE 2 Average, maximum, minimum, least significant differences (l.s.d.0.05), estimated genotypic (s 2
g ) and experimental error (s 2

e ) variance

components and associated standard errors ( ± SE), and mean repeatability (R1) estimated from the 15 S. moorcroftiana accessions, evaluated in 2019.

Traits Perimeter Seed
Length

Seed
Width

Seed width/
Seed Length

Hilum
length

Hilum
width

Hilum width/
Hilum length

Seed
thickness

100-seed
weight

Average 14.959 4.592 4.554 0.992 1.773 1.307 0.738 3.730 0.876

Min 14.427 4.453 4.379 0.978 1.695 1.242 0.704 3.561 0.548

Max 15.340 4.706 4.720 1.010 1.856 1.368 0.806 3.846 0.995

l.s.d.0.05 0.851* 0.263* 0.214* 0.034* 0.110* 0.070* 0.045* 0.113* 0.094*

s2g
0.327 ±
0.068

0.018 ±
0.006

0.009 ±
0.008

0.008 ± 0.001
0.002 ±
0.002

0.001 ±
0.001

0.007 ± 0.001
0.007 ±
0.005

0.020 ± 0.011

s 2
 e

0.242 ±
0.092

0.023 ±
0.009

0.017 ±
0.006

0.059 ± 0.001
0.003 ±
0.001

0.002 ±
0.001

0.007 ± 0.002
0.004 ±
0.002

0.003 ± 0.001

R1 0.846 0.648 0.489 0.054 0.604 0.715 0.767 0.890 0.991
* indicates significance at P< 0.05.
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2021), soil seed banks (Zhao et al., 2007), medicinal functions

(Wang et al., 2014; Luo et al., 2018), analysis of transcriptome (Li

et al., 2015) and verification of gene functions (Li et al., 2017). In

this study, we report, for the first time, the phenotypic and

genotypic variations in nine seed traits and the mean repeatability

of 15 accessions of S. moorcroftiana.

In nature, plants growing in various environments have evolved

adaptive traits related to seed morphology and physiology to cope

with adverse environments, such as variability in seed size, seed

dormancy characteristics, and a special structure that maintains the

reproduction and spread of the population (Venable and Brown,

1988; Luzuriaga et al., 2006). These seed traits are mainly

determined by the seed genotype and parental environment

(Schmitt et al., 1992). At the same time, parental effects also

include the result of the interaction of genotype and maternal

environment. The influence of parents on offspring is partly

determined by genes; therefore, they are evolvable (Lacey, 1998).

In the present study, seed perimeter, seed thickness, and 100-seed

weight all had high R1 values in a single year, whereas hilum length/

hilum width and seed thickness had high R2 values across years.
Frontiers in Plant Science 06
The relatively high genotypic variation in these traits indicated

potential genetic variation among the 15 S. moorcroftiana

accessions that could be used for selection and breeding (Dong

et al., 2019). Furthermore, these seed trait variation reflects the

result of genetic variation and phenotypic plasticity in response to

environmental variation (Wang et al., 2023). This information helps

to understand the response mechanism and variation rules of plants

to the environment, which is important for the collection,

preservation and evaluation of germplasm resources.

The size and weight of seeds produced by different plant species

vary widely. A previous study found that seed size showed different

characteristics during the growth and development of plant

offspring (Moles et al., 2005). Small-seeded plant species can

produce more seeds than large-seeded plant species for a given

amount of energy. However, seedlings of large-seeded plant species

are more resilient to biotic and abiotic stresses during their

establishment. Small-seeded plant species adopt another strategy

for winning by quantity: producing as many offspring as possible to

ensure their survival. This suggests that traits such as seed size and

weight of different species grown in a specific environment can have
TABLE 5 Phenotypic (rp) correlation coefficients, between traits based on the 15 S. moorcroftiana accessions, evaluated in 2019.

Traits Perimeter Seed
Length

Seed
Width

Seed width/Seed
Length

Hilum
length

Hilum
width

Hilum width/
Hilum length

Seed
thickness

Seed Length 0.865**

Seed Width 0.811** 0.658**

Seed width/Seed
Length

-0.068 -0.419** 0.408**

Hilum length 0.227 0.266 0.301* 0.040

Hilum width 0.014 0.025 0.131 0.126 0.252

Hilum width/
Hilum length

0.005 0.014 0.117 0.122 0.205 0.998**

Seed thickness 0.622** 0.641** 0.636** -0.006 0.377* 0.012 -0.012

100-seed weigh 0.710** 0.793** 0.747** -0.058 0.313* 0.062 0.047 0.762**
*, ** indicates significant at P< 0.05 and P< 0.01 levels, respectively.
TABLE 4 Phenotypic (rp) correlation coefficients, between traits based on the 15 S. moorcroftiana accessions, evaluated in 2014.

Traits Perimeter Seed
Length

Seed
Width

Seed width/Seed
Length

Hilum
length

Hilum
width

Hilum width/
Hilum length

Seed
thickness

Seed Length 0.947**

Seed Width 0.846** 0.825**

Seed width/Seed
Length

-0.220 -0.346* 0.245

Hilum length 0.384** 0.388** 0.382** -0.033

Hilum width 0.017 -0.010 0.014 0.038 0.133

Hilum width/
Hilum length

-0.006 -0.033 -0.010 0.040 0.072 0.998**

Seed thickness 0.680** 0.725** 0.755** 0.009 0.288* -0.176 -0.195

100-seed weigh 0.668** 0.728** 0.764** 0.024 0.424** -0.011 -0.038 0.833**
*, ** indicates significant at P< 0.05 and P< 0.01 levels, respectively.
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a major impact on seedling establishment and survival (Dong et al.,

2016). Therefore, information on the genetic variation in key seed-

size traits in breeding materials will facilitate the execution of

various developmental programs (Odiaka, 2005). In this study,

the ranges of seed perimeter, seed thickness, and 100-seed weight

reflecting seed size and quality were 13.626–15.262 mm, 3.305–

3.711 mm, and 0.553–0.900 g in 2014 and 14.427–15.340 mm,

3.561–3.846 mm, and 0.548–0.995 g in 2019, respectively; the R1 of

these traits was higher than 0.8, and the R2 of seed thickness and

100-seed weight were higher than 0.6. This suggests that these traits

are mainly affected by the genotype and can provide valuable

information for S. moorcroftiana breeding. In addition, seed

thickness, length, width, and perimeter, and 100-seed weight
Frontiers in Plant Science 07
showed extremely significant positive correlations between the

two years, indicating that changes in any trait may significantly

affect seed weight. This result indicated that these traits were mainly

determined by seed genotype and that changes in either trait could

significantly affect seed weight. This positive correlation has

important commercial and practical implications for breeding

programs (Amiri et al., 2010; Dong et al., 2019). At the same

time, variability in seed size affects seed dispersal in a variety of

ways. Because smaller seeds are usually dispersed further by abiotic

factors such as water and wind. This is closely related to the external

environment such as the altitude, slope, temperature and rainfall of

the population (Liao et al., 2020; Yang et al., 2021). This was also

supported by the correlations between seed traits and altitude and
TABLE 6 Phenotypic (rp) correlation coefficients, between traits based on the 15 S. moorcroftiana accessions, evaluated across two years, 2014 and 2019.

Traits Perimeter Seed
Length

Seed
Width

Seed width/Seed
Length

Hilum
length

Hilum
width

Hilum width/
Hilum length

Seed
thickness

Seed Length 0.954**

Seed Width 0.907** 0.834**

Seed width/Seed
Length

-0.081 -0.286 0.289

Hilum length 0.466* 0.434* 0.467* 0.058

Hilum width -0.053 -0.079 -0.215 -0.242 0.299

Hilum width/
Hilum length

-0.443* -0.436* -0.582** -0.259 -0.610** 0.572**

Seed thickness 0.599** 0.584** 0.755** 0.303 0.312 -0.554** -0.735**

100-seed weigh 0.562** 0.569** 0.717** 0.266 0.452* -0.520** -0.832** 0.859**
*, ** indicates significant at P< 0.05 and P< 0.01 levels, respectively.
FIGURE 3

Biplot generated using standardized Best Linear Unbiased Predictor values for nine seed traits measured from 15 S. moorcroftiana accessions,
evaluated in 2019. Components I and II account for 70.74% and 15.39% of total variation, respectively. The different symbols indicate progeny
Groups 1 and 2 generated from cluster analysis.
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temperature in this study. This phenomenon has important

implications for individual reproductive success, community

structure, and biodiversity patterns of plants (Snell et al., 2019).

In previous studies, pattern analysis has been successfully used

to analyze nine environmental and nine genotype trait data matrices

(Jahufer et al., 1997; Zhang et al., 2006; Luo et al., 2016). Jahufer

et al. (1997) used pattern analysis to analyze 439 white clover

germplasm resources and screened out germplasm populations

characterized by large leaves, tall plants, and thick stolons, which

could be used to develop varieties that can tolerate summer drought

stress environments. Dong et al. (2019) analyzed the genotypic and

phenotypic variation of 18 traits of 418 common vetch germplasms

based on pattern analysis and obtained germplasm populations

with low shattering rates, high seed yields, and high plant dry

weights, which can be used for common vetch breeding programs

with high seed yield and high dry plant weight. Similarly, in this

study, we obtained germplasm populations with higher seed sizes

and 100-seed weights using pattern analysis. These accessions could

be used in S. moorcroftiana breeding programs with high seedling

establishment success rates to adapt to the harsh natural conditions

of the Qinghai-Tibet Plateau.

Seed size, shape, and epidermal surface characteristics of plants

play important roles in plant morphological diversity, and these

seed morphological characteristics can provide data for taxa at

different taxonomic levels (Ocampo et al., 2014). In addition, the

seed characteristics of plants are different from their floral features,

which are generally considered to be more conserved and thus can

provide valuable information on the evolutionary history of

flowering plants (Barthlott, 1981). Becquer et al. (2014) studied

seed shape and size, raphe shape and size, and seed coat surface

morphology data of 47 Compositae species from the Antilles,
Frontiers in Plant Science 08
providing information for phylogenetic reconstruction and trait

evolution analysis. In this study, the genotypic variation in different

seed traits of each accession was significantly different (P < 0.05),

which may help to investigate their taxonomic relationships.

Analysis of the seed morphological characteristics of S.

moorcroftiana showed that the JC, JD, SR, and BL accessions

were significantly different (P < 0.05) from the GG, RB, NML,

XTM, NM, DG, and SJ accessions, which could be divided into

two groups. Our study shows that these heterogeneous seed traits

can provide valuable information on the evolutionary relationship

of S. moorcroftiana, and the seed morphology database has the

potential for taxonomic screening (Dell'Aquila, 2007).

Nondestructive studies based on the plant seed characterization

have proven to be an informative, noninvasive, and suitable tool for

differentiating germplasm resources (Sinkovič et al., 2019). The

results obtained in this study are serving as the useful information

on genetic diversity, plant classification and breeding of S.

moorcroftiana accessions, which could be used for future research

on the evolution, classification and population restoration of

S. moorcroftiana.
5 Conclusion

This study estimated the phenotypic correlation, genotypic

variation, and mean repeatability of nine seed traits in 15 S.

moorcroftiana accessions. Seed perimeter, seed thickness, and

100-seed weight showed high mean repeatability over two years

(2014 and 2019), indicating their potential for genetic

improvement. Pattern analysis showed that the 100-seed weight

was significantly and positively correlated with seed perimeter,
FIGURE 4

Biplot generated using standardized Best Linear Unbiased Predictor values for nine seed traits measured from 15 S. moorcroftiana accessions,
evaluated across two years, 2014 and 2019. Components I and II account for 55.22% and 26.72% of total variation, respectively. The different
symbols indicate progeny Groups 1 to 3 generated from cluster analysis.
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length, width, and thickness. The significant correlation between

these traits provides key information for S. moorcroftiana breeding

programs that focus on developing varieties with high seedling

establishment success rates. This study not only deepens our

understanding of the genetic diversity of S. moorcroftiana seed

morphological traits but also provides important information for

the development of breeding banks.
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