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Identification of candidate genes
for salinity tolerance in Japonica
rice at the seedling stage based
on genome-wide association
study and linkage mapping

Shanbin Xu †, Jingnan Cui †, Hu Cao †, Shaoming Liang,
Tianze Ma, Hualong Liu, Jingguo Wang, Luomiao Yang,
Wei Xin, Yan Jia, Detang Zou* and Hongliang Zheng*

Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region,
Ministry of Education, Northeast Agricultural University, Harbin, China
Background: Salinity tolerance plays a vital role in rice cultivation because the

strength of salinity tolerance at the seedling stage directly affects seedling

survival and final crop yield in saline soils. Here, we combined a genome-wide

association study (GWAS) and linkage mapping to analyze the candidate intervals

for salinity tolerance in Japonica rice at the seedling stage.

Results: We used the Na+ concentration in shoots (SNC), K+ concentration in

shoots (SKC), Na+/K+ ratio in shoots (SNK), and seedling survival rate (SSR) as

indices to assess the salinity tolerance at the seedling stage in rice. The GWAS

identified the lead SNP (Chr12_20864157), associated with an SNK, which the

linkagemapping detected as being in qSK12. A 195-kb region on chromosome 12

was selected based on the overlapping regions in the GWAS and the linkage

mapping. Based on haplotype analysis, qRT-PCR, and sequence analysis, we

obtained LOC_Os12g34450 as a candidate gene.

Conclusion: Based on these results, LOC_Os12g34450 was identified as a

candidate gene contributing to salinity tolerance in Japonica rice. This study

provides valuable guidance for plant breeders to improve the response of

Japonica rice to salt stress.
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Introduction

Soil salinity is an important limiting factor affecting high and

stable resistance in rice and expansion areas for the economically

important crop (Ouhibi et al., 2014). Salt stress inhibits plant

protein synthesis, reduces photosynthetic efficiency, causes ion

imbalances and high osmotic stress, and leads to plant wilting

and apoptosis (Ma et al., 2017). This stress response significantly

reduces crop yield and has become an important environmental

factor affecting crop growth and development. But at present, due to

unreasonable irrigation methods and excessive fertilization, the

salinization of soil is becoming more and more serious (Qadir

et al., 2014). Rice can effectively help people by ensuring food

security and advancing sustainable agriculture development.

Growing rice on saline land can improve the utilization of saline

soils and the soil conditions of the land. Rice is a moderately salt-

sensitive crop, and its seedling salinity tolerance is a key factor

determining its final yield. Therefore, its fine positioning can not

only reveal its molecular mechanism, but also provide a theoretical

basis for improving salt-tolerant varieties of rice.

Multiple rice genes control the complex quantitative trait

known as salinity tolerance (Liang et al., 2015), and scientists

have made a series of important research advances in cloning salt

stress genes (Lin et al., 2004; Bimpong et al., 2014; Yu et al., 2017; Li

et al., 2022). For example, SKC1, rice’s first salinity tolerance QTL,

encodes a transporter protein of the HKT family. Previous studies

have shown that SKC1 protein is a sodium (Na+)-selective

transporter protein that can effectively regulate the aboveground

sodium and potassium (Na+/K+) balance and improve salinity

tolerance (Ren et al., 2005). Meanwhile, Huang et al. (2009)

reported a rice drought and salinity tolerance gene, DST, which

negatively regulates salinity tolerance. The functional deletion of

DST directly down-regulates the expression of genes related to

hydrogen peroxide metabolism, reduces water evaporation under

drought stress and Na+ entry into the plant, and ultimately

improves the salinity tolerance of rice. Li et al. (2014) identified a

lectin receptor-like kinase SIT1 in rice, which mediates the salt-

sensitive response in rice, and its rapid increase in response to high

salt stimulation activates the downstream effectors MAPK3 and

MAPK6, which in turn increases ethylene content by activating

ethylene synthase and causing an increase in reactive oxygen

species, resulting in reduced survival under salt stress. Zhou et al.

(2018) identified a receptor-like cytoplasmic kinase gene, STRK1,

significantly improving salinity tolerance in rice. The STRK1

protein undergoes autophosphorylation upon salt stress and

significantly increases its activity by phosphorylating and

activating CatC, thereby degrading the large amount of hydrogen

peroxide produced by salt stress.

Cloning salinity tolerance genes has produced important

breakthroughs in the molecular mechanism elucidation of

important complex traits in rice, which have become a reference

for studying the genetic mechanisms behind complex traits in rice.

This work has significant application value and lays the foundation

for identifying and cloning salinity tolerance genes in crops.

Combining GWAS and QTL mapping for gene mining can

significantly improve the efficiency of QTL identification, and the
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results can be verified against each other, resulting in stable and

reliable QTLs. For example, Zhang et al. (2019) identified a

candidate gene, GmCDF1, which is closely linked to soybean

salinity tolerance on chromosome 8 through linkage and

association analysis. Wu et al. (2016) combined GWAS and

linkage analysis to identify 125 QTLs regulating maize male

inflorescence size. Tang et al. (2021) used linkage localization and

GWAS analysis to locate one QTL region controlling rice grain

length, further identifying OsGASR7 as a functional gene within this

QTL interval. Therefore, combining the two methods is important

for mining candidate genes for target traits.

This study explored the genetic mechanism of salinity tolerance

as assessed by GWAS and linkage mapping using Na+

concentration in shoots (SNC), K+ concentration in shoots (SKC),

Na+/K+ ratio in shoots (SNK), and seedling survival rate (SSR) at

the rice seedling salt treatment. We identified Chr12_20864157 and

qSK12 on chromosome 12 by GWAS and linkage mapping,

identifying an overlapping region of the 195-kb as a candidate

region. Using haplotype analysis, qRT-PCR, and sequence analysis,

LOC_Os12g34450 was considered the most likely functional gene

associated with salinity tolerance. The results procured by this study

provide novel insights for improving salinity tolerance in

Japonica rice.
Materials and methods

Plant materials

It consists of 295 Japonica rice varieties widely grown at home

and abroad, of which domestic materials are mainly from

Heilongjiang, Jilin, Liaoning, and Ningxia provinces, and foreign

varieties were mainly from Korea, Russia, and Japan. The 195 RILs

that comprised the linkage mapping population were a cross

between the salt-sensitive Kongyu131 and the salt-tolerant

Xiaobaijingzi. The salinity tolerance phenotypes of KY131 and

XBJZ were shown in Figure 1. All rice varieties have been studied

previously (Li et al., 2019; Li et al., 2020; Duan et al., 2022).
Salinity tolerance evaluation at the
seedling stage

The experiment was divided into two groups, named group T1

and group T2, and set up for three repetitions. In group T1, twenty-

four uniformly germinated rice seeds of each variety were sown.

One seed was placed in each hole and hydroponically grown with

Yoshida nutrient solution. The germinated seeds were transferred

to an artificial climatic chamber and incubated at 25 and 23°C with

14h light and 10h dark cycles, respectively. When seedlings grew to

two leaves and one heart, salt stress treatment was performed with a

pre-treatment sodium chloride (NaCl) concentration of 50 mmol/L.

After 3 days of pre-treatment, formal treatment was performed

with a NaCl concentration of 120 mmol/L for 7 days. The shoot of

each sample was dried at 120°C for 30 min and at 80°C to a constant

weight. Weigh 0.1 grams (g) of the dry samples, add 5 ml of 1 mol/L
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HCl to the tube, and put it into a water bath for 6 h at 70°C in a

constant temperature water bath shaker. The SNC and SKC of the

samples were measured using a flame photometer (Sherwood 410,

Cambridge, UK) and the SNK was calculated. In group T2, 100

uniformly germinated seeds of each variety were grown with

Yoshida nutrient solution, with the same salt treatment as the T1

group. The culture medium was replaced every day, and replaced

with the same medium as the control group after 7 days. After 10

days, the survival rate statistics counted the number of plants with

new leaf production.
GWAS for salinity tolerance

In total, 788,396 single nucleotide polymorphisms (SNPs) were

used for genotyping 295 Japonica rice accessions for GWAS. The

threshold for identifying significantly associated SNPs was set at –

log10(P) > 5.26, according to a pre-laboratory study by Li et al.

(2020). The Manhattan map was created using the R package

‘qqman’. Redundant SNPs with the smallest P values were filtered

within a minimal distance interval and the LDBlockShow software

was used to calculate the pairwise R2 value between any two SNPs in

the interval of leading SNPs ± 2 Mb. In the interval of 1.5-2.0 Mb of

leading SNPs, the average of the top 10% R2 values was recorded,

plus 0.2 to define the LD attenuation interval of leading SNPs

interval (Dong et al., 2021).
QTL mapping for salinity tolerance

The genetic linkage map constructed using 195 RILs contained

527 bin markers (Figure S1). QTL localization was performed using

the composite interval mapping method with QTL ICIMapping 4.2
Frontiers in Plant Science 03
software, and the threshold value was set to LOD>2.5, according to

a pre-laboratory study by Li et al. (2020).
Haplotype analysis of candidate gene

Non-synonymous mutant SNPs in the exonic regions of all

genes in the candidate interval and SNPs in the promoter region

(1.5 kb before ATG) were extracted from the RiceSNPSeekDatabase

website (https://snp-seek.irri.org/_snp.zul) and haplotype analysis

was performed using DnaSP software. Also, materials with different

haplotypes needed to be greater than or equal to 10.
Identification of candidate genes by gene
expression and sequence analysis

The expression levels of the four genes of KY131 and XBJZ were

verified by qRT-PCR analysis under salinated and normal

conditions. qRT-PCR analysis was performed using Roche

LightCycler96. All primer sequences were shown in Table S3. The

CDS and promoter regions of KY131 and XBJZ candidate genes

were cloned using PCR. Sequences comparison were performed

using DNAMAN.
Results

Phenotypic variation

In this study, we analyzed the phenotypes of 295 Japonica rice

accessions and RIL lines at the seedling stage under salinity stress

and evaluated four salinity tolerance indices: SNC, SKC, SNK, and
A B

FIGURE 1

Phenotypes of KY131 and XBJZ seedlings under contral and salt stress. (A) Represent under control conditions. Bar = 5 cm. (B) Represent under salt
stress conditions. Bar = 5 cm.
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SSR. Under the salinity stress treatment, the SNC, SKC, SNK, and

SSR among the 295 rice accessions varied in range from 10.14–38.83

mmol/g, 5.21–32.82 mmol/g, 0.79–2.78, and 9.33–88.66%,

respectively, and the coefficient of variation was 20.13%, 26.73%,

28.61%, and 28.12%, respectively (Table S1). The variation for SNC,

SKC, SNK, and SSR in the RIL lines ranged from 8.12–29.56 mmol/

g, 6.98–39.56 mmol/g, 0.46–2.19, and 8.66–89.33%, respectively,

and the coefficient of variation was 20.48%, 40.58%, 37.01%, and

32.99%, respectively (Table S1). Phenotypic data indicate that this

study’s natural and RIL populations have abundant phenotypic

variation in rice seedling salinity tolerance. Meanwhile, the values of

these four traits differed significantly between the two parents

(Figures 2E–H; Table S1), the phenotype values of the four traits

indicating that XBJZ was more salinity-tolerant than KY131. The

SNC, SKC, SNK, and SSR phenotypic values in the 295 rice

access ions and RIL l ines were normal ly distr ibuted,

demonstrating that these indices are quantitative traits under the

control of numerous factors (Figure 2).
GWAS for salinity tolerance-related traits in
a natural population

The 788,396 SNPs obtained from previous studies were used for

GWAS analysis (Li et al., 2019; Zheng et al., 2022). Manhattan and

quantile–quantile plots were shown in Figure 3. Fourteen lead SNPs

significantly associated with SNC, SNK, and SSR were provided in

Table 1. Three QTLs associated with SNC were detected and located

on chromosomes 1, 4, and 12, with R2 values ranging from 9.20–

10.36%. No QTL associated with SKC was detected, and eight QTLs

associated with SNK were detected and located on chromosomes 1,

4, 6, 9, 10, and 12, with R2 values ranging from 9.05–10.30%.

Meanwhile, three QTLs associated with SSR were detected and

located on chromosomes 4, 8, and 10, with R2 values ranging from

9.76–12.02% (Table 1).
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Linkage mapping for salinity tolerance at
the seedling stage

A total of five QTLs associated with SNC, SKC, SNK, and SSR

were identified on chromosomes 1, 4, and 12 using linkage mapping

(Table 2; Figure S1), with LOD values from 2.51–8.22 and

proportions of phenotypic variation ranged from 5.49–18.27%. In

addition, qSKC12 and qSNK12 were considered to be the same QTL

because of the same interval, named qSK12 (chromosome 12)

(Figure 4B), located in the physical region between markers

C12_20029364 and C12_20873254 and explaining 11.54–18.27%

of the phenotypic variation. The GWAS identified the lead SNPs,

Chr12_20864157, associated with an SNK, which the linkage

mapping detected as being in qSK12. The LD block region on

chromosome 12 was predicted to be 20.718–20.905 Mb (186 kb)

(Figure 4A). A 195-kb overlap region was filtered out based on the

GWAS and the linkage mapping (Figure 4C).
Haplotype analysis of candidate genes

According to the Phytozome database, the 195-kb candidate

interval did not include known salinity tolerance genes from

previous studies. The 195-kb region on chromosome 12

contained 35 genes (Figure 4D; Table S2). We performed

haplotype analysis of 35 genes and found that 4 genes

(LOC_Os12g34320, LOC_Os12g34330, LOC_Os12g34450, and

LOC_Os12g34460) within the overlapping interval were associated

with significantly different haplotypes of SNKs. LOC_Os12g34320

and LOC_Os12g34450 were classified into two haplotypes by non-

synonymous mutant SNPs in the exon region. One SNP located in

the 5′ untranslated region of LOC_Os12g34330 formed two

haplotypes, while no non-synonymous SNP was found in the

exon region. The haplotype analysis of LOC_Os12g34460

indicated that 2 SNPs were identified in the promoter region and
DA B

E F G H

C

FIGURE 2

Phenotypic variation in the SNC, SKC, SNK, and SSR in 295 Japonica rice accessions and RIL lines. (A–D) Represent the SNC, SKC, SNK, and SSR of
295 rice accessions. (E–H) Represent the SNC, SKC, SNK, and SSR of RIL lines.
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FIGURE 3

Manhattan plots and quantile-quantile (Q-Q) plots of GWAS for the SNC, SKC, SNK, and SSR. (A–D) Manhattan plot for the SNC, SKC, SNK, and SSR.
(E–H) Q-Q plot for the SNC, SKC, SNK, and SSR.
TABLE 1 Lead SNPs for SNC, SNK, and SSR identified by GWAS.

Traits Lead SNP Chromosome Position P value R2(%) Known QTLs Known genes

SNC Chr1:27088613 1 27088613 2.48E-06 9.66
qNAUP-1a

(Sabouri and Sabouri, 2008)

Chr4:9305690 4 9305690 1.02E-06 10.36
qPn4b

(Tong et al., 2006)

Chr12:25487805 12 25487805 4.49E-06 9.20

SNK Chr1:26805021 1 26805021 3.44E-06 9.36
qNAUP-1a

(Sabouri and Sabouri, 2008)
OSBZ8

(Mukherjee et al., 2006)

Chr4:16679366 4 16679366 3.70E-06 9.46
qPn4b

(Tong et al., 2006)

Chr4:21840798 4 21840798 2.77E-06 9.57
qDTF4.1s

(Mohammadi et al., 2013)
OsCLC-1

(Nakamura et al., 2006)

Chr6:9215769 6 9215769 1.99E-06 9.83

Chr9:13269677 9 13269677 5.31E-06 9.05

Chr10:7916859 10 7916859 2.61E-06 9.78
SalTol10-1

(Islam et al., 2011)

Chr10:16340314 10 16340314 4.70E-06 9.32
SalTol10-1

(Islam et al., 2011)

(Continued)
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4 non-synonymous SNPs were detected in the exon region

(Figures 5A–D).
Identification of candidate genes by gene
expression and sequence analysis

The two parents, KY131 and XBJZ, were treated with 120 mM

NaCl for 0, 1, 3, 6, 12, and 24 h, respectively. The expression patterns of

these four genes were assessed by qRT-PCR analysis. The mean results

in triplicate were shown in Figure 6. Among these four genes, salinity

stress did not increase the expression levels of LOC_Os12g34320,

LOC_Os12g34330, or LOC_Os12g34460 (Figures 6A, B, D).

LOC_Os12g34450 was significantly induced by salinity stress, and the

expression levels were significantly different between KY131 and XBJZ,

which showed opposite expression patterns. The expression level of

LOC_Os12g34450 was more than 18-fold higher in KY131 than in

XBJZ under 6 h of salinity stress (Figure 6C). Meanwhile, we performed

qRT-PCR analysis of other functionally annotated genes within the

195-kb region, and the results of the four genes expressed between the

two parents are shown in Figure S2, which were not differentially

expressed between the two parents. After observing these results, we

completed further sequencing of the promoter regions and genes of

LOC_O12g34450 in the two parents KY131 and XBJZ. Compared with

the sequence of KY131, LOC_Os12g34450 of XBJZ had a 2-bp deletion

(A and C bases) and 2 SNPs (T!G, G!A) in the first exon of the CDS
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region, 1 SNP (T!C) in the third exon, and multiple SNPs in the

promoter region containing 1 cis-element (TGA-element) related to

auxin response (AACGAC!GACGAT) (Figure S3). Therefore,

LOC_Os12g34450 was considered a functional gene associated with

salinity tolerance. LOC_Os12g34450 encodes an auxin-binding protein

4 precursor gene, which has not been reported to affect salinity

tolerance in rice in previous studies. In subsequent studies, transgenic

plants will be examined for the biological function of their associated

genomic variant’s responses to salinity tolerance in Japonica rice.

Discussion

Rice seedlings have poor salinity tolerance and are susceptible to

salt stress, which seriously affects their planting and yield.

Therefore, cultivating salinity tolerance in seedlings has great

practical significance for agricultural production (Nam et al.,

2015). This study selected SNC, SKC, SNK, and SSR as indicators

to assess salinity tolerance in rice seedlings, which have also been

used in previous studies (Rahman et al., 2016). Under salinity stress

conditions, the Na+ content in rice seedling shoots and roots

increases, and the K+ content decreases. This chemical change

leads to a higher Na+/K+ ratio and disrupts the ionic balance by

decreasing Mg, Zn, and Mn content (Tuncturk et al., 2008), also

leading to osmotic stress and growth inhibition (Munns, 2011).

Salinity tolerance is a complex trait, and identifying such QTLs

helps obtain relative salt tolerance genes for molecular-assisted
TABLE 1 Continued

Traits Lead SNP Chromosome Position P value R2(%) Known QTLs Known genes

Chr12:20864157 12 20864157 1.10E-06 10.30
QSst12

(Cheng et al., 2012)

SSR Chr4:8601162 4 8601162 4.40E-07 9.76
qPn4b

(Tong et al., 2006)

Chr8:26210079 8 26210079 8.94E-07 10.68
qGY8.1s

(Mohammadi et al., 2013)

Chr10:18354286 10 18354286 2.20E-07 12.02
qSKC-10b

(Ghomi et al., 2013)
R2 (%): Phenotypic variance explained.
TABLE 2 QTLs for SNC, SKC, SNK, and SSR identified by linkage mapping analysis in 195 RILs.

Traits QTLs Left Marker Right Marker Chr. LOD R2(%) Additive effect Known QTLs Known genes

SNC qSNC12 C12_23512814 C12_24090250 12 2.51 6.17 1.03
qSH12.1
(Wang et al., 2012)

OsMYB91
(Zhu et al., 2015)

SKC qSKC12 C12_20029364 C12_20873254 12 8.22 18.27 -3.50
QSst12
(Cheng et al., 2012)

SNK qSNK12 C12_20029364 C12_20873254 12 4.99 11.54 -0.15
QSst12
(Cheng et al., 2012)

SSR qSSR1 C1_33960158 C1_34422650 1 3.18 5.49 -0.05
qPH1.1s
(Mohammadi et al., 2013)

qSSR4 C4_22587609 C4_25541936 4 4.28 8.88 0.06
qDTF4.1s
(Mohammadi et al., 2013)

OsNAC2
(Shen et al., 2017)
R2 (%): Phenotypic variance explained.
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breeding (Ganie et al., 2019). Eleven and three QTLs were identified

by GWAS and linkage mapping, respectively, and these were close

to or overlapped with the loci of some known genes and QTLs

compared with the results of previous studies. For example, OsCLC-

1, which encodes a voltage-gated chloride channel protein, could

avoid ion toxicity by transporting chloride ions across the vesicle

membrane to the vesicles (Nakamura et al., 2006); the lead SNP

Chr4_21840798 identified by GWAS was approximately 45 kb

closer to OsCLC-1. OsMYB9, encoding an R2R3-type MYB

transcription factor that functions in the ABA-mediated signaling

pathway, thereby improving the salinity tolerance of rice (Zhu et al.,

2015), was within the qSNC12 identified by the linkage mapping.

Additionally, Shen et al. (2017) found that OsNAC2, was able to

regulate abiotic stress response, OsNAC2 overexpression plants

showed reduced tolerance under salt stress, and OsNAC2 was

within the qSSR4 identified by the linkage mapping.

Sabouri and Sabouri (2008) detected a salinity tolerance-

associated QTL (qNAUP-1a) on chromosome 1, and the lead SNPs

(Chr1_27088613 and Chr1_26805021), detected by GWAS, were

located within qNAUP-1a. Islam et al. (2011) detected a salinity

tolerance-related QTL (SalTol10-1) on chromosome 10, and the lead

SNPs Chr10_7916859 and Chr10_16340314 detected by GWAS were

both located within SalTol10-1. In addition, linkage mapping revealed

that the QTL qSNC12 was within the salinity tolerance interval

qSH12.1 (Wang et al., 2012), which supported our findings. In our

study, GWAS and linkage mapping identified another salinity

tolerance QTL, QSst12, containing Chr12_20864157 and qSK12.

The LOC_Os12g34450 was considered the most likely

functional gene associated with salinity tolerance. The expression

of LOC_Os12g34450 was significantly up-regulated in XBJZ and

down-regulated in KY131 after salinity stress. Meanwhile, we found

that LOC_Os12g34450 of XBJZ contained multiple SNPs in the

promoter region, including a cis-element (TGA-element) related to

auxin response (AACGAC!GACGAT), three non-synonymous
D
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FIGURE 4

Identification of candidate genes by GWAS and linkage mapping. (A)
The local Manhattan plot (top) and LD heatmap (bottom) surround
the lead SNP. (B) Salinity tolerance-related QTLs were identified in
195 RILs and mapped to the interval between markers
C12_20029364 and C12_20873254 by linkage mapping. (C) The
physical location of the lead SNP (C12_20864157) on chromosome
12 was detected by the GWAS (LD decay = 186 kb). (D) The 195-kb
region contained 35 genes.
D

A B

C

FIGURE 5

Haplotype analysis of LOC_Os12g34320, LOC_Os12g34330, LOC_Os12g34450, LOC_Os12g34460. (A–D) Represent the gene structure and
haplotype analysis of LOC_Os12g34320, LOC_Os12g34330, LOC_Os12g34450, LOC_Os12g34460. (The * and ** suggest significance of ANOVA at
P < 0.05 and P < 0.01, respectively).
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mutation SNPs (T!G, G!A, T!C) in the CDS region, and a 2-bp

deletion (A and C bases) in the first exon compared with the

sequence of KY131. These SNPs and deletions result in a frameshift

that leads to a premature stop codon, which leads to premature

terminat ion of the mRNA of the LOC_Os12g34450 .

LOC_Os12g34450 is predicted to encode an auxin-binding

protein, and accumulating evidence in recent years supports an

important role for auxin in abiotic stress responses in plants.

InArabidopsis, theNTM2 plays an important role in regulating plant

seed germination under high-salt stress (Jung and Park, 2011).

Overexpression of OsmiR393 in rice resulted in the down-regulation of

two auxin receptor gene homologs (OsTIR1 and OsAFB2), which

reduced salinity tolerance in rice (Xia et al., 2012). Deng et al. (2022)

found thatRST1 encodes the growth factor response factorOsARF18 and

that RST1 loss of function leads to up-regulation of OsAS1 expression,

which improves nitrogen utilization, reduces Na+/K+ ratios, and

decreases NH4
+ overaccumulation by promoting asparagine synthesis,

thereby improving salt tolerance and yield of plants.
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FIGURE 6

Expression patterns of the four genes under normal growth conditions and salinity stress. (A–D) represent the gene expression of LOC_Os12g34320,
LOC_Os12g34330, LOC_Os12g34450, LOC_Os12g3446 under normal growth conditions and salinity stress. (**P < 0.01, ***P < 0.001, Students’t-test).
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SUPPLEMENTARY FIGURE 1

Genetic linkage map and QTL mapping results.

SUPPLEMENTARY FIGURE 2

Expression patterns of the other four genes under normal growth conditions
and salinity stress (** P < 0.01, *** P < 0.001, Students’t-test).
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SUPPLEMENTARY FIGURE 3

The gene s t r u c t u r e and sequence d i ff e r ence ana l y s i s o f
LOC_Os12g34450. (A) The gene structure of LOC_Os12g34450. (B) The
sequence difference analysis of LOC_Os12g34450 in Xiaobaijingzi,

Kongyu131, and Nipponbare.
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