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Wild rice (Zizania spp.), an aquatic grass belonging to the subfamily Gramineae,

has a high economic value. Zizania provides food (such as grains and vegetables),

a habitat for wild animals, and paper-making pulps, possesses certain medicinal

values, and helps control water eutrophication. Zizania is an ideal resource for

expanding and enriching a rice breeding gene bank to naturally preserve valuable

characteristics lost during domestication. With the Z. latifolia and Z. palustris

genomes completely sequenced, fundamental achievements have been made

toward understanding the origin and domestication, as well as the genetic basis

of important agronomic traits of this genus, substantially accelerating the

domestication of this wild plant. The present review summarizes the research

results on the edible history, economic value, domestication, breeding, omics

research, and important genes of Z. latifolia and Z. palustris over the past

decades. These findings broaden the collective understanding of Zizania

domestication and breeding, furthering human domestication, improvement,

and long-term sustainability of wild plant cultivation.

KEYWORDS
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1 Introduction

The genus Zizania (family Poaceae) is a type of wild rice that includes four species: Z.

aquatica, Z. palustris, Z. texana, and Z. latifolia (Table 1) (Makela et al., 1998; Lu et al.,

2022). Zizania diverged fromOryza approximately 26–30 million years ago (mya), whereas

Z. palustris and Z. latifolia diverged from one another approximately 6–8 mya (Haas et al.,
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2021). Due to the differences in geographic distribution and

ecological environments, a significant variability has been

observed between the morphology and reproductive cycle of

species in East Asia (Z. latifolia) and those in North America (Z.

aquatica, Z. palustris, and Z. texana). Z. aquatica is found in

Southern Ontario, Quebec, the East Coast of Canada, and the

Atlantic and Gulf Coasts of the US (Florida and Louisiana) (Xu

et al., 2010). Z. palustris is widely distributed across the Canadian

prairie provinces (Alberta, Manitoba, and Saskatchewan), along the

Great Lakes region, and across the prairies in North America

(Mcgilp et al., 2020; Haas et al., 2021). Z. texana, a rare species of

Zizania, is limited to a small region along the San Marcos River in

Texas. Its small range and limited population size have led to it

being classified as endangered by the US federal government (Poole

and Bowles, 1999; Richards et al., 2004; Tolley-Jordan and Power,

2007). In numerous places along the Great Lakes, areas with

abundant Zizania populations are already endangered. The

growing body of research on Zizania, including genetics,

domestication, breeding, etc., has greatly enhanced our ability to

conserve this important plant species (Kennard et al., 2002; Lu et al.,

2005; Kahler et al., 2014; Haas et al., 2021). The morphology of East

Asian wild rice differs from its North American counterpart

(Table 1). Z. latifolia, also known as East Asian wild rice, is

believed to have originated in China and is found in various

water bodies including rivers, lakes, ditches, ponds, and paddy

fields throughout the country, especially in the Yangtze and Huaihe

River basins (Yan et al., 2018). This species is not limited to China

and can also be found in other parts of East Asia, such as Japan,

South Korea, and Southeast Asia (Fan et al., 2016; Chen et al., 2017;

Yan et al., 2018).

Wild rice, classified as a whole grain, is a caryopsis with a seed

coat that is thinner and longer in shape than conventional rice

(Oryza sativa). The grain has acuminose ends, black-brown and

glossy cortex, and a milky white and brittle endosperm (Surendiran

et al., 2014). Zizania is a highly nutritious food, rich in protein,

dietary fiber, vitamins, and minerals, with a low glycemic index, low

fat content, and reasonable amino acid composition (Zhai et al.,

2001; Yu et al., 2020). Additionally, wild rice contains various

biologically active substances such as phytosterol, g-oryzanol, g-
aminobutyric acid, and phenolic compounds, which have potential

health benefits (Yu et al., 2022). Several studies have shown that
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whole grain consumption helps reduce the risk of chronic diseases,

such as cardiovascular disease, obesity, cancer, and diabetes (Juan

et al., 2017). Various international projects have been initiated in

the 21st century aimed at increasing the benefits and content of

plant functional components in whole grain for lowering

cholesterol, and regulating blood glucose metabolism in dietary

fiber, in addition to reducing the risk of cardiovascular and

cerebrovascular diseases (Ward et al., 2008; Juan et al., 2017; Guo

et al., 2022).

Northern wild rice (NWR, Z. palustris) serves as a traditional

food among American Indians and has gradually been incorporated

into the diets of various cultures across the world (Qiu et al., 2010).

Following its “nonshattering” domestication in the late 1960s, Z.

palustris gained extremely high commercial value. Currently, large-

scale commercial planting of Z. palustris is concentrated primarily

in the US (Minnesota and California) (Mcgilp et al., 2020). Z.

latifolia has a long history in ancient China; however, due to the

human population increases in Southern China following the Tang

and Song Dynasties, subsequent agricultural development, and the

man-made drying of lakes for rice cultivation, the prevalence of Z.

latifolia has drastically reduced (Yan et al., 2018). Moreover, the low

yield of Z. latifolia caused by the difficulty in its harvesting (seeds

are prone to fall off after ripening) is another contributing factor. In

addition, with the widespread cultivation of rice, the yield of rice has

increased, reducing the importance of human reliance on Chinese

wild rice (CWR) as a staple food. Therefore, CWR has gradually

faded out of people’s lives (Yan et al., 2018). In contrast, wild rice

remains an expensive and popular food in North America

(Surendiran et al., 2014), while it is not often consumed in

modern China.

The global population is expected to exceed 9 billion by 2050;

thus, higher agricultural output is required to meet the growing

demand for food. However, the acceleration of urbanization and

reduction of resources (land, water, and human resources available

for agriculture) have presented major challenges to production

requirements (Zhang et al., 2022). For example, Z. latifolia, a

known perennial crop that does not require replanting after each

harvest, unlike annuals such as Z. palustris, whose cultivation

mandates substantial seed input, increased investment in

agricultural machinery, greater water and soil loss, soil nutrient

depletion, as well as other socio-economic and ecological challenges
TABLE 1 Comparison of basic information of Zizania.

Type Distribution Growth
type

Chromosome
number

Industrial/
Cash crop

Harvesting
method Reference

Z.
aquatica

Canada and the United States Annual 2n = 2× = 30 No
Artificial
picking

Xu et al., 2010

Z.
palustris

Canada’s coastal provinces and the
surrounding areas of the Great Lakes in
North America

Annual 2n = 2× = 30 Yes
Mechanical
harvesting

Mcgilp et al., 2020; Haas et al., 2021

Z.
texana

Along the San Marcos River in Texas, USA Perennial 2n = 2× = 30 No
Artificial
picking

Poole and Bowles, 1999; Richards
et al., 2004; Tolley-Jordan and
Power, 2007

Z.
latifolia

China, Japan, South Korea Perennial 2n = 2× = 34 Yes
Artificial
picking

Fan et al., 2016; Chen et al., 2017;
Yan et al., 2022
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(Lobell et al., 2011). Therefore, breeding perennial food crops (e.g.,

Z. latifolia) can serve as a novel approach to tackling food security

and environmental challenges (Glover et al., 2010). Zizania

breeding and domestication have recently become a necessary

direction in large-scale commercial farming and can bring

favorable economic gains to farmers. Currently, genomics

approaches are widely used for crops such as rice and have

provided new directions for crop domestication and utilization of

heterosis (Huang et al., 2012; Huang et al., 2016; Yu and Li, 2022).

In particular, the multi-omics methods, including genomics,

transcriptomics, proteomics, and metabolomics, have been

successfully utilized for the genetic improvement of crops,

achieving more efficient and accurate breeding through molecule

design (Zeng et al., 2017; Wu et al., 2021). This article reviews the

research progress on the edible history, economic value,

domestication, breeding, omics research, and functional

verification of important genes of Z. latifolia and Z. palustris over

the past few decades, providing strong theoretical support for

greater domestication of this genus with high-yield, -quality,

-stress resistance, and -nutrient utilization.
2 Edible history and economic value
of Z. latifolia and Z. palustris

Zizania spp., particularly Z. palustris and Z. latifolia, have

extremely high ecological and economic values, as they provide

habitat for wild animals, in addition to their use as grains and

vegetables. Furthermore, wild rice is used as a raw material in

paper-making and a genetic resource for expanding the rice gene

pool; it is also used in controlling water eutrophication and

possesses certain medicinal values (Figure 1).
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2.1 Edible history and economic value
of Z. palustris

Z. palustris, also known as wild rice, is an annual, outcrossing,

aquatic species in the Poaceae family and native to North America

(Hayes et al., 1989; Zaitchik et al., 2000; Kennard et al., 2002).

Currently, Z. palustris, a nutritious grain, is the only successfully

domesticated and widely planted wild rice. Z. palustris is typically

found in shallow lakes, rivers, and coastal areas within the north-

central US and southern Canada (Oelke, 2004). This plant provides

habitats for various birds, mammals, fish, and invertebrates. In

addition, Z. palustris participates in the water nutrient cycle and

helps stabilize the sediment of coastal river wetlands (Meeker,

1996), playing a significant role in the local food network and

wetland ecology (Drewes and Silbernagel, 2012). For centuries,

American Indians have collected Z. palustris from the lakes and

rivers of the Great Lakes region (Hayes et al., 1989). Z. palustris is

considered a high-value crop and has become a cash crop in recent

years. Z. palustris is classified as a whole grain food containing >

75% carbohydrates, 6.2% dietary fiber, 14.7% protein, and 1.1%

lipids (Yan et al., 2018; Yu et al., 2021). In addition, the antioxidant

activity of Z. palustris is 10–15 times higher than that of rice, while

its protein and essential amino acid content are doubled, and

dietary fiber content is 5 times greater, with a low-fat content,

most of which are essential unsaturated fatty acids, including w-6
(35.0–37.8%) and w-3 (20.0–31.5%) (Wiser, 1975; Bunzel et al.,

2002; Aladedunye et al., 2013; Kahler et al., 2014; Surendiran et al.,

2014; Timm and Slavin, 2014). History has documented the

economic position of wild rice. Early Native Americans, especially

the Ojibway, Menomini, and Cree peoples, consider Z. palustris a

traditional food (Lorenz and Lund, 1981). In the 17th century,

Europeans successively entered the Great Lakes Region of North
FIGURE 1

Application value of Zizania latifolia (A) and Zizania palustris (B). A1–A5 represent the inflorescences of Z. latifolia at different stages after flowering.
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America, where a priest named Hennepin was the first to observe

the collection of Z. palustris by American Indians, describing it as

an abundant aquatic oat that grows in the lakes without any

cultivation (Steeves, 1952). Hennepin believed that aquatic oats

were an inadequate translation and revised it to wild rice (Horne

and Kahn, 1997).

Currently, the indigenous populations hand-harvest and sell Z.

palustris, representing an important component of their income

(Drewes and Silbernagel, 2012). In northern Michigan and

Wisconsin, as well as most of northeastern Minnesota, tribes have

preserved their methods of Z. palustris processing, a right protected

by law (Walker et al., 2006). Although American Indians have

processed and harvested Z. palustris for food over many centuries,

researchers first proposed the domestication of Z. palustris as a

cultivated crop in the mid-18th century (Porter, 2019). However, in

the 1950s, paddy field planting and harvesting of Z. palustris began

in earnest (Porter, 2019). Z. palustris seeds are large and can

produce considerable yield, being highest in Minnesota and

California (Oelke, 2004). However, this crop has relatively fragile

seeds and inconsistent ripening periods, making it difficult to

achieve full domestication (Oelke and Albrecht, 1978; Drewes and

Silbernagel, 2012). Currently, Canada, Hungary, and Australia have

implemented commercialized production of Z. palustris (Qiu et al.,

2009; Small, 2012); however, Z. aquatica and Z. texana seeds are

fragile, have low yields, while their distribution ranges and

population sizes are substantially smaller than that of Z. palustris,

restricting their collection for consumption. Moreover, relatively

little research and domestication efforts have been dedicated to

these species (Oxley et al., 2008).
2.2 Edible history and economic value
of Z. latifolia

The history of harvesting and utilizing wild rice by Chinese

ancestors dates to the Zhou Dynasty 3000 years ago (Yan et al.,

2018). Wild rice was a precious food material offered to royalty in

Ancient China, and its historical position exceeds that of other crops

(Yan et al., 2018). The economic value of Z. latifolia primarily rests

on two aspects: CWR is a nutritious whole-grain food that is being

increasingly accepted, and Z. latifolia is the source of the domesticated,

cultivated species Jiaobai (Yu et al., 2020). Approximately 2000 years

ago, Z. latifolia infected by U. esculenta resulted in culm enlargement

and the formation of a fleshy edible gall—Jiaobai. Based on this process,

Chinese ancestors domesticated it into a vegetable (Zhao et al., 2018; Tu

et al., 2019). Jiaobai is a famous aquatic vegetable that has also been

introduced to Japan, South Korea, and across Southeast Asia (Xu et al.,

2010). Currently, the total planting area of Jiaobai in China is > 60,000

hm2, second only to lotus as the most cultivated aquatic vegetable in

China (Yan et al., 2018). The cultivation of this vegetable is an

important economic resource for many households in Southern

China (Guo et al., 2007; Yan et al., 2013a). Jiaobai is a widely

enjoyed fresh, tender, crisp, and sweet vegetable that provides sugar,

protein, vitamins, minerals, and essential amino acids (Yan et al., 2018).

In addition, enzyme-treated Z. latifolia extract (ETZL) can clear free

radicals and block elevated triglyceride and malondialdehyde levels in
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the liver (Chang et al., 2021). Moreover, ETZL significantly decreases t-

BHP-induced HepG2 cytotoxicity and active oxygen generation and

improves liver damage induced by excessive alcohol consumption via

upregulating antioxidant defense mechanisms to prevent alcoholism

(Chang et al., 2021; Gao et al., 2022). ETZL and its main compound,

tricin, can inhibit the production of metalloproteinases in the

extracellular matrix of human skin following UV exposure, thereby

helping the skin resist ultraviolet radiation (Park et al., 2019).

The caryopsis of Z. latifolia is classified as one of the “six

grains”, along with rice, broomcorn millet, panicled millet, wheat,

and beans, in Ancient China. As a grain, Z. latifolia primarily exists

in a wild state and has not been artificially domesticated (Yan et al.,

2022). Although the edible history of Z. latifolia traces back to the

Zhou Dynasty (3 kya), Z. latifolia was gradually replaced by

cultivated rice due to its strong seed shattering and low yield

characteristics (Yan et al., 2022). Z. latifolia was subsequently

used as a traditional Chinese medicinal crop that was categorized

as a treatment for diabetes and gastrointestinal diseases in the

Compendium of Materia Medica of Li Shizhen during the Ming

Dynasty (Yu et al., 2022). Z. latifolia is classified as a whole grain

with high nutritional value. In particular, it is rich in protein,

essential amino acids, fatty acids, vitamins, and microelements (Yan

et al., 2018). Due to its high nutritional value, developing

germplasms resistant to seed shattering remains a top priority in

the domestication and breeding of Z. latifolia (Xie et al., 2022). As a

graminaceous crop closely related to rice, Z. latifolia boasts myriad

beneficial traits that rice lacks, including rice blast resistance, thick

stalks, strong tillering, low-temperature resistance, flood resistance,

rapid grouting maturity, high biological yields, and optimizing

protein and lysine contents in seeds (Chen et al., 2012; Ye et al.,

2016; Yan et al., 2022). Hence, it is capable of overcoming the

narrow bottleneck of genetic resources for rice breeding and

providing important materials for optimizing genetic traits. For

example, a Z. latifolia and rice hybrid exhibited increased rice blast

resistance (Wang et al., 2013). However, the genomes of hybrid rice

strains comprise a small proportion of Z. latifolia DNA sequences,

and inserting exogenous DNA fragments introduces extensive

cytosine methylation variation and transposon activation. The

resulting sequence variation may serve as the primary driver of

character variations within introgressive hybrid lines (Liu et al.,

2004; Shan et al., 2005; Wang et al., 2005). Meanwhile, given the

advantageous characteristics of Z. latifolia, it may represent a source

of genes for future rice molecular breeding. As such, the

introduction of Z. latifolia as a perennial food crop may prove

ecologically beneficial and sustainable, thus providing a means to

address food security and environmental challenges. Indeed,

appropriate domestication of Z. latifolia across large planting

areas can fulfill the demand of an increasing population for a

nutritional food source while alleviating the environmental

challenges driven by the reduction of cultivated land and resources.

Previous studies have shown that Z. latifolia contains

phytoliths, showing considerable carbon sequestration potential

(Li et al., 2022). In addition, this species exhibits excellent

sequestration under nitrogen and phosphorus eutrophication

conditions compared to other plants. Planting Z. latifolia in

highly eutrophicated areas with seasonal harvesting and clearing
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may effectively control pollution through plant absorption and

microbial degradation (Liu et al., 2007; Tang et al., 2013). During

industrial production, Z. latifolia has found further application as

pulp for paper making, which can be prepared by sulfate treatment

of the residual stems and leaves after Jiaobai harvesting. Physical

performance evaluations have shown that the tear, tensile, and

rupture strengths of the resulting paper are not significantly

different from those of conventional old corrugated container

paper (Chen et al., 2022).
3 Domestication and breeding
of Z. latifolia and Z. palustris

Crop domestication is the foundation of modern agriculture

and comprises long and complex evolutionary processes

(Pickersgill, 2007; Vaughan et al., 2007). Improving the

cultivation of wild plants entails changing their morphology and

physiology to accommodate human and production needs, which is

fundamental to agricultural development (Tang et al., 2013).

Although the current growth of global crop yield is stable,

botanists face an enormous challenge of food security in addition

to climate change and the increasing growth of the global

population (Ren et al., 2005; Ma et al., 2015).
3.1 Domestication and breeding
of Z. palustris

Compared to rice, maize, wheat, and other major food crops, Z.

palustris has a shorter breeding and commercial production time.

Hundreds of years ago, American Indians processed and harvested

Z. palustris for food; however, only in 1853, Z. palustris was

proposed as a crop for planting (Porter, 2019). In 1950, farmers

in Northern Minnesota successfully harvested the first batch of

manually planted Z. palustris. In 1962, Uncle Ben’s company signed

contracts to purchase and sell Z. palustris with planters in

Minnesota. In 1972, farmers planted Z. palustris in a paddy field;

however, they could not harvest seeds due to its strong seed-

shattering tendencies. Z. palustris planters consulted the

University of Minnesota Agronomy and Phytogenetics Center for

improvements, pursuing a cultivar suitable for large-scale planting.

Accordingly, the University of Minnesota developed a special

scientific research team to conduct the artificial domestication of

Z. palustris, which has been ongoing for 40 years until now (Kahler

et al., 2014). Currently, the primary objective of breeders for Z.

palustris domestication is the improvement of various growth traits,

including reducing seed shattering following maturation and

increasing the seed maturation consistency (Grombacher et al.,

1996). Seed shattering is an important trait of wild plants to adapt to

natural environments and maintain reproduction levels (Zhang

et al., 2009); further, it is considered a direct morphological basis

for identifying the domestication of wild plants (Ray and

Chakraborty, 2018). Although strong seed shattering facilitates

self-breeding and population conservation of Z. palustris, the
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reduction of seed shattering can promote an effective collection of

seeds after maturation, thus sustaining production and yield (Yan

et al., 2015; Lv et al., 2018). During Z. palustris planting, excessive

seed shattering can cause harvest loss within 24 h amounting to 10–

20% of the total harvest, whereas the loss of seed maturity can reach

70% during the harvest season (Elliott and Perlinger, 1977; Kennard

et al., 2002). Recent collinearity analyses of the Z. palustris and rice

genomes screened 20 orthologous genes with rice seed shattering

genes qSH1, SH1, SHAT1, SH4, SH5, and OsLG1 as potential

candidate genes to improve seed shattering (Haas et al., 2021).

A major component of the University of Minnesota Z. palustris

breeding program centers around using conventional breeding

methods for Z. palustris, selecting superior phenotypes that can

significantly improve variety yield and production efficiency

(Grombacher et al., 1996). Progress in crop improvement has been

successful using the phenotypic mass recurrent selection method of

plant breeding and has led to the introduction of improved wild rice

varieties (Kennard et al., 2000). Certain Z. palustris hybrids are

currently under commercial cultivation, among which “Itasca-C12”

was released in 2007 by theMinnesotaCultivatedWildRiceCouncil as

a variety with lower seed shattering that is suitable for mechanized

harvesting in largeplantingareas.Therefore, “Itasca-C12” is a standard

in the Z. palustris industry and is used for genome sequencing (Haas

et al., 2021) and research on seed dormancy (Mcgilp et al., 2022) of Z.

palustris. These artificially selected Z. palustris varieties are primarily

grown in Minnesota and California (Haas et al., 2021). Z. palustris

seeds have moderate tolerance to recalcitrance and dehydration,

limiting their survival in off-site storage to 1–2 years. Hence, save for

annual seedmaintenance,Z. palustris cannot be stored in seedbanks or

repositories, posing challenges to Z. palustris conservation and

breeding plans (Mcgilp et al., 2022). Seed dormancy refers to the lack

of germination under generally favorable environmental conditions,

i.e., sufficientwater, oxygen, temperature, and light (Hilhorst, 1995).Z.

palustris exhibits a minimum three-month dormancy period

(Cardwell, 1978), which is affected by temperature, as well as the

stability of seed pericarps and phytohormones, such as abscisic acid

and gibberellic acid (Grombacher et al., 1996).Within Poaceae, 98.6%

of species are classified as orthodox or desiccation tolerant, while only

0.8% and 0.6% are considered recalcitrant and intermediate,

respectively (Dickie and Pritchard, 2002). Z. palustris is generally

considered recalcitrant; however, its water resistance is impacted by

storage temperature, degree of dryness, andmetabolic activity (Probert

and Longley, 1989; Kovach and Bradford, 1992; Berjak and

Pammenter, 2008). Z. palustris seeds can survive drying under

specific conditions, with embryonic water content reaching as low as

6%(KovachandBradford, 1992).Therefore,maintaining the vitalityof

wild rice seeds is essential for Z. palustris breeding (Kennard et al.,

1999; Jin et al., 2005; Porter, 2019).
3.2 Domestication and breeding
of Z. latifolia

The economic value of Z. latifolia is associated primarily with

the aquatic vegetable Jiaobai and CWR (Yan et al., 2018). Chinese
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ancestors domesticated Z. latifolia as an aquatic vegetable Jiaobai

approximately 2000 years ago (as noted in the Chinese first

dictionary book “Erya” in the Qin Dynasty, 207–221 BC) (Guo

et al., 2007; Guo et al., 2015). During its long-term symbiosis with

the endophytic fungus U. esculenta, domesticated Z. latifolia Jiaobai

has lost its flower structures and sexual propagation ability, only

undergoing asexual reproduction through underground rhizomes

(Guo et al., 2015). U. esculenta primarily colonizes the underground

root and rhizome of the Jiaobai plant, completing its whole life cycle

within the host (Yan et al., 2013b; Jose et al., 2016). Currently,

China has > 100 regional cultivars of Jiaobai, and it has become an

important economic source for many rural households in southern

China (Guo et al., 2007). Domesticated Jiaobai exhibits significant

divergence from Z. latifolia based on plant type, means of

reproduction, and swollen gall metamorphosis. Under natural

conditions, the fleshy stem of the plant formed after infection by

U. esculenta, some of them are smaller and full of black teliospores,

called “gray Jiaobai” (Figure 2). Jiaobai cultivars are compact,

vertical, have swollen, fleshy stems, and lack or only possess

rudimentary teliospores (“normal Jiaobai”; Yan et al., 2013a).

Notably, the genetic variation and relationships of Z. latifolia and

Jiaobai varieties exhibit obvious population structures (Zhao et al.,

2019). However, the levels of genetic variation within Jiaobai are

extremely low, suggesting that Jiaobai arose from a single

domestication (Xu et al., 2008; Zhao et al., 2019). The

domestication of Jiaobai and the diversity of its cultivars are

mainly affected by the genetic variation of U. esculenta (Zhao

et al., 2019). Specifically, U. esculenta strains in normal and gray

Jiaobai resulting from atavistic mutation exhibit differences in

morphology and internal transcribed spacers, with marked

differentiation in the morphology and genetics between the two

forms (You et al., 2011).
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4 Omics research of Z. latifolia
and Z. palustris

4.1 Genome research of Z. latifolia
and Z. palustris
A reference genome is the foundation of genomic and gene

function research (Jansen et al., 2007; Moore et al., 2010). Alignment

of molecular markers and reference genomes can provide researchers

with genes of interest and functional relationships between

characteristics, important physiological mechanisms, and the

structures of intraspecies genetic diversity. However, as of 2020, the

genome resources of Z. palustris were limited to only a few studies on

molecular markers, including isozyme (Lu et al., 2005), restrictive

fragment length polymorphism (Kennard et al., 1999; Kennard et al.,

2002), simple sequence repeats (Kahler et al., 2014), and single

nucleotide polymorphism (Shao et al., 2020). In 2021, Haas et al.

(2021) assembled the high-quality genome of the ‘Itasca-C12’ NWR

cultivar and anchored 98.53% of sequences to 15 chromosomes, with

an assembly length of 1.29 Gb and high reproducibility (~76.0%;

Table 2). This genome assembly and annotation provide an important

reference to the comparative genomics of the rice tribe (Oryzeae) and

lays a foundation for future NWR protection and breeding work (Haas

et al., 2021). Estimates of divergence times revealed that the Zizania

genus diverged from Oryza by approximately 26–30 mya, whereas Z.

palustris and Z. latifolia diverged from one another by approximately

6–8 mya (Haas et al., 2021).

Given that Z. latifolia lacks a high-quality genome, research on

the genetics and genes related to various characteristics of Z.

latifolia remains considerably stunted compared to that of rice.

Zizania is also a monoecious outcrosser with severe inbreeding
FIGURE 2

Jiaobai (normal and gray Jiaobai) formed from the infection of Zizania latifolia with Ustilago esculenta. In the images, U. esculenta is a haploid strain,
the mycelia-teliospore (M-T) has a long haploid phase with multifocal budding, while the teliospore (T) has a short haploid phase with normal
budding and generally does not exhibit multifocal budding.
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depression, which increases the difficulty of genetic mapping

research. The genome of Z. latifolia chloroplasts comprises typical

circular double-stranded DNA molecules with genome size, overall

structure, gene number, and gene sequence highly conserved with

most terrestrial plant genomes (Zhang et al., 2016). The genome size

is 136,501 bp, and its sequence was derived from the direct

purification of chloroplast DNA (Zhang et al., 2016). Guo et al.

(2015) used second-generation sequencing technology to build the

Z. latifolia accession “HSD2” genome sequence for the first time.

They performed transcriptome analysis of the molecular

mechanism of the Jiaobai swollen culm formed following the

infection of Z. latifolia by U. esculenta. Due to technical

limitations and a lack of genetic linkage maps, the Z. latifolia

genome remains relatively scattered at a scaffolding level, with a

contig N50 of only 13 kb (Table 2). With third-generation

technology, sequencing of the Z. latifolia genome revealed a total

genome length of 545.36 Mb distributed over 17 chromosomes,

accounting for 99.63%, and 300 corresponding sequences were

obtained (the longest and shortest being 49.61 Mb and 17.01 Mb,

respectively). In addition, the assembly of the Z. latifolia genome

(Contig N50 = 4.48 Mb) is 343.62-fold longer than the previously

completed “HSD2” genome (Contig N50 = 13kb). Through genome

annotation, 289.5 Mb (52.89%) of the repetitive sequence was

identified in the assembled genome, which is significantly higher

than the 227.50 Mb (37.70%) reported in the previously assembled

version (Yan et al., 2022).
4.2 Transcriptome research of Z. latifolia

Transcriptomics is the systematic study of global gene expression

patterns to identify the molecular mechanisms of complex biological

pathways and trait regulation networks (Ponting et al., 2009). These

studies have revealed that the fungal pathogenicity-related genes of U.

esculenta, as well as those associated with phytohormone biosynthesis,

may cause culm enlargement of Z. latifolia (Wang et al., 2017; Li et al.,

2021; Zhang et al., 2021). Moreover, two Cys2-His2 (C2H2) zinc finger

proteins, GME3058_g and GME5963_g, fromU. esculentamay impact

fungal growth and infection at the initial stage of swollen culm

formation (Zhang et al., 2021). Numerous U. esculenta genes related

to effectors and teliospore formation have been shown to exhibit

marked upregulation (Wang et al., 2020) and stage-specific

expression patterns during the initial and subsequent enlargement of

culm (Wang et al., 2017). For instance,Wang et al. (2020) reported that
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the expression of the melanin biosynthesis gene of the teliospore (T)

strain is upregulated compared with that in the mycelia-teliospore (M-

T) strain of U. esculenta; the T strain exhibits stronger pathogenicity

and teliospore-forming properties than the M-T strain. Indeed, two

types of gene regulatory networks contribute to the formation of

different types of swollen culm (normal and grey) (Wang et al.,

2020). During the process of culm swelling, many genes related to

the synthesis, metabolism, and signal transduction of hormones of the

host plant are stimulated and exhibit specific expression patterns. In

particular, the expression of ZlYUCCA9—a flavin monooxygenase that

serves as the key enzyme in the indole-3-acetic acid biosynthesis

pathway—is markedly upregulated (Zhang et al., 2021). Moreover,

host plant genes become differentially expressed before and after U.

esculenta infection, some of which are primarily involved in plant

hormone signal transduction and cell wall–loosening factors (Li et al.,

2021). Although “a hormone–cell wall loosening model” was proposed

to explain the symbiotic mechanism in culm enlargement (Li et al.,

2021), cytokinins appear to play a more important role (Wang et al.,

2017; Li et al., 2021).
4.3 Proteome research of Z. latifolia

Proteomics is the study of changes in cells, tissues, or protein

composition of organisms, with the proteome functioning as the

object of study (Singh et al., 2016). Isobaric tags for relative and

absolute quantification (iTRAQ) have been used in recent years for

high-throughput screening in quantitative proteomics and exhibit

good quantitative results along with satisfactory reproducibility

(Owiti et al., 2011; Chu et al., 2019). Based on the pattern of

phenolic compound change during CWR germination, researchers

selected the representative phases (germinated for 36 and 120 h) for

further proteomics analysis of the mechanism of phenolic

compound accumulation during CWR germination using iTRAQ.

The results showed that the differentially expressed proteins in these

two phases were primarily associated with metabolic pathways,

including biosynthesis of secondary metabol i tes and

phenylpropanoid biosynthesis (Chu et al., 2019). Other

researchers performed two-dimensional electrophoresis of total

proteins in CWR and rice seeds; the information obtained from

peptide mass fingerprinting indicated that a glutelin precursor,

caffeoyl coenzyme A O-methyltransferase, and putative

bithoraxoid-like protein could provide good gene sources for

improving rice seed quality (Jiang et al., 2016). U. esculenta
TABLE 2 Comparison of Zizania latifolia and Zizania palustris genome information.

Species Variety/
accession

Chromosome
number

Genome
size (Mb)

Gene
number

Contig
N50 (Mb)

Scaffold
N50 (Mb)

Percentage of repeti-
tive sequences (%) References

Z.
latifolia

HSD2 17 604.1 43 703 0.0128 0.59 37.7
Guo et al.,

2015

Z.
palustris

Itasca-C12 15 1 288.77 46 491 0.37 98.8 76
Haas et al.,

2021

Z.
latifolia

Huai’an 17 547.4 38 852 4.48 32.79 52.89
Yan et al.,

2022
frontiersin.org

https://doi.org/10.3389/fpls.2023.1183739
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Xie et al. 10.3389/fpls.2023.1183739
evades host defenses through at least seven metabolic pathways and

five biological processes to successfully reproduce in Z. latifolia.

Observing the proteins extracted from the topmost internodal

region below the apical meristematic tissue deriving from the

infected and uninfected parts of Z. latifolia through transmission

electron and fluorescence microscopy showed that U. esculenta

hyphal morphological transitions and movement occurred both

inter- and intracellularly, while sporulation occurred only

intracellularly in selective cells (Jose et al., 2019). This study

revealed why differentially expressed proteins in U. esculenta

allow the inflorescence organization to be replaced by a swollen

fleshy stem and why Z. latifolia develops resistance to infection by

U. esculenta (Jose et al., 2019).
4.4 Metabolome research of Z. latifolia
and Z. palustris

Plant metabolomics is the study of the relationship between

gene function and phenotype through analysis of the metabolites in

plant tissues during specific changes in the external environment

(Oliver, 1997). Plant metabolic networks are complex and are

typically classified as primary or secondary metabolisms; however,

there is no clear boundary between these two types as they are

closely related. Currently, ~200,000 metabolites have been found in

plants (Wink, 1988). Some scientists have studied Jiaobai through

metabolo- and other omic approaches (Luo et al., 2012; Luo et al.,

2019; Bata Gouda et al., 2022). Jiaobai is of substantial economic

value; however, its shelf-life and quality during post-harvest storage

are reduced due to respiratory disorders, shell etiolation, surface

browning, transpiration, and tissue hollowness (Luo et al., 2012,

2019). Therefore, researchers believe that the physiological,

biochemical, and molecular processes involved in the post-harvest

aging of Jiaobai, as well as post-harvest treatment methods to

ameliorate aging and improve storage quality, are worth

investigating (Bata Gouda et al., 2022; Qian et al., 2023). The

mechanisms of Jiaobai aging during storage at 25°C were

investigated using integrated methods of transcriptomics and

metabolomics. The results showed that Z. latifolia aging is closely

associated with reactive oxygen species (ROS) accumulation,

ethylene biosynthesis, energy metabolism consumption caused by

cell membrane degradation, and abiotic stress (Bata Gouda et al.,

2022). Aging may also be weakly associated with ornithine

decarboxylase, polyamine oxidase, transcription factor A,

jasmonic acid-amino synthetase, coronatine insensitive protein 1,

brassinosteroid insensitive 1 kinase inhibitor 1, mitogen-activated

protein kinase, calmodulin, and catalase genes, as well as lower

organic acid, l-alanine, and g-linolenate contents (Bata Gouda et al.,
2022). Following 1-MCP treatment, these genes, metabolism

products, and enzyme activities changed, thereby delaying Jiaobai

post-harvest aging (Bata Gouda et al., 2022). Recently, Qian et al.

(2023) found that the lignification of Jiaobai during cold storage

was regulated by respiratory burst oxidase homolog-mediated ROS

signaling. These studies improved our understanding on the

mechanisms of Jiaobai post-harvest aging and serve as important
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references for maintaining post-harvest quality, as well as extending

the shelf life of Jiaobai.

Analysis and utilization of the nutritional components of wild

rice are increasingly popular research topics. Enrichment analyses

between CWR and NWR showed that the differential metabolites in

the phenylpropanoid biosynthesis pathway were significantly

enriched, with 357 metabolites forming a significant cluster,

among which the relative content of 5 anthocyanin and 4

catechin derivatives differed significantly between CWR and

NWR (Yan et al., 2019). In addition, the total phenolic, flavonoid,

and proanthocyanidin contents in CWR were significantly higher

than those in Indica, Japonica, and red rice (Yu et al., 2021). Using

ultra-high performance liquid chromatography coupled to triple

quadrupole mass spectrometry-based metabolomic methods, 159

flavonoids were identified in CWR and non-pigment rice, among

which 78 exhibited differential expression. KEGG annotation and

classification showed that the differentially expressed flavonoids

were primarily associated with anthocyanin biosynthesis (Yu

et al., 2021). This result is consistent with previous reports of

flavonoid accumulation in pigmented rice seeds closely associated

with changes in pericarp pigments (Shao et al., 2014). During

CWR seed development, the content of total phenols and

proanthocyanidins gradually increases. The metabolomic analysis

also showed that 57 flavonoids were associated with changes in

pericarp color and exhibited gradual increases (Yu et al., 2022). This

study also explored the molecular basis of changes in pericarp color

during CWR development. The results demonstrated novel

perspectives on flavonoid biosynthesis and accumulation research

in CWR, while laying the foundation for modern biotechnology to

obtain grains with high flavonoid contents.
5 Functional verifications of important
genes of Z. latifolia and Z. palustris

As a species transitioning from wildness to domestication,

Zizania plants retain the excellent traits lost by many

domesticated crops, thus providing a potential source for gene

modification of varieties in modern rice breeding and an ideal

natural resource for expanding and enriching breeding gene sources

(Yan et al., 2022). Guo et al. (2015) and Yan et al. (2022) found that

the Z. latifolia and rice genomes are highly collinear. Phylogenetic

analysis shows that Z. latifolia is more closely related to Oryza than

the other seven plants (Brachypodium distachyon, Hordeum

vulgare, Leersia perrieri, Sorghum bicolor, Setaria italica, Zea

mays, and Arabidopsis thaliana), with a differentiation time of

19.7–31 mya (Yan et al., 2022). Cross-incompatibility prohibits

the direct transfer of these valuable traits to rice (Yan et al., 2022).

However, researchers have successfully introduced various high-

value genes of interest from Zizania to rice through transgenic

technology, allowing for their functional verification and

application (Abedinia et al., 2000; Shen et al., 2011; Qi et al.,

2023). Abedinia et al. (2000) co-bombarded rice calli with high

molecular weight Z. palustris DNA and a pGL2 plasmid encoding

the selectable hygromycin resistance gene to generate transgenic
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plants with NWR grain characteristics for analysis. Amplified

fragment length polymorphism analysis showed that this method

successfully transferred DNA from large numbers of Z. palustris

genes to rice (Abedinia et al., 2000). Following infection of rice with

bacterial blight, a disease in which the vascular bundle leaves

generally dry out and the non-fruiting rate increases, causing a

1000 grain weight reduction translating to a yield loss of 20–50%,

even 100% in severe cases (Lee et al., 2005; Antony et al., 2010).

Notably, mining and discovering previously lost beneficial genes in

closely related Zizania and rice germplasm resources is one feasible

strategy for addressing this situation (Shen et al., 2011). Researchers

have designed specific primers based on homologous sequences,

screened for a disease resistance gene from the Z. latifolia genome

database, and performed alignment analyses on amplified

nucleotide sequences. Results showed that ZR1 is part of the

nucleotide-binding site domains-C-terminal leucine-rich repeats

resistance gene based on its similarity to the P-loop (kinase 1a),

kinase 2, kinase 3a, and Gly-Leu-Pro-Leu (GLPL) conserved gene

sequences (Shen et al., 2011). Over-expressed transgenic plants with

significant resistance to bacterial blight PXO71 were obtained

through Agrobacterium-mediated transfer to rice (O. sativa cv.

Nipponbare), suggesting that transformation-competent artificial

chromosome clones contain ≥ 1 bacterial blight resistance gene—

ZlBBR1 (Shen et al., 2011).

The tip of Z. latifolia culm enlarges into a fleshy edible gall after U.

esculenta infection, and cytokinin plays a key role in this process. Two-

component systems (TCS) connect cytokinin with transcriptional

regulation receptors in the nucleus and play a significant role in

many bioprocesses (He et al., 2020). Genome-wide identification and

transcriptomics were performed on TCS genes in Jiaobai to analyze

their expression during culm enlargement. The findings revealed that

expression of ZlCHK1, ZlRRA5, ZIRRA9, ZlRRA10, ZlPRR1, and

ZlPHYA was associated with Jiaobai culm swelling, among which

ARR5, ARR9, and ZlPHYA were rapidly induced by trans-zeatin,

supporting that cytokinin signal transduction plays a role in Jiaobai

culm enlargement (He et al., 2020). The Jiaobai genome contains 11

chitinase genes (ZlChi1-11), many of which are differentially expressed

under abiotic stressors such as salt, extreme temperatures, drought, and

the presence of abscisic acid (Zhou et al., 2020). This study provides

basic information for analyzing the role of the Z. latifolia chitinase gene

family under abiotic stress.

The nutritional composition of CWR is greater than that of normal

rice (at 0.26 ± 0.02 g), especially concerning its significantly high lysine

content (at 0.62 ± 0.07 g; Zhai et al., 2000).DHDPS encoding the lysine

biosynthetic enzyme dihydrodipocolinate synthase plays a significant

role in lysine accumulation. Kong et al. (2009) cloned the Z. latifolia

DHDPS and named it ZlDHDPS. The ZlDHDPS sequence maintains a

high identity with known plant DHDPS in GenBank. RT-PCR analysis

showed that ZlDHDPS expression has tissue specificity, as well as high-

level expression in rapidly growing and reproductive tissues. Through

genome collinearity and homology analysis, ZlRc (Zla16G011250) in Z.

latifolia was found to be orthologous to Rc (LOC_Os07g110200) in rice

(Qi et al., 2023). Functional validation of ZlRc was performed using

subcellular localization and rice transgenes. The results show that ZlRc

promotes phenolic compound accumulation and is located within the

nucleus (Qi et al., 2023). Moreover, the pericarps of ZlRc-
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overexpressing rice are brown, while those of wild-type rice are non-

pigmented (Qi et al., 2023). The total phenolic, flavonoid, and

proanthocyanidin contents, antioxidant activity, as well as enzyme

inhibitory effects of ZlRc-overexpressing rice were significantly higher

than those of wild-type rice (Qi et al., 2023). These findings show that

ZlRc-overexpression promotes phenolic compound accumulation in

rice seeds and can bioaugment rice phenolic content. Through genome

collinearity and homology analysis, ZlqSH1a (Zla04G033720) and

ZlqSH1b (Zla02G027130) in Z. latifolia were found to be orthologous

to qSH1 (LOC_Os01g62920) in rice (Yan et al., 2022). Functional

validation of ZlqSH1a and ZlqSH1b was performed using subcellular

localization and rice transgenes, with the results showing that these

genes are involved in regulating the development of the abscission layer

and located within the nucleus. Scanning electron and laser confocal

microscopy also showed that ZlqSH1a and ZlqSH1b over-expression

resulted in a complete abscission layer between the grain and pedicel

and significantly enhanced seed shattering following grain maturation

in rice (Xie et al., 2022). Studies of gene function related to seed

shattering in Z. latifolia have provided a foundation for reducing Z.

latifolia seed shattering and thus accelerating its domestication.
6 Conclusion and perspectives

In summary, Zizania is a highly valuable economic crop that

provides nutritious grains and vegetables for human use. Laying a

strong foundation and utilization of Zizania is currently being done.

Recently, genomes of Z. latifolia and Z. palustris have been

completed, accelerating the collective understanding of the

functional relationships between genes and characteristics,

important physiological mechanisms, and genetic diversity of this

genus. Hence, the multitude of desirable traits found in Zizania

render it an ideal genetic resource for future molecular breeding

aimed at enhancing the qualities of rice. Specifically, the

domestication of wild plants is beneficial for ecological and

sustainable development while providing a novel pathway for

addressing food security and environmental challenges; however,

current studies on Zizania remain insufficient, with the following

research areas demanding further attention:
(1) Collection, identification, and improvement of germplasm

resources of Zizania: We should survey, collect, preserve,

and identify Zizania germplasm resources and establish

a germplasm resource garden. Chemical (ethyl

methanesulfonate) or physical (radiation) mutagenesis

techniques will be used for improving the germplasm

resources of Zizania. Referring to the domestication

pathway of Z. palustris, domestication breeding of Z.

latifolia will be carried out to screen plants with target

traits such as reduced seed shattering, early flowering,

consistent maturity, and high seed setting rate.

(2) Analysis of functional components in wild rice: We should

use modern separation (solvent extraction), purification

(purification of macroporous adsorption resin), and

structural identification (spectral and non-spectral

methods) techniques to conduct research on the
frontiersin.org

https://doi.org/10.3389/fpls.2023.1183739
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Xie et al. 10.3389/fpls.2023.1183739

Fron
separation and structural identification of bioactive

substances from wild rice and accurately analyze the

composition, and content of bioactive substances such as

amylose, resistant starch, dietary fiber, flavonoids, saponins,

anthocyanins, chlorophyll, and phytosterols in wild rice.
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