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Chinese jujube (Ziziphus jujuba Mill.), an economically significant species in the

Rhamnaceae family, is a popular fruit tree in Asia. The sugar and acid

concentrations in jujube are considerably higher than those in other plants.

Due to the low kernel rate, it is extremely difficult to establish hybrid populations.

Little is known about jujube evolution and domestication, particularly with regard

to the role of the sugar and acid components of jujube. Therefore, we used cover

net control as a hybridization technique for the cross-breeding of Ziziphus jujuba

Mill and ‘JMS2’ and (Z. acido jujuba) ‘Xing16’ to obtain an F1 population (179 hybrid

progeny). The sugar and acid levels in the F1 and parent fruit were determined by

HPLC. The coefficient of variation ranged from 28.4 to 93.9%. The sucrose and

quinic acid levels in the progeny were higher than those in the parents. The

population showed continuous distributions with transgressive segregation on

both sides. Analysis by the mixed major gene and polygene inheritance model

was performed. It was found that glucose is controlled by one additive-dominant

major gene and polygenes, malic acid is controlled by two additive-dominant

major genes and polygenes, and oxalic acid and quinic acid are controlled by two

additive-dominant-epistatic major genes and polygenes. The results of this study

provide insights into the genetic predisposition and molecular mechanisms

underlying the role of sugar acids in jujube fruit.

KEYWORDS

jujuba, wild jujuba, hybridization, fruit, genetic predisposition, quantitative characters,
major gene +polygene
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1 Introduction

Chinese jujube (Ziziphus jujuba Mill.) is one of the most

economically important fruit trees in China. Wild jujube (Z.

jujuba Mill. var. spinosa) trees, which originally produced small,

acidic fruit, evolved further to produce larger and sweeter fruits, and

these varieties were domesticated (Mingxin et al., 2020). Fruit

development and ripening are closely regulated at the genetic and

epigenetic levels, so the genetics of the domesticated variety are

likely altered (Huang et al., 2016; Song et al., 2019).

The sugars and acids present in fruits play an important role in

determining fruit taste. The sugar and acid levels in jujube fruit are

higher than those in other fruits (Liu et al., 2020). The gene families

involved in sugar metabolism show greater expansion in the jujube

genome than in the genomes of other Rosales fruits (Liu et al.,

2014). As carbon sources and quality-related factors, soluble sugars

in fruits, such as sucrose, fructose, and glucose, play a crucial role in

fruit cultivation. Cultivated and wild jujubes exhibit highly

contrasting profiles for sugar and organic acid dynamics during

the fruit ripening process. Sucrose accumulation occurs gradually,

and the organic acid accumulation performance differs between

cultivated and wild jujube fruit (Huang et al., 2016; Song et al.,

2019). The distribution of acid components in jujube fruit is highly

balanced. There is a strong correlation between the sources and

sinks of sugar in fruits. It has been shown that sugar transporter

genes are highly expressed during the ripening of jujube fruit, which

explains the high sugar accumulation in these fruit (Zhang et al.,

2016). During jujube domestication, a series of genes involved in the

key steps of sugar metabolism and organic acid metabolism

underwent selection, and their transcript levels were enhanced in

cultivated jujube compared to wild jujube (Huang et al., 2016; Song

et al., 2019). There is also evidence that the sugar unloading systems

differ between cultivated and wild jujube, as plasmodesmata are

present in the cultivars but absent in wild jujube. It has been shown

that sugar transporter genes are highly expressed during the

ripening of jujube fruit, which explains their high sugar

accumulation (Zhang et al., 2016).

Since Mendel’s study, research on the quantitative genetic basis

of plant traits has been commonly conducted by using the

frequency distribution of segregation representative types and

genotypes (Porter and Theodore, 2014). In plant genetics, the

quantitative trait genetic system is the gene system that affects

plant traits in a quantitative manner. It is possible to determine how

many plant traits are controlled by various genes and the genetic

effects of individual genes by dividing them into major genes and

minor polygenes, which coexist and affect plant phenotypes. (Gai

et al., 2000). A method for separating and analyzing a mixed genetic

model of major genes and polygenes has been developed. Gai Junyi

regards the mode of mixed inheritance as the main gene + polygene

genetic system (Gai et al., 2000), which represents a major polygene

hybrid genetic model for identifying quantitative traits and

estimating related genetic parameters. This method can be

applied to the analysis of multiple or single genetic generations. A

separation and analysis method for identifying quantitative traits

has been proposed (Wang et al., 2001). In recent years, this method
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has been applied to food crops (Chen et al., 2009; Zhang et al.,

2012), vegetables (Zhang et al., 2006; Qiang et al., 2014), fruits

(Pastina et al., 2011; Fujikawa and Sawada, 2016), and flowers to

analyze the genetic basis of segregation in plants.

Understanding the differences and genetics of wild and

cultivated jujubes and their hybrid progeny in terms of the levels

of fruit sugar–acid components will provide valuable information

for the genetic improvement of jujube. Due to the extremely low

fruit setting rate of jujube, it is difficult to cross jujube trees (Guo

et al., 2019; Du et al., 2023), and there has been no genetic analysis

reported for the sugar and acid components in jujube fruit under

hybridization conditions. In this study, we established a cross-

genetic population study of jujube and analyzed the genetic

tendencies of different sugar and acid components. In addition, to

study the inheritance of these components in jujube (Fenfen et al.,

2020), we used hybrid genetic analysis to determine their genetic

effects (Fernando et al., 1994).
2 Materials and methods

2.1 Plant material and growth conditions

In 2015, in the Jujuba Breeding Base of Hebei Agricultural

University in the 7th Company of the 10th Regiment of the First

Division of Xinjiang Production and Construction Corps, the male

sterility jujube variety ‘JMS2’ and wild jujube ‘Xing 16’ (as parents)

were enclosed together in a netted room, and bees were used to help

pollinate. In the same year, the fruit were harvested, the kernels

were removed, and the descendants were obtained by sowing. A

total of 179 true hybrid progeny were obtained, as shown through

the SSR identification (Fenfen et al., 2018). The fruit of the parents

and some hybrids are shown in Figure 1. The parents and their 179

hybrid progeny were used as test materials to investigate and

analyze the sugar–acid-related indicators for two consecutive

years (2019 and 2020). For each individual tree, 10 healthy and

pest-free fruit were randomly selected from four directions, in the

southeast, northwest, and periphery of the crown, and the materials

were sent back to the laboratory on the day of collection for sample

treatment and the determination of various indicators.
2.2 Determination of sugar content

Determination of the sugar composition and content was

performed as follows: The sugar composition (fructose, glucose,

sucrose) in the fruit was analyzed by high-performance liquid

chromatography (HPLC). The liquid chromatography column

used was a Waters XBridge™ Amide column (250 mm × 4.6

mm, 5 mm). The mobile phase was a mixed solution of

triethylamine (TEA) and acetonitrile, prepared by mixing solution

A (0.2% TEA in ultrapure water) and solution B (0.2% TEA in

acetonitrile) at a ratio of 24:76 (v/v). The column temperature was

controlled at 30 °C. The atomization tube temperature and drift

tube temperature were controlled at 60 °C, the air flow was set at 1.6
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L/min, the gain value was 1.0, the flow rate was set at 1.0 mL/min,

and the detection time was 18 min. To prepare the standard curve

for soluble sugars, the standard was dissolved in ultrapure water,

and the volume was fixed. A total of 0.0100 g (accurate to 0.0001 g)

each of the L-rhamnose, D-arabinose, D-fructose, D-glucose, D-

sucrose, D-lactose, and D-maltose standards was accurately

weighed out. The volume of the solution was fixed at 2 mL, and

the standards were mixed evenly. The concentration of the mixed

standard solution was 5 ng/mL. The uniformly mixed solution was

filtered by a 0.22 mm microporous membrane and stored in a

refrigerator at 4 °C until use. When needed, the mixed sugar

standard solution was diluted stepwise with ultrapure water to

prepare 1.0 ng/mL, 0.8 ng/mL, 0.6 ng/mL, 0.4 ng/mL, 0.2 ng/mL, 0.1
ng/mL, and six other standard solutions with different

concentrations, and then 10 mL samples were injected in

sequence. The peak area was determined on the computer.

Taking the sugar concentration as the abscissa (X) and the peak

area as the ordinate (Y), a standard curve was drawn, and a linear

regression equation was established (Table 1).

The extraction solution was prepared as follows: the pulp was

homogenized by grinding at low temperature. Then, 1.000 g of the
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homogenate was accurately weighted out, 10 mL of 80% ethanol

was added, and the mixture was placed in a water bath at 80 °C for

30 min. Then, the mixture was centrifuged at 4000 r/min for 10

min, the remaining residue was extracted twice with 10 mL of 80%

ethanol, the filtrates were combined, and the ethanol was

evaporated by decompression. The remaining solution was

brought to 25 mL with ultrapure water and filtered with a 0.22

µm microporous membrane. The filtrate was used to determine the

sugar composition in the jujube fruit. Under the same conditions, 1

mL of the sample was extracted. Three consecutive determinations

were carried out to obtain the peak area of the sample, and the levels

of soluble sugar components in the sample were calculated

according to the regression equation.
2.3 Determination of acid content

The levels of the acid components were determined by HPLC,

and the specific steps are described below. The liquid

chromatography conditions were as follows: a Shimadzu

Inertsil™ AQ-C18 (4.6 × 250 mm, 5 µm) from Shimadzu
FIGURE 1

Fruit of parents and some F1 hybrids.
TABLE 1 Regression equation and correlation coefficient for determination of sugar components.

Sugar Composition Regression Equation Related Coefficient

Rhamnose Y=6518.60665*X^1.23616676 0.997

Arabinose Y=5039.25102*X^1.27070354 0.997

Fructose Y=5459.76425*X^1.25731873 0.997

Glucose Y=5426.31563*X^1.2859865 0.997

Sucrose Y=6190.96465*X^1.2784223 0.997

Lactose Y=5520.03275*X^1.34197082 0.997

Maltose Y=5753.55012*X^1.29627288 0.997
X indicates concentration, Y indicates peak area.
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Experimental Equipment Co., Ltd. was used as the chromatographic

column, and the mobile phase was a phosphoric acid buffer solution

consisting of 0.04 mol/L K2HPO4 with a pH of 2.6~2.8 (adjusted

with phosphoric acid). The instrument flow rate was set to 0.8 mL/

min, and the column temperature was controlled at 30 °C. The

detector was a diode array detector, and the measurement was

carried out at a wavelength of 210 nm. The organic acid standard

curve was prepared as follows: 0.0100 g (accurate to one tenth of a

million) each of oxalic acid, tartaric acid, quinic acid, malic acid,

citric acid, fumaric acid, and succinic acid standards was weighed

out. The standards were dissolved in ultrapure water in a constant

volume of 10 mL and mixed evenly. The concentration of this

solution was 1 mg/mL. The solution was passed through a 0.22 mm
microporous membrane and stored in a refrigerator at 4°C until use.

When needed, the standard stock solution was dissolved in the

mobile phase at an appropriate concentration to prepare standard

working solutions of different concentrations. Then, 1 mL, 2 mL, 4
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mL, 6 mL, 8 mL, and 10 mL of the standard stock solution were

diluted stepwise to 50 mL with the mobile phase to prepare a series

of mixed standard solutions with different concentrations (0.02 mg/

mL, 0.04 mg/mL, 0.08 mg/mL, 0.12 mg/mL, 0.16 mg/mL, and 0.2

mg/mL), and 10 samples were injected in sequence (l0 mL injection

volume). A computer was used to measure the peak area. Taking the

organic acid concentration as the abscissa and the peak area as the

ordinate, a standard curve was drawn, and a linear regression

equation was established (Table 2).

The acid extraction solution was prepared as follows: peeled pulp

(1.000 g) was precisely weighed out, ground into homogenate under

low temperature, extracted with 0.04 mol/L potassium dihydrogen

phosphate buffer solution (pH 2.6-2.8, mobile phase), extracted with an

ice bath with ultrasonication for 20 min, transferred to a 4 °C

centrifuge, and centrifuged at 4000 r/min for 10 min. The

supernatant was transferred to a 10 mL volumetric flask. The residue

was extracted twice, dissolved to 10 mL with potassium dihydrogen
TABLE 2 Regression equation and correlation coefficient for acid component determination.

Acid Composition Regression Equation Related Coefficient

Oxalate Y=17090.6091*X-37.242255 0.999

Tartaric Acid Y=1461.77927*X+55.694918 0.998

Quinic acid Y=478.162051*X+0.4067054 1.000

Malic Acid Y=977.618137*X-0.0296411 1.000

Citric Acid Y=1025.23578*X+2.4722815 0.999

Fumaric acid Y=106776.731*X-0.9814228 0.999

Succinic acid Y=320.213785*X-2.2578589 0.999
X indicates concentration, Y indicates peak area.
FIGURE 3

Dispersion of sugar and acid groups in fruit of the F1 population.
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phosphate buffer solution, and passed through a 0.22 µm microporous

membrane for testing. The acid components in jujube fruit were

quantified according to the regression equation for acid components.

The total sugar content of the fruit was measured by the

anthrone sulfate method.

The total acid content of the fruit was measured by the NaOH

titration method (Yan et al., 2021).
2.4 Statistical analysis

Analysis of the effect size indices for the two-sample t-test was

performed to support the differences attested to in sugar and acid

distribution in fruit research. SPSS 17 software was used for

descriptive statistical analysis and origin mapping.

Heterosis was analyzed by determining the mid-parent heterosis

and mid-parent heterosis rate (Bai and Ru, 2011) as follows: mid-

parent heterosis (Hm)=Fm–VMP and the mid-parent heterosis rate

(RHm%)=(Fm–VMP)/VMP×100. In these equations, Fm is the mean

number of phenotypic traits of the F1 population, and VMP is the

average number of phenotypic traits of both parents.

Based on the method of Gai Junyi (Gai et al., 2003), genetic analysis

was conducted on 10 phenotypic data points of the F1 population. By

calculating the maximum likelihood value (MLV) and Akaike’s

information criterion (AIC) value of 11 types of genetic models of

class A (polygene or a pair of major genes) and class B (two pairs of

major genes), the AIC values of different models were compared

(Akaike, 2003), and the suitability test was carried out to determine

the optimal model. Genetic parameters such as the variance, additive

effect, dominant effect, and heritability of major genes were estimated

by the least square method.

The R language SEA software package was used for analysis

(https://tran.rproject.org/web/packages/SEA/inde).
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3 Results

3.1 Sugar and acid content of fruit

The sugar and acid levels of the fruit of the hybrid population

were measured for two consecutive years. The average sugar levels

in 2019 and 2020 were 33.87% and 33.02%, respectively, and the

average acid levels in 2019 and 2020 were 3.41% and 3.51%,

respectively. All the data points were basically distributed around

the mean value without significant differences, and the sugar and

acid levels of the fruit in the genetic population tended to be

stable (Figure 2).
3.2 Genetic tendency of sugar and acid
components in fruit

The levels of sugar and acid components in the fruit of the F1
hybrid population were determined as shown in Figure 3. The sugar

components in the fruit included sucrose, glucose, and fructose.

There were seven acid components: oxalic acid, malic acid, citric

acid, succinic acid, tartaric acid, quinic acid, and fumaric acid.

Among the acid components, the mean level of quinic acid was the

highest at 3.012%, and that of tartaric acid was the lowest at 0.007%.

The most abundant sugar component was sucrose at 18.70%, and

the least abundant was fructose at 7.64%. The distribution range of

the coefficient of variation of each component was 28.4~93.9%, and

the segregation difference of the F1 generation was large. The

distribution of malic acid and quinic acid was flatter when the

kurtosis was lower than 0. When the sucrose skewness was negative

(-0.185), the distribution appeared left skewed, and more data

points appeared on the left side of the mean value. When the

skewness of the other components was greater than 0, the

distribution appeared right skewed, wherein the skewness of
FIGURE 2

Fruit sugar–acid dispersion diagram of the F1 population in different years.
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oxalic acid, fumaric acid, citric acid, succinic acid, and tartaric acid

was greater than 1. The skewness distribution of quinic acid, malic

acid, fructose, and glucose was in the range 0.097~0.477, exhibiting

greater uniformity than other indicators.

A comparison showed that the proportion of sugar components

in the F1 generation and in the parents were similar (Figure 4).

Among them, the sugar content was the highest, with a proportion

of 39.17% in the male parent and 45.03% in the female parent. The

sugar composition changed in the F1 generation, and the average

proportion of sucrose in the F1 generation increased to 54.56%. The

fructose content of the F1 generation was less than that of the

parents, accounting for 21.78% of the total sugar. The proportion of

the acid components was similar to that of the sugars, and the acid

compositions of the F1 generation and parents were similar, with

both dominated by quinic acid. The proportion of quinic acid in the

F1 generation was the highest at 82.32%. The abundances of other

acid components tended to be similar in the female parent.

The cluster analysis of the fruit acid composition of the F1
hybrid population is shown in Figure 5. Owing to the great

difference between cultivated jujube and wild jujube, the

distribution of the acid components in the hybrid F1 generation is

complex. The population could be divided into eight different acid

groups with different properties. Of these, group I had the most

progeny, and the abundance of the different acid components in this

group was relatively average. The acid components with the highest

levels in groups II, III, IV, VII, and VIII were tartaric acid, fumaric

acid, oxalic acid, citric acid, and succinic acid, respectively. Group

VI had only two progeny, but this group had high levels of citric

acid, succinic acid, malic acid, and quinic acid, and group V had

high levels of malic acid and quinic acid in the fruit.

The distribution of sugars in the fruit of the hybrids was more

definite than that of acids (Figure 6). The F1 generation was split

into six groups by cluster analysis. Of these groups, group I had the
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most uniform sugar content of any population, and the content was

also moderate. The levels of reducing sugars (glucose, fructose) in

groups II and IV were high, and group IV had a higher reduced

sugar content than group II. Group V was a high-sucrose group,

and group III had very high levels of all three sugars. In contrast,

group VI was a low-sugar group.

As shown in Table 3, there was no significant difference in the

sugar components sucrose, glucose, and fructose between the hybrid

F1 fruit and their parents. Significant differences were observed for

succinic acid and tartaric acid among the acid components with their

parents, as well as oxalic acid and malic acid. Among the sugar

components, the mid-parent heterosis of sucrose was positive

(5.519), and the dominant genetic effect of the genes controlling

the sucrose synergism was strong, while the mid-parent heterosis of

glucose and fructose was negative (-1.153, -1.250), and the genetic

effect of the genes controlling this trait was strong. The average value

of the three sugar components in the F1 generation exceeded the

range of the parental values. Glucose and fructose had a very low

parental value, while sucrose had a very high parental value.

Among the acid components, except for fumaric acid, the mid-

parent heterosis was positive (0.0003), while for the other acid

components, the mid-parent heterosis was negative. The genetic

effect of the genes controlling the reduction in acid components was

strong, with tartaric acid exhibiting the lowest mid-parent heterosis

rate of -78.27%.
3.3 Mixed genetic analysis

The main gene+polygene mixed genetic analysis method was

used to analyze the 10 fruit components of the hybrid F1 generation.

We calculated the AIC value of the model for each of the sugar–acid
FIGURE 4

Proportion of different sugar and acid components in the parents and F1 population.
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components. There were some differences in the AIC values for

each of the sugar–acid components, and these differences could be

used to judge the degree of compatibility of each genetic model.

(Table 4). AIC information can balance the complexity of the

estimated model with the rationality of the fitted data.

According to the AIC values, the minimum AIC value was

determined, and the model closest to the minimum AIC value was

selected as the candidate model for the uniformity test,

Kolmogorov–Smirnov test, and Kolmogorov test (Table 5). By

comparing the calculation results of each model, the best model
Frontiers in Plant Science 07
for different phenotypic traits was determined. Taking oxalic acid as

an example, the models with low AIC values included the 2MG-

ADI, 2MG-AD, 1MG-AD, and 0MG models, with values of

-626.1367, -623.2667, -621.6778, and -616.4143, respectively, and

these could be used as alternative models. The homogeneity test

(U2
1, U2

2, U2
3), Smirnov test (nW2), and Kolmogorov test (Dn)

were used to test the suitability of these four candidate models, and

the model with the most significant test statistics was selected as the

optimal model. The results showed that none of the values reached a

significant level. Since the AIC value of 2 MG-ADI was the lowest, it

was determined to be the most appropriate model. Oxalic acid is

controlled by two pairs of additive-dominant-epistatic major genes.

According to this rule, the optimal model for different sugar and

acid components was determined (Figure 7).

The additive effect of the major genes of different components

was positive (Table 6). Among them, oxalic acid was affected by the

interactions of two pairs of major genes, and the additive effects of

the two pairs of genes were 0.0359 and 0.0153, while the dominant

effect was negative. The effect of the first pair of genes was higher

than that of the second pair of genes, and the heritability of the major

gene was 68.19%. The additive and explicit components of the

epistatic effect generated by the interactions of two pairs of genes

were both positive. Quinic acid was also controlled positively by two

pairs of major genes. The additive effect of the first major gene

(2.3978) was greater than that of the second major gene (0.6313),

while the dominant effect was negative. The epistatic effect of the two

alleles was positive (0.6309), except that the additive effect (-0.1185)

was negative. With a significant additive effect (1.7157) and a

significant explicit effect (1.3984), the heritability of the major gene

was 95.09%.Malic acid is controlled by two pairs of major genes. The

additive effects were 0.1029 and 0.1227. The dominant effects were

-0.1426 and -0.0856, respectively. Glucose was controlled by a pair of

major genes. The additive effect was 2.1237, the dominant effect was

-2.0943, and the heritability was 46.72%.
TABLE 3 Heterosis of sugar and acid components in fruit of hybrid offspring.

Component
♀

JMS2
♂

Xing16 VMP

Hybrids

Fm Hm RHm/%

Sucrose 15.003 11.357 13.180 18.699 5.519 41.88

Glucose 9.453 9.068 9.260 8.107 -1.153 -12.45

Fructose 8.859 8.570 8.715 7.465 -1.250 -14.34

Oxalate 0.100 0.191 0.146 0.093 -0.053* -36.30

Malic acid 0.405 0.823 0.614 0.330 -0.284* -46.25

Citric acid 0.049 0.054 0.052 0.037 -0.014 -27.71

Succinic acid 0.285 0.657 0.471 0.178 -0.293** -62.12

Tartaric acid 0.014 0.047 0.030 0.007 -0.024** -78.27

Quinic acid 3.658 4.701 4.180 3.012 -1.167 -27.93

Fumaric acid 0.0023 0.0012 0.0018 0.0021 0.0003 17.94
Fm is the average number of phenotypic traits of the F1 population; VMP is the average value of parental phenotypic traits; Hm is the parent advantage = Fm - VMP; RHM is the median parent
dominance = (FM - VMP)/VMP× 100. t-test: *p<0.05, **p<0.01.
FIGURE 6

Cluster analysis of the fruit sugar content of F1 generation jujube.
FIGURE 5

Cluster analysis of the fruit acid content of F1 generation jujube.
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TABLE 4 AIC values from fruit polysaccharide segregation analysis of the population.

Model Sucrose Glucose Fructose Oxalate Malic
acid

Citric
acid

Succinic
acid

Tartaric
acid

Quinic
acid

Fumaric
acid

0MG 830.307 644.905 622.242 -616.414 -115.259 -588.934 -194.148 -289.727 571.965 -1020.789

1MG-A 834.197 643.275 622.657 -614.409 -117.241 -631.007 -227.987 -302.188 567.616 -1047.600

1MG-AD 832.314 646.907 624.248 -621.678 -113.272 -586.930 -192.145 -287.735 567.217 -1018.786

1MG-
EAD

834.197 648.905 626.242 -612.415 -111.258 -584.935 -190.150 -285.738 575.974 -1016.792

1MG-
NCD

834.197 648.905 626.242 -612.415 -111.258 -584.935 -190.150 -285.738 575.974 -1016.792

2MG-A 842.694 654.920 634.165 -612.410 -113.831 -631.006 -230.181 -303.452 562.646 -1054.594

2MG-AD 838.192 647.275 626.653 -623.267 -118.443 -649.325 -240.875 -311.034 571.614 -1069.397

2MG-
ADI

834.314 648.912 626.257 -626.137 -112.986 -584.930 -190.145 -285.735 565.672 -1016.787

2MG-CD 832.317 646.904 624.244 -612.415 -113.269 -586.928 -192.143 -287.734 573.949 -1018.784

2MG-EA 834.153 648.906 626.243 -614.407 -111.257 -584.935 -190.149 -285.738 575.976 -1016.791

2MG-
EAD

832.151 646.906 624.243 -614.415 -113.257 -586.935 -192.149 -287.738 573.976 -1018.791
F
rontiers in P
lant Science
 08
TABLE 5 Suitability test for fruit polysaccharides.

Traits Model U2
1 U2

1 U2
3 nW2 Dn

Sucrose

0 MG 0.0042 0.9485 0.0224 0.881 0.7206 0.396 0.0386 0.9402 0.0428 0.9578

2 MG-EAD 0.0004 0.9842 0.0329 0.8561 0.6429 0.4227 0.0374 0.9459 0.0406 0.9736

1 MG-A 0.0042 0.9485 0.0189 0.8908 0.639 0.4241 0.0367 0.9492 0.0421 0.9632

Glucose

1 MG-AD 0 0.9965 0.0059 0.9387 0.1056 0.7452 0.0467 0.8963 0.0452 0.9356

0 MG 0.2514 0.6161 0.3141 0.5752 0.0899 0.7643 0.1385 0.4293 0.0846 0.2775

2 MG-EA 0.2543 0.614 0.3033 0.5818 0.0624 0.8027 0.138 0.4309 0.0843 0.281

Fructose

0 MG 0.1821 0.6696 0.2171 0.6413 0.0445 0.8329 0.1295 0.4625 0.0885 0.2302

1 MG-AD 0.0004 0.9849 0.0091 0.9239 0.0954 0.7574 0.0532 0.8576 0.0598 0.7011

2 MG-EAD 0.1845 0.6675 0.2075 0.6488 0.025 0.8743 0.1294 0.4629 0.0881 0.2346

Oxalate

2 MG-ADI 0.0007 0.9786 0.0014 0.9706 0.0631 0.8017 0.0282 0.9818 0.0382 0.9794

2 MG-AD 0.0294 0.8639 0.1943 0.6594 1.208 0.2717 0.0596 0.8187 0.0583 0.6896

1 MG-AD 0.1233 0.7255 0.3026 0.5822 0.7069 0.4005 0.0565 0.8376 0.0575 0.7051

0 MG 0.7795 0.3773 1.2074 0.2718 0.9524 0.3291 0.2392 0.2077 0.0996 0.1075

Malic acid

2 MG-AD 0.0049 0.944 0.0001 0.9907 0.0509 0.8216 0.0519 0.8654 0.053 0.7938

1 MG-AD 0.02 0.8876 0.0004 0.9835 0.3973 0.5285 0.0914 0.6407 0.0675 0.5067

0 MG 0.2418 0.6229 0.1095 0.7407 0.3376 0.5612 0.1301 0.4604 0.0819 0.2734

Citric acid

2 MG-AD 0 0.9992 0.0001 0.9929 0.001 0.9747 0.0311 0.9723 0.0439 0.941

1 MG-AD 0.2109 0.6461 0.3526 0.5526 0.3559 0.5508 0.1267 0.4736 0.0666 0.5464

2 MG-ADI 0.1154 0.7341 0.0748 0.7845 0.0491 0.8246 0.0681 0.7692 0.0492 0.8724

0 MG 2.2881 0.1304 3.9036 0.0482 4.1799 0.0409 0.9372 0.0035 0.1513 0.0031

(Continued)
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4 Discussion

Cultivated jujube evolved from wild jujube (Jin and Jun, 2003;

Wang et al., 2014; Badr et al., 2020). During the evolution of a species,

segregation determines whether a trait is associated with two or more

genes. The experimental material is the true hybrid material obtained

from hybridization and molecular identification (Jin et al., 2014). The

variation coefficients of different sugars and acids in F1 fruit vary

greatly, ranging from 28.4% to 93.9%, providing a good background for
Frontiers in Plant Science 09
genetic analysis (Bazzaz et al., 2011). According to the analysis of the

proportion of sugar and acid components in the progeny, the

distribution of acid components in the F1 generation was similar to

that of the parent, while the distribution of sugar components in the F1
generation was sucrose>glucose>fructose, which was the same as that

of the parent, but the proportion of sucrose in the progeny was higher

than that in the parent. Sucrose (54.56%) and quinic acid (82.32%)

accounted for the largest proportion of sugar and acid components,

with abundances in the progeny higher than those in the parents. The
TABLE 6 Estimation of genetic parameters of fruit polysaccharides.

Traits Model m da db ha hb I jab jba l ps2 h2mg=%

Sucrose 0MG Model

Glucose 1MG-AD Model 9.2063 2.1237 -2.0943 3.2922 46.7237

Fructose 0MG Model

Oxalate 2MG-ADI Model 0.1134 0.0359 0.0153 -0.0396 -0.0153 0.0152 -0.0152 0.0167 0.0202 0.0005 68.1883

Malic acid 2MG-AD Model 0.4212 0.1029 0.1227 -0.1426 -0.0856 0.0183 70.8665

Citric acid 0MG Model

Succinic acid 0MG Model

Tartaric acid 0MG Model

Quinic acid 2MG-ADI Model 2.8534 2.3978 0.6313 -1.2116 -0.1188 0.6309 -0.1185 1.7157 1.3984 2.976 95.0916

Fumaric acid 0MG Model
front
m, population mean square variance; da, the first major-gene additive effect; db, the second major-gene additive effect; ha, the first major-gene dominant effect; hb, the second major-gene

dominant effect; I, additive effect; jab, additive effect; jba, additive effect; l, significant effect; ps2, variance of major genes; h2mg , major-gene heritability.
TABLE 5 Continued

Traits Model U2
1 U2

1 U2
3 nW2 Dn

Succinic acid

2 MG-AD 0.0179 0.8937 0.0235 0.8783 0.009 0.9242 0.1108 0.5429 0.0727 0.4132

2 MG-ADI 0.1318 0.7166 0.031 0.8602 0.4922 0.483 0.1711 0.3322 0.0976 0.1204

1 MG-AD 0.2118 0.6454 0.3366 0.5618 0.2899 0.5903 0.1787 0.3139 0.0869 0.2142

0 MG 2.06 0.1512 3.6145 0.0573 4.1863 0.0408 0.7823 0.0081 0.127 0.0175

Tartaric acid

2 MG-AD 0.0234 0.8784 0.0022 0.9622 0.1624 0.687 0.0497 0.8785 0.0811 0.936

2 MG-ADI 0.0841 0.7718 0.0533 0.8175 0.0401 0.8413 0.0511 0.87 0.0868 0.8983

1 MG-AD 0.102 0.7495 0.2917 0.5892 0.853 0.3557 0.103 0.5808 0.1249 0.5206

0 MG 0.8067 0.3691 1.3748 0.241 1.468 0.2257 0.4732 0.0477 0.2318 0.0226

Quinic acid

2 MG-ADI 0.0007 0.9782 0 0.998 0.0092 0.9235 0.0164 0.9992 0.0351 0.9922

2 MG-A 0 0.995 0.0001 0.9929 0.0036 0.9522 0.0321 0.9688 0.0423 0.9501

1 MG-A 0.0004 0.984 0.0061 0.938 0.0545 0.8155 0.057 0.8342 0.0432 0.9417

1 MG-AD 0.0115 0.9144 0.0074 0.9315 0.0052 0.9424 0.0308 0.9736 0.0431 0.943

Fumaric acid

2 MG-AD 0.0113 0.9154 0.0061 0.9379 0.0099 0.9209 0.0326 0.9668 0.0461 0.9726

2 MG-ADI 0.0675 0.795 0.0568 0.8116 0.0028 0.9577 0.0603 0.8143 0.0598 0.8288

1 MG-AD 0.2806 0.5963 0.3175 0.5731 0.0409 0.8397 0.2291 0.2216 0.1062 0.1778

0 MG 1.6481 0.1992 2.4122 0.1204 1.5388 0.2148 0.7319 0.0107 0.1572 0.0103
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sucrose skewness was negative (-0.185), more data points were

distributed at values higher than the mean value, and the quinic acid

skewness was positive (0.097). The distribution characteristics were

more uniform around themean value. The dominant effect of the genes

controlling sucrose and quinic acid showed a positive gain.

As seen in the results of the cluster analysis, the classification of

acids is more complex than that of sugars. Several studies (Umer

et al., 2020; Yu et al., 2022) have noted that the regulation of the

acid-regulating genes in fruits is complex. In most acid groups (II,

III, IV, VII, VIII), only one component stands out. The control of

different acid components is independent of inheritance (Zhang

et al., 2003). Through hybridization, the genes that control a certain
Frontiers in Plant Science 10
component exhibit a unique separation in the process of gene

interaction. Individuals with high levels of multiple components

have a low probability of occurrence (VI groups). At the same time,

there are a large number of intermediate groups (I groups), which

also suggests that there is some interaction effect among the acid

control genes. The distribution of reducing sugars (glucose and

fructose) in the hybrid groups with different sugar components is

consistent, and the probability of the occurrence of high-sugar

groups in the hybrid offspring is higher.

The fumaric acid content was within the range of the parents, but

the average value of the other nine components (sucrose, glucose,

fructose, oxalic acid, malic acid, citric acid, succinic acid, tartaric acid,
FIGURE 7

Optimal model for genetic mixture analysis of fruit sugar and acid compositions.
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and quinic acid) for the hybrid offspring exceeded the range of the

parents, and there was a phenomenon of over-parent separation. The

sucrose content was higher than the range of parents. RHm/% was

positive (41.88%), and the other traits were lower than the range of the

parents. RHm/% is negative (-78.27%~-12.45%), indicating the strong

dominant genetic effect of the gene controlling this trait. RHm/%

decreased, and according to the additive-dominant effect model (Paril

et al., 2022), themean value for the offspring was lower than themedian

parental value, indicating that these eight traits had low values for

parent phenotypes and suggesting that the gene with reducing effects

has relatively strong dominant genetic effects. The acid components

showed a tendency towards the maternal direction, while the sugar

components were relatively complex. Glucose and fructose showed a

bias towards the male parent. The sucrose content exceeded that of the

high-value parent (female parent). The selection of fine traits of a single

plant in hybrid progeny has created favorable conditions, which is of

great value to the breeding of hybrid jujube progeny.

The mixed major gene plus polygene inheritance model is an

important model in quantitative trait research. The model was first

proposed and executed in the inheritance analysis of human pedigrees

(Stewart, 1969; Elston and Stewart, 1973). It was then expanded (Wang

and Gai, 1998; Gai et al., 2000; Zhang et al., 2003) and widely used for

the breeding of different traits in various plants (Chen et al., 2013;

Xiaohong et al., 2013; Irfan et al., 2014; Lin et al., 2014; XinXin et al.,

2014; Dong et al., 2019). To analyze the genetic effects of sugar and acid

components in jujube fruit and improve its flavor, in this study, genetic

analysis of the fruit sugar–acid composition of the cross was performed

using a quantitative trait master gene + polygenic mixed genetic system

(Gai et al., 2003). The analysis revealed that the heritability (h2mg) of the

four components (oxalate, quinic acid, malate, and glucose) ranged

from 95.09 to 46.72. Genes have strong genetic effects, are not strongly

affected by the environment, and can be evaluated by the identification

of applied resources (Bharathi and Reddy, 2019). Glucose was

controlled by one pair of additive-dominant master genes, and

malate was controlled by two pairs of additive-dominant master

genes. Oxalic acid and quinic acid were controlled by two pairs of

additive-dominant-epistatic master genes. The additive effect of each

gene was positive (0.0153~2.3978). Because additive effects can be

transmitted in both the upper and lower generations, the resulting

genetic effects can be additive, and the quantitative traits controlled by

higher additive effects are relatively easy to achieve for breeding when

lower generations are selected (Bajgain et al., 2016; Imai et al., 2019).

Many studies have also indicated the strong additive effect of the sugar

content of fruit (Shi et al., 2005; Liang et al., 2014; Wei et al., 2021; Wen

et al., 2022). The highermean fruit sugar content in the progeny than in

the parent in the analysis of mid-parent dominance also illustrated that

additive effects can be inherited in low generations. Although dominant

effects were not directly heritable in the upper and lower generations,

they were strongly associated with the performance of heterosis, with a

negative dominant effect for the fruit indicator, which was especially

strong in the progeny of the cross. Other components of progeny fruit

showed a bias in the low-affinity direction (Hake and Rossibarra, 2015;

Zolkin et al., 2021). The phenomenon of ultralow affinity was also

observed. In addition, the best model for fumaric acid, succinic acid,

tartaric acid, citric acid, sucrose, and fructose was the A-0 model
Frontiers in Plant Science 11
without master gene control, indicating that these component

distributions could be attributed to the additive effects of multiple

minor-effect genes. More emphasis should be placed on the utilization

of additive effects in the breeding of hybrid jujube. It is feasible to apply

the single segregating generation F1 segregant analysis method for the

mixed genetic model to study the genetic effect in the jujube

population. The detection of major genes should be combined with

the results of molecular marker studies (Liu et al., 2014) and

quantitative trait locus (QTL) validation analysis in jujube, which

may provide a theoretical basis for molecular marker-assisted

selection in this plant.
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