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Wetland vegetation biomass is an essential indicator of wetland health, and its

estimation has become an active area of research. Zizania latifolia (Z. latifolia) is

the dominant species of emergent vegetation in Honghu Wetland, and

monitoring its aboveground biomass (AGB) can provide a scientific basis for

the protection and restoration of this and other wetlands along the Yangtze

River. This study aimed to develop a method for the AGB estimation of Z. latifolia

in Honghu Wetland using high-resolution RGB imagery acquired from an

unoccupied aerial vehicle (UAV). The spatial distribution of Z. latifolia was first

extracted through an object-based classification method using the field survey

data and UAV RGB imagery. Linear, quadratic, exponential and back propagation

neural network (BPNN) models were constructed based on 17 vegetation indices

calculated from RGB images to invert the AGB. The results showed that: (1) The

visible vegetation indices were significantly correlated with the AGB of Z. latifolia.

The absolute value of the correlation coefficient between the AGB and CIVE was

0.87, followed by ExG (0.866) and COM2 (0.837). (2) Among the linear, quadratic,

and exponential models, the quadric model based on CIVE had the highest

inversion accuracy, with a validation R2 of 0.37, RMSE and MAE of 853.76 g/m2

and 671.28 g/m2, respectively. (3) The BPNN model constructed with eight

factors correlated with the AGB had the best inversion effect, with a validation

R2 of 0.68, RMSE and MAE of 732.88 g/m2 and 583.18 g/m2, respectively.

Compared to the quadratic model constructed by CIVE, the BPNN model

achieved better results, with a reduction of 120.88 g/m2 in RMSE and 88.10 g/

m2 in MAE. This study indicates that using UAV-based RGB images and the BPNN

model provides an effective and accurate technique for the AGB estimation of

dominant wetland species, making it possible to efficiently and dynamically

monitor wetland vegetation cost-effectively.
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1 Introduction

Wetland vegetation is an important component of wetland

ecosystems and plays a crucial role in the ecological function of

the wetland environment (Wan et al., 2019; Zhou et al., 2021).

Aboveground biomass (AGB) of wetland vegetation serves as a key

indicator to evaluate the health status and the carbon storage

capacity of wetland ecosystems (Shen et al., 2021). Monitoring

the AGB of wetland vegetation can provide a scientific basis for the

conservation and restoration of wetland ecosystems, which is

essential for achieving carbon neutrality targets (Shao et al.,

2022). Due to the poor accessibility of wetlands and the influence

of complex environmental factors, traditional manual harvesting

methods for obtaining the AGB is not only time-consuming and

labor-intensive, but also difficult to implement on a large scale.

Remote sensing techniques that provide timely, up-to-date

spatial information are increasingly indispensable for wetland

assessment and management, overcoming the limitations of

traditional approaches (Adam et al., 2010). As an emerging low-

altitude remote sensing technology, unoccupied aerial vehicles

(UAVs) are more convenient platforms for remote sensing data

acquisition than satellites. UAV remote sensing not only has the

advantage of high flexibility and cost efficiency, but also high spatial

resolution from sub-meter to centimeter level, providing high

spatial detail (Klemas, 2015). Therefore, the use of UAV-based

images has the potential to explain the heterogeneous structure of

wetland vegetation (Jing et al., 2017). Many studies have

successfully performed wetland vegetation mapping and

monitoring based on UAV remote sensing (Meng et al., 2017;

Corti Meneses et al., 2018; Yan et al., 2019; Durgan et al., 2020;

Zhou et al., 2021). Cao et al. (Cao et al., 2018) verified the

effectiveness of UAV hyperspectral images in mangrove species

identification. Fu et al. (Fu et al., 2021) evaluated the ability of the

optimized Random Forest (RF) algorithm and SegNet algorithm to

classify wetland vegetation communities based on low-altitude

UAV images. In addition, the spatiotemporal monitoring of

invasive species in wetlands has also been successfully conducted

by remote sensing data derived fromUAVs (Abeysinghe et al., 2019;

Anderson et al., 2021; Brooks et al., 2021). Furthermore, efforts have

also been paid to estimate wetland vegetation density and fractional

vegetation cover (FVC) based on UAVs (Zhou et al., 2018; Pinton

et al., 2021).

However, most of these studies are related to the horizonal

surface information of wetland vegetation (Wang et al., 2017a),

whereas there are far fewer studies on the AGB inversion of wetland

vegetation than for forest (Lin et al., 2018), grassland (Villoslada

Peciña et al., 2021) and crop biomass inversions (Zheng et al., 2019;

Zhang et al., 2021). This is because the growing conditions of

wetland vegetation are more complex with higher spatial and

temporal variability compared to other types of ecosystems. In

addition, due to the poor accessibility of wetlands, it is difficult to

collect validation samples, hindering the development of wetland

vegetation biomass studies. Doughty et al. successfully estimated

marsh biomass by using the correlation between several vegetation

indices and the AGB with a determination coefficient (R2) of 0.67
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and a root mean square error (RMSE) of 344 g/m2 based on

multispectral UAV imagery (Doughty and Cavanaugh, 2019).

Their subsequent research results showed that the accuracy of

UAV-based biomass inversion (R2 = 0.40, RMSE=534.6 g/m2)

was higher than the Landsat-based result (R2 = 0.26, RMSE=596.8

g/m2), showing that UAV images could better reflect the spatial

variability of wetland vegetation biomass at a fine scale (Doughty

et al., 2021).

With the development of UAV technology, small consumer

UAVs have been shown to be suitable for wetland surveys,

overcoming the limitations of wetland vegetation biomass

monitoring. Some scholars have pointed out that UAVs equipped

with RGB sensors make the acquisition of high-resolution images

and field survey data more convenient and affordable than UAVs

equipped with other types of sensors (Kutugata et al., 2021).

Furthermore, the visible vegetation indices generated from RGB

images (e.g., Excess green index (ExG), Color index of vegetation

(CIVE), Vegetation index (VEG), Combination index (COM)) have

been shown to have a certain relationship with the growth status of

vegetation, which is helpful for the quantitative and continuous

vegetation monitoring (Klemas, 2015; Yue et al., 2019; Liu et al.,

2021). Linear/nonlinear statistical regression models constructed by

vegetation indices and field survey samples are the most commonly

used for traditional vegetation biomass inversion (Bendig et al.,

2015; Zheng et al., 2019). In recent years, studies have found that

machine learning algorithms (e.g., random forest (RF), support

vector machine (SVM), back propagation neural network (BPNN))

can perform better for vegetation biomass estimation due to the

superior ability to identify and simulate the correlation of the

datasets (Wang et al., 2016; Viljanen et al., 2018; Zhu et al., 2019;

Sharma et al., 2022; Zhang et al., 2022). Presently, most existing

studies about wetland vegetation have been conducted on landscape

and community levels (Gao et al., 2019; Wan et al., 2019; Wang

et al., 2022). Few researchers have attempted to combine machine

learning algorithms and high-resolution RGB images to estimate

the AGB of wetland vegetation at the species level.

The objective of this study is to demonstrate the feasibility of

using high-resolution UAV RGB images for species-level AGB

estimation in wetlands. Zizania latifolia (Z. latifolia), the dominant

species of emergent vegetation in Honghu Wetland Nature Reserve,

was selected as the research object to demonstrate the feasibility of

UAV RGB images in the AGB estimation. Z. latifolia, commonly

thriving in shallow water, exhibits robust growth. Its roots are firmly

anchored in the waterbed, while the stem and leaves extend above the

surface of the water. This article considers the fresh weight of the

portion above the water surface as the AGB of Z. latifolia. First, we

extracted multi-features from RGB images to map the spatial

distribution of Z. latifolia using the object-based classification

method. Then, the linear, quadratic, exponential regressions and

the BPNN model were constructed based on 17 vegetation indices to

invert the AGB of Z. latifolia. Finally, the accuracy of different

inversion models was compared to figure out the optimal inversion

model. This paper provides a technical reference for accurate and

rapid AGBmonitoring of wetland vegetation at the species level in an

accurate and rapid way.
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2 Materials

2.1 Study area

HonghuWetland (29°41′–29°58′N, 113°12′–113°28′E), listed as
a Wetland of International Importance under the Ramsar

Convention, is located in the southeast of Hubei Province, China,

with a surface area of approximately 414 km2 (Figure 1). The lowest

average temperature in January is +3.8 °C, while the highest average

temperature in July is +28.9 °C. Annual rainfall ranges from 1000 to

1300 mm. As the largest freshwater lake in Hubei Province, Honghu

plays an important role in flood control and storage, water

conservation, and biodiversity maintenance in the middle and

lower reaches of the Yangtze River (Li et al., 2021). Honghu

Wetland has excellent hydrological conditions suitable for

vegetation growth and therefore high biodiversity. Z. latifolia is

the dominant species of emergent vegetation in Honghu Wetland.

Monitoring Z. latifolia is crucial to understanding the processes and

laws of the carbon cycle in the Honghu Wetland ecosystem.
2.2 Acquisition of UAV-based RGB images

Based on the experience of field surveys conducted over several

consecutive months, we selected four plots within the study area,

namely Area A, B, C and D, for UAV-based RGB image acquisition.
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The four sample areas are located in the riparian zone and have rich

vegetation types, which can typically represent the growth status of

Z. latifolia in Honghu Wetland. The UAV flight mission was

deployed on July 29 and 30, 2021, when Z. latifolia reached its

peaking growing season. All the flights were conducted from 10:00

to 12:00 in cloudless and windless weather conditions. The original

RGB images were acquired by the L1D-20c camera on a DJI Mavic

Pro drone at an altitude of 100 m, with a lateral overlap of 70% and

a forward overlap of 80%. The exposure and shutter speed were set

depending on the light conditions. All images were imported to

Pix4Dmapper to generate digital orthophoto maps (DOM) and

digital surface models (DSM) for four plots. The final spatial

resolution of the acquired RGB images was approximately 2.4 cm.
2.3 Field sampling data

We carried out field surveys simultaneously with UAVmissions

in four areas. Each plot had a large area of Z. latifolia, with vigorous

growth stages and an average height of 1.20 to 1.54 m. A total of 38

sampling areas (0.6 m �.6 m) containing only Z. latifolia were

randomly distributed in four areas (Figure 1). The geographical

coordinates and average height of each sampling area were

recorded. The Z. latifolia above the water level was harvested, and

the AGB was measured using an electronic scale with an accuracy of

10 g. Out of the 38 field samples, 30 samples were selected randomly
FIGURE 1

Study area in Honghu Wetland.
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for modeling, and the remaining 8 samples were used for

model validation.
3 Methods

In this study, the UAV-based RGB images and field survey data

were used to estimate the AGB of Z. latifolia in Honghu Wetland.

As shown in Figure 2, there were four main steps, including image

pre-processing, spatial distribution mapping of Z. latifolia,

correlation analysis between vegetation indices and the AGB,

construction and accuracy assessment of AGB estimation models.
Frontiers in Plant Science 04
3.1 The object-based classification method

The object-based classification method uses the objects

aggregated by pixels with minimal heterogeneity for classification,

which is different from the traditional pixel-based classification

method. Semantic features of objects derived from high-resolution

images, such as texture, shape, topology and context, are used as

inputs for machine learning algorithms to distinguish feature

categories (Chen et al., 2018). Previous studies have reported that

reducing the number of high-dimensional features is crucial for

enhancing classifier performance, and the recursive feature

elimination (RFE) algorithm is a commonly used feature selection
FIGURE 2

Workflow for the AGB estimation in this study.
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method (Fu et al., 2022). Our previous study has also demonstrated

that the combination of multi-feature selection (using the RFE) and

object-based classification method can significantly improve the

classification accuracy of wetland vegetation, with an overall

accuracy exceeding 90% and the kappa above 0.9, and user’s

accuracy (UA) and producer’s accuracy (PA) of Z. latifolia were

75% and 95.45% (Zhou et al., 2021). This accuracy is considered to

meet the follow-up requirements for the AGB estimation of

Z. latifolia.

In the present study, we first extracted a total of 53 features

including spectral information, texture features, vegetation indices,

height information and geometric features in eCognition Developer

9.0. Then, the RFE was used for multi-feature selection to remove

redundant features in RStudio. The selected features were set as the

input of the RF model for Z. latifolia classification. Finally, the

spatial distribution of Z. latifolia in four areas was obtained through

this semi-automated classification process.
3.2 Selection of visible vegetation indices

A visible vegetation index is formed by the combination of R, G

and B bands, which effectively reflects the changes in vegetation

canopy spectral information, and is widely used in vegetation

classification and biomass estimation (Zhang et al., 2019). Based

on existing research results, 17 commonly used visible light

vegetation indices were extracted from UAV-based RGB images,

including R, G, B, Red–green ratio index (RGRI), Blue–green ratio

index (BGRI), Woebbecke index (WI), Normalized green–red
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difference index (NGRDI), Normalized green–blue difference

index (NGBDI), Red–green–blue ratio index (RGBRI), Vegetation

index (VEG), Color index of vegetation (CIVE), Excess green index

(ExG), Excess green minus excess red index (ExGR), Combination

index (COM), Combination index 2 (COM2), Visible-band

difference vegetation index (VDVI) and Red–green–blue

vegetation (RGBVI) (Woebbecke et al., 1995; Guijarro et al., 2011;

Guerrero et al., 2012; Calderon et al., 2013; Torres-Sanchez et al.,

2014; Bendig et al., 2015; Du and Noguchi, 2017; Wan et al., 2018;

Xie et al., 2020). The description of each vegetation index is shown

in Table 1. To avoid data redundancy by using all the vegetation

indices for modeling, Pearson Correlation Analysis was used to

study the correlation between the AGB of Z. latifolia and vegetation

indices, and the main determinants of the biomass were

determined. In this study, the ground resolution of the UAV-

RGB images in four areas was resampled to 0.6 m to keep it

consistent with the size of the field samples. Centering on each

sample point, we calculated the average of the 5� pixels as the value

of each vegetation index. Then, IBM SPSS Statistics 25 and RStudio

software were used to execute correlation analysis and visualization.
3.3 Construction of AGB estimation models

3.3.1 Univariate regression analyses
Regression analysis modeling is used to study the quantitative

relationship between different variables by establishing

mathematical models and is widely applied in biomass inversion

(Gao et al., 2017). In this paper, the AGB of Z. latifolia was taken as
TABLE 1 Vegetation indices based on UAV RGB images.

Vegetation Indices Calculation Formula

R reflectance values of the red band

G reflectance values of the green band

B reflectance values of the blue band

Red–green ratio index (RGRI) R=G

Blue–green ratio index (BGRI) B=G

Woebbecke index (WI) (G − B)=(R − G)

Normalized green–red difference index (NGRDI) (G − R)=(G + R)

Normalized green–blue difference index (NGBDI) (G − B)=(G + B)

Red–green–blue ratio index (RGBRI) (R + B)=2G

Vegetation index (VEG) G=R0:67B0:33

Color index of vegetation (CIVE) 0:44R − 0:88G + 0:39B + 18:79

Excess green index (EXG) 2G − R − B

Excess green minus excess red index (ExGR) ExG − 1:4R − G

Combination index (COM) 0:25ExG + 0:3ExGR + 0:33CIVE + 0:12VEG

Combination index 2 (COM2) 0:36ExG + 0:47CIVE + 0:17VEG

Visible-band difference vegetation index (VDVI) (2G − R − B)=(2G + R + B)

Red–green–blue vegetation (RGBVI) (G2 − (R*B))=(G
2 + (R*B))
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the dependent variable, and vegetation indices were taken as

independent variables. The linear, quadratic and exponential

models with single variable were constructed, and the accuracy of

each regression model was compared to obtain the optimal

regression model for the AGB inversion of Z. latifolia.

3.3.2 Artificial neural network model
The artificial neural network model can better simulate the

nonlinear relationship between each variable, reduce the error

caused by human intervention, and is more practical than other

linear or nonlinear regression models (Deb et al., 2017; Yang et al.,

2018). The BPNN is one of the most widely used neural network

models with obvious advantages for complex data processing. It

approximates the original law of the data mainly through repeated

training and continuous fitting (Han et al., 2018). The BPNN is a

multi-layer feedforward network trained by an error back propagation

algorithm, which mainly includes two processes: information forward

propagation and error back propagation. A three-layer BP neural

network model is composed of an input layer, a hidden layer and an

output layer (Yang et al., 2018). As shown in Figure 3, n is the number

of input neurons, m is the number of hidden neurons, and r is the

output neuron of the output layer (Wang et al., 2019). The number of

neurons in the hidden layer needs to be determined through

experience and repetitive experiments, which affects the effect of

model fitting. The basic idea of the BPNN is to input samples to the

hidden layer for processing and then transmit it to the output layer. If

the error is large, it will carry out back propagation, and reduce the

error by modifying the number of neurons until the expected value is

reached, and then the network training is completed.
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In this study, the BPNNmodel was constructed using the neural

network toolbox in Matlab software. Vegetation indices strongly

correlated with the AGB of Z. latifolia were used as the input of the

BPNN model, and the parameters were continuously adjusted until

the constructed model met the accuracy requirements.
3.4 Model accuracy assessment

The mean absolute error (MAE), RMSE and R2 were used to

evaluate the performance of each model. MAE represents the

average value of the absolute errors. RMSE is used to measure the

deviation between the predicted value and the measured value. R2 is

a commonly used index to judge the fitting effect of a model with a

value between 0 and 1. A model with a higher R2, a smaller MAE

and RMSE owns higher AGB inversion accuracy (Yue et al., 2019).

The calculation formula is shown as follows (Huang et al., 2016):

MAE =o
n

i=1
(Y i − yi   )j j=n (1)

RMSE =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
on

i=1(Y i − yi)
2=n

q
(2)

R2 = 1 − ½on
i=1(Y i − yi)

2=on
i=1(Y i − �y)2� (3)

where Yiis the measured AGB of sample i, yiis the estimated

AGB of sample i, y   the estimated mean AGB, n is the number of

validation samples.
FIGURE 3

Structure of the back propagation neural network.
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4 Results

4.1 Spatial distribution mapping
of Z. latifolia

According to the features derived from the UAV-RGB images,

the spatial information of Z. latifolia in area A-D was extracted

(Figure 4). Based on field surveys, we selected 231 ground validation

samples to evaluate the classification accuracy of Z. latifolia. The

validation results showed that the overall accuracy was more than

90.7%. Z. latifolia had fewer misclassifications and omission

classifications, with both the PA and UA exceeding 90%, which

was considered to meet the experimental requirements of

subsequent AGB inversion.
4.2 Correlation analysis

The visualization result of the correlation matrix showed that

eight of seventeen vegetation indices were significantly correlated

with the AGB of Z. latifolia (Figure 5). We discovered that the

measured AGB of Z. latifolia had a strong negative correlation with

CIVE (-0.870), and a strong positive correlation with ExG (0.866)

and COM2 (0.837). In addition, the AGB was also positively

correlated with G (0.736), B (0.662) and R (0.584), and negatively

correlated with ExGR (-0.534) and COM (-0.476). The remaining

nine of seventeen vegetation indices were not correlated with the

AGB of Z. latifolia.
4.3 Accuracy assessment of univariate
regression models

According to the correlation analysis, vegetation indices with an

absolute correlation greater than 0.8 (CIVE, ExG and COM2) were

selected to construct univariate regression models (Table 2). For

different vegetation indices, the modeling R2 of the quadratic model

were all greater than or equal to 0.75 and were higher than those of
Frontiers in Plant Science 07
the linear and exponential models. The quadratic model

constructed by CIVE had the highest modeling R2 (0.79) which

was higher than that of the quadratic model constructed by ExG

(0.78) and COM2 (0.75). According to the accuracy validation

results in Figure 6, CIVE was the best vegetation index for the AGB

inversion of Z. latifolia. The quadratic model constructed by CIVE

had the optimal inversion accuracy (validation R2 = 0.37,

RMSE=853.76 g/m2 and MAE=671.28 g/m2), followed by the

quadratic model constructed by ExG (validation R2 = 0.29,

RMSE=851.34 g/m2 and MAE=687.33 g/m2).
4.4 Accuracy assessment of the
BPNN model

The R, G, B, ExG, ExGR, CIVE, COM and COM2, which are

significantly correlated with the AGB of Z. latifolia, were selected as

model inputs and the measured AGB was set as the model output.

The range of the neuron numbers in the hidden layer was calculated

based on a previously published formula, and then the optimal

neuron number was determined through repeated experiments

(Guo et al., 2000). Finally, the optimal neuron number in the

hidden layer was set as three. The Levenberg-Marquardt

algorithm (trainlm) was selected as the training method, and the

maximum iteration was set as 1000. After continuous training, the

final BPNN constructed met the accuracy requirements with a

validation R2 of 0.68, RMSE and MAE of 732.88 g/m2 and 583.18 g/

m2, respectively (Figure 7). Compared with the quadratic model

constructed by CIVE, the validation R2 of the BPNN was increased

by 0.31, RMSE and MAE were reduced by 120.88 g/m2 and 88.10 g/

m2, respectively. The results showed that the inversion accuracy of

the BPNN model was significantly improved compared with

univariate models, indicating that the BPNN model could

effectively improve the AGB inversion accuracy of Z. latifolia.

The BPNN model satisfying the inversion accuracy

requirements was used to simulate the AGB of Z. latifolia in Area

A, B, C and D. As shown in Figure 8, the highest AGB of Z. latifolia

was about 7568 g/m2 in Area A and B, and about 4996 g/m2 in Area
B C DA

FIGURE 4

Spatial distribution mapping of Z. latifolia.
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C and D. There was no significant difference in the lowest AGB of

four areas, which was about 3311 g/m2. Area B had the highest

average AGB at 6132.57 g/m2, while Area A had a slightly lower

average AGB at 5879.54 g/m2. The average AGB of Area C and Area

D was 3499.97 g/m2 and 3653.96 g/m2, respectively, which was

lower than Area A and B.
5 Discussion

5.1 Correlations between AGB and
vegetation indices

In the present study, the AGB of Z. latifolia was positively

correlated with ExG, COM2, R, G, and B, and negatively correlated

with ExGR, CIVE, and COM. Our results confirmed that CIVE,

COM2, and ExG were the most important metrics for the AGB

inversion of Z. latifolia, with the a correlation coefficient above 0.8

in absolute value, which is consistent with previous research results
Frontiers in Plant Science 08
(Zhang et al., 2018; Kutugata et al., 2021; Anchal et al., 2022; Chen

et al., 2022). According to the results of the correlation visualization,

there is a high correlation between vegetation indices. Only WI had

a poor correlation with other vegetation indices, and Morgan et al.

(Morgan et al., 2021) also had similar results in their previous study.

Vegetation indices are closely related to vegetation growth. The

visible vegetation indices derived from high-resolution RGB images

make it possible to quickly and economically monitor wetland

vegetation biomass. Due to the different characteristics of wetland

vegetation, the construction and selection of vegetation indices is

important to improve the accuracy of biomass estimation.
5.2 Advantages and disadvantages
of BPNN models

Compared with the traditional univariate regression models,

BPNN models have strong advantages in solving complex non-

linear data, enhancing data processing efficiency and improving the
FIGURE 5

Visualization of the correlation matrix for vegetation indices and the AGB. Red indicates positive correlation, blue indicates negative correlation, and
the darker the color, the stronger the correlation.
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AGB estimation accuracy. Numerous studies have confirmed the

usefulness of BPNN models for vegetation classification, grass

biomass inversion, and vegetation growth monitoring, but their

superiority in wetland vegetation biomass estimation has been less
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elaborated (Zhu et al., 2015; Yang et al., 2018; Wang et al., 2019). In

this study, the BPNN model constructed by the vegetation indices

that were significantly correlated with the AGB of Z. latifolia

achieved high estimation accuracy with a validation R2 of 0.68,
TABLE 2 Construction of univariate regression models.

VIs Regression method Modeling equation modeling R² Validation equation

CIVE

Linear y=-175.307x+2248.548 0.75 y=0.7391x+1375

Quadratic y=5.812x2-19.178x+3018.857 0.79 y=0.6238x+1824.7

Exponential y=2627.791exp(-0.038x) 0.74 y=0.6513x+1650.2

COM2

Linear y=622.104x-6175.956 0.69 y=0.3701x+2774.7

Quadratic y=107.315x2-3058.055x+25007.853 0.75 y=0.2297x+3191.4

Exponential y=413.174exp (0.136x) 0.69 y=0.2991x+2914.7

ExG

Linear y=85.613x-955.545 0.74 y=0.6164x+1835.6

Quadratic y=1.498x2-107.818x+4993.041 0.78 y=0.4837x+2300.7

Exponential y=1303.737exp (0.019x) 0.74 y=0.55x+2100.3
B C

D E F

G H I

A

FIGURE 6

Accuracy validation of univariate regression models. (A–C) Models based on CIVE. (D–F) Models based on COM2. (G–I) Models based on ExG.
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RMSE and MAE of 732.88 g/m2 and 583.18 g/m2, respectively. The

estimation accuracy of the BPNN model was significantly higher

than that of traditional regression models, which is consistent with

the results of previous studies (Yang et al., 2018; Zhu et al., 2019).

Therefore, BPNN models hold potential in the monitoring and

mapping the biomass of wetland vegetation, but still suffer from

some disadvantages such as slow convergence speed and being

easily trapped in local minima (Wang et al., 2017b; Gao et al., 2018;

Wang et al., 2019). The commonly used machine learning

algorithms such as RF, SVM, etc., have specific advantages and

disadvantages. Whether the combination of multiple machine

learning algorithms can effectively improve the inversion accuracy
Frontiers in Plant Science 10
of biomass of wetland vegetation in subsequent studies needs to be

further explored.
5.3 AGB estimation by using UAV-based
RGB imagery

Due to the complexity of wetland environments, monitoring

wetland vegetation at the species level has been studied poorly.

However, the biomass mapping of dominant species in wetlands is

ecologically important. In this study, we have achieved high

accuracy in the AGB inversion, which can provide a reference for
B CA D

FIGURE 8

Spatial distribution of the AGB of Z. latifolia inversed by the BPNN model.
FIGURE 7

Accuracy validation of the BPNN model.
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monitoring Z. latifolia, as well as other dominant species in

wetlands. We demonstrated that high-resolution UAV-based RGB

imagery can bridge the gap between field survey data and remote

sensing data, making it possible to map species-level biomass. This

is consistent with other studies that UAVs as an emerging low-

altitude remote sensing technology can provide cost-effective

manners for surveying and monitoring resources, such as barley

biomass estimation, tree count derivation, and forest biomass

estimation (Bendig et al., 2015; Mohan et al., 2017). Our previous

study showed that high-resolution UAV-based RGB imagery

enables fine classifications of wetland vegetation, laying the

foundation for subsequent biomass inversion of individual species

(Zhou et al., 2021). Lopatin et al. (Lopatin and Lopatina, 2017) also

successfully conducted a similar study using UAV imagery to map

the biomass distribution of Phragmites australis, and pointed out

that UAV remote sensing has great potential to provide accurate

maps of biomass distribution at different phenological stages.

In this study, despite providing an effective technical method for

the AGB estimation of wetland vegetation at the species level, there

are still some limitations. First, wetland environments are complex

with low accessibility, and the limited number of field samples

affects the generalization ability of the BPNNmodel and reduces the

estimation accuracy. Second, it is difficult to implement biomass

inversion on a large scale due to the limited coverage area of UAV

images. Based on current research status, further studies can explore

the use of non-destructive indicators acquired from UAV imagery

to invert wetland vegetation biomass, such as Fractional Vegetation

Cover (FVC), which can not only avoid the difficulties of sample

collection, but also reduces the damage to the wetland environment

caused by field sampling. Similar studies have been done to

demonstrate that there is a correlation between FVC and the

biomass of shrub communities (Guo et al., 2021). However, the

applicability in the estimation of wetland vegetation biomass

remains to be verified. In addition, due to the convenience and

timeliness of consumer UAVs, we can construct a field sample

library for vegetations at different phenological stages in the

expectation of achieving automatic matching of vegetation

biomass. Although using the visible vegetation indices for the

AGB estimation can yield satisfactory results, the influence of the

introduction of texture features generated by UAV high-resolution

images on the estimation accuracy remains to be explored.

Furthermore, the combination of multi-source remote sensing

data is an efficient way to achieve high-precision inversion of

wetland vegetation biomass on a large scale. UAV imagery has

ultra-high resolution but limited coverage, whereas satellite remote

sensing data have wide spatial coverage and can provide abundant

spectral information. For example, new hyperspectral images (e.g.,

GF-5, EnMap and PRISMA) contain hundreds of consecutive

narrow bands, providing new possibilities for more accurate

quantitative estimation of vegetation traits (Castaldi et al., 2016;

Verrelst et al., 2021). The combination of multiplatform remote

sensing data is powerful for dynamically monitor wetland

vegetation with high application potential (Gao et al., 2019).

High-resolution remote sensing images provided by consumer-

grade UAVs can realize high-precision wetland vegetation biomass

inversion at the species level. Overcoming temporal and spatial
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limitations, this technique can assist in mapping biomass

distribution, which is of great significance to the monitoring of

invasive and dominant species, with great application prospects.
6 Conclusion

In this study, univariate regression models and the BPNN were

compared to estimate the AGB of Z. latifolia in Honghu Wetland,

demonstrating the feasibility of using UAV-based RGB images to

monitor the growth status of wetland vegetation. The main

conclusions are as follows:

(1) The AGB of Z. latifolia was significantly correlated with

CIVE, COM2, ExG, G, ExGR, COM, R and B. The highest

correlation was found with CIVE with an absolute correlation

coefficient of 0.87. The vegetation index derived from the UAV

RGB images can be used as an indicator for the AGB inversion of

Z. latifolia.

(2) Among the univariate regression models constructed by

CIVE, COM2 and ExG, the quadratic model based on CIVE has the

highest inversion accuracy (validation R2 = 0.37, RMSE=853.76 g/

m2, MAE = 671.28 g/m2). The BPNN constructed with eight

vegetation indices had the best inversion effect (validation R2 =

0.68, RMSE=732.88 g/m2, MAE=583.18 g/m2). Compared with the

quadratic model constructed by CIVE, the validation R2 was

increased by 0.31, RMSE and MAE were reduced by 120.88 g/m2

and 88.10 g/m2, respectively. The results showed that the BPNN was

the best model for the AGB inversion of Z. latifolia in

Honghu Wetland.

(3) Although the spectral information of UAV-based RGB

images is limited, their high-resolution can provide abundant

features, which is helpful for the classification and biomass

inversion of wetland vegetation at the species level. Consumer-

grade UAVs are easier to deploy in complex wetland environments

and have a distinct advantage in data acquisition. Future research

should focus on the use of UAV images combined with satellite

remote sensing images to monitor the growth of different types of

wetland vegetation, and explore the relationship between non-

destructive indicators and vegetation biomass.
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