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Soybean is an important grain and oil crop worldwide and is rich in nutritional value.

Phenotypic morphology plays an important role in the selection and breeding of

excellent soybean varieties to achieve high yield. Nowadays, themainstreammanual

phenotypic measurement has some problems such as strong subjectivity, high labor

intensity and slow speed. To address the problems, a three-dimensional (3D)

reconstruction method for soybean plants based on structure from motion (SFM)

was proposed. First, the 3D point cloud of a soybean plant was reconstructed from

multi-view images obtained by a smartphone based on the SFM algorithm. Second,

low-pass filtering, Gaussian filtering, Ordinary Least Square (OLS) plane fitting, and

Laplacian smoothingwere used in fusion to automatically segment point cloud data,

such as individual plants, stems, and leaves. Finally, Elevenmorphological traits, such

as plant height, minimum bounding box volume per plant, leaf projection area, leaf

projection length and width, and leaf tilt information, were accurately and

nondestructively measured by the proposed an algorithm for leaf phenotype

measurement (LPM). Moreover, Support Vector Machine (SVM), Back Propagation

Neural Network (BP), and Back Propagation Neural Network (GRNN) prediction

models were established to predict and identify soybean plant varieties. The results

indicated that, comparedwith themanualmeasurement, the rootmean square error

(RMSE) of plant height, leaf length, and leaf width were 0.9997, 0.2357, and 0.2666

cm, and the mean absolute percentage error (MAPE) were 2.7013%, 1.4706%, and

1.8669%, and the coefficients of determination (R2) were 0.9775, 0.9785, and

0.9487, respectively. The accuracy of predicting plant species according to the six

leaf parameters was highest when using GRNN, reaching 0.9211, and the RMSE was

18.3263. Based on the phenotypic traits of plants, the differences between C3, 47-6

and W82 soybeans were analyzed genetically, and because C3 was an insect-

resistant line, the trait parametes (minimum box volume per plant, number of leaves,

minimum size of single leaf box, leaf projection area).The results show that the

proposedmethod can effectively extract the 3D phenotypic structure information of

soybean plants and leaves without loss which has the potential using ability in other

plants with dense leaves.

KEYWORDS

structure from motion, soybean plant, 3D point cloud, plant phenotype, 3D
trait extraction
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fpls.2023.1181322/full
https://www.frontiersin.org/articles/10.3389/fpls.2023.1181322/full
https://www.frontiersin.org/articles/10.3389/fpls.2023.1181322/full
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2023.1181322&domain=pdf&date_stamp=2023-07-25
mailto:njaurobot@njau.edu.cn
mailto:xinggn@njau.edu.cn
https://doi.org/10.3389/fpls.2023.1181322
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2023.1181322
https://www.frontiersin.org/journals/plant-science


He et al. 10.3389/fpls.2023.1181322
1 Introduction

Soybean is an important grain and oil crop worldwide and is

rich in high-quality protein, unsaturated fatty acids, isoflavones,

and other nutrients (Zhang T et al., 2019). The phenotypic

morphological characteristics embodied in the growth process

play an important role in the selection of excellent soybean

varieties (Zhu et al., 2020), and the phenotypic state of plants is

the physical manifestation of the genotype (Alonge et al., 2020),

which is not only of great significance for the quantitative analysis

of genotype-environment interactions (Barker et al., 2019; Van

Eeuwijk et al., 2019), but also for breeding activities, such as

optimal cultivation, fertilization, and irrigation of plants

(Chawade et al., 2019; Li et al., 2021). Phenotypes are prone to

changes in response to genetic mutations and environmental

influences (Vogt, 2021), which are the main bottlenecks limiting

the expansion of genomics in plant sciences, animal biology, and

medicine. Different genes determine different insect resistance in

plants, affecting plant phenotypes (Tyagi et al., 2020). Therefore,

accurate and non-destructive acquisition of soybean phenotypic

parameters is essential for the study of soybean plants and breeding

of insect-resistant varieties.

Chen et al. (2021). constructed the 3D model of soybean

plant can efficiently obtain its geometric characteristics and

morphological traits, which is essential for understanding plant

growth and plant response to biotic and abiotic stresses, so as to

estimate the growth rate of soybean plants and predict the tolerance

of stress, it greatly reduces the marginal cost of collecting multiple

morphological traits across multiple time points, which has

important theoretical significance and practical value for soybean

variety selection and breeding, scientific cultivation and fine

management (Wang et al., 2022). By means of the 3D model of

the plant, the growth situation and specific changes of the plant can

be quickly understood, which contributes to screen out excellent

varieties with high quality and strong insect resistance, and can also

lay the foundation for the genetic improvement of soybean and

breed better varieties (Xue et al., 2023).

The traditional methods used to obtain plant phenotypic

parameters include manual measurement, two-dimensional (2D)

image measurements, and precision instrument measurements.

Manual measurements are slow, costly, and subjectively

inaccurate (Gage et al., 2019), which can easily damage plants

during measurement. When plant phenotypic parameters are

measured based on 2D image technology (Das Choudhury et al.,

2020; Li et al., 2020; Omari et al., 2020; Kuett et al., 2022), critical

spatial and volumetric information, such as thickness, bending, and

orientation, is easily lost during data conversion from three-

dimensional (3D) to 2D states, and the morphology will also be

blocked from different perspectives (Martinez-Guanter et al., 2019).

Precision instruments, such as handheld laser scanners (Artec EVA

laser scanners and FastSCAN laser scanners) (Ma et al., 2022), 3D

laser scanning, and radar technology (FARO Focus3D 120 laser

scanning of ground objects) (Junttila et al., 2021; Nguyen et al.,

2022), are often used to measure plant phenotypic traits. Although

it has a high resolution and can reconstruct the 3D model of the
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the plant (Ao et al., 2022), its acquisition speed is slow, the

equipment is expensive, and the lack of color information for the

obscured parts of plants fails to accurately reflect phenotypic traits.

In addition, for automatic analysis of plant phenotypic information,

3D point clouds generated by laser scanners must be correctly

extracted from a large amount of 3D data and classified for this

purpose. The high cost and limited availability of laser-scanning

equipment hinder its wide applications.

Recently, scholars have been increasingly interested in the

structure from motion (SFM) algorithm based on multi-view

stereo measurement, and a series of exploratory studies have

been carried out in the fields of geographical environment and

agriculture. The 3D model can be automatically reconstructed

according to overlapping 2D digital image sets (Jiang et al.,

2020), which has the advantages of being self-calibrated, less

constrained by the environment, and functional both indoors

and outdoors, and has been widely used in 3D reconstruction

(James et al., 2019; Swinfield et al., 2019). Ewertowski et al.

(2019) used UAV combined with this technology to quickly and

ultra-high-resolution 3D reconstruction of glacier landforms,

and drew the terrain related to glaciers in detail. In the field of

agriculture, He et al. (2017) used this technology to obtain 3D

models of strawberries and used custom software to process

point cloud data and obtain seven agronomic traits of

strawberries. Huang et al. (2022) used the DoidiltenGAN

image enhancement algorithm combined with SFM-MVS

algorithm to develop a set of agricultural equipment that could

accurately perceive the growth of crops under low light. Hui et al.

(2018) used this technology to obtain 3D point clouds for

cucumbers with flat leaves, peppers with small leaves, and

eggplants with curly leaves. With the help of precision

instruments and Geomagic Studio software, they measured five

characteristic parameters of the plant, including leaf length, leaf

width, and leaf area, and analyzed the errors between them. In

(Xu et al., 2019), a UAV was used in combination with this

technology to obtain a 3D model of cotton, and a DEM was used

to measure four phenotypic traits, such as plant height and

canopy coverage. In (Piermattei et al., 2019), this technology was

used to obtain 3D point clouds of trees and four parameters, such

as DBH and the number of trees. With the rising demand for

different types of phenotypic information from 3D point clouds,

Rahman et al. (2017) explored future research on volume

measurement and modeling using this method to obtain

3D models.

These studies show that the SFM algorithm has good potential

in the field of plant phenotype detection. However, at present, the

analysis of phenotypic trait parameters of plants is limited, most

software is used, and there is a lack of technology for reconstruction

and phenotype measurement of plants with various and dense

leaves. Therefore, in this study, we combined structure from

motion (SFM) with multiple view stereo (MVS) methods to build

a platform for acquiring plant sequence images. Using the soybean

seedlings with different gene expression patterns of the same

soybean plant at the R4 stage as the research object, the point
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cloud models were obtained by 3D reconstruction using different

sequence images, the LPM algorithm was used to quickly perform

non-destructive phenotype measurements, and the accuracy of

phenotype measurement was evaluated. The feasibility of SFM-

MVS technology combined with the LPM algorithm is explored

and the phenotype and insect resistance of soybean plants

are analyzed.

At present, machine learning (ML) and deep learning (DL)

algorithms are widely used in the plant phenotype classification.

For machine learning (ML), Tan et al. (2021) used the machine

learning (ML), based on tomato cultivation as well as disease

datasets to classify plant diseases; Barradas et al. (2021) applied

different machine learning (ML) methods such as Decision Tree

(DT), Random Forest (RF), and Extreme Gradient Boosting

(XGBoost) to classify plants into three drought stress levels;

Alam et al. (2020) used random forests (RF) for detection and

classification of weeds as well as crops and accurate identification

and control of weeds. For deep learning (DL), Ferentinos et al.

(2018). made use of Convolutional Neural Networks (CNN) to

classify plant disease images; Brugger (2022). analyzed spectral

data of plant phenotypes based on deep learning (DL) to forecast

plant diseases and categories; Cardellicchio et al. (2023) used

YOLOv5 to recognize fruits, flowers and the colors of objects;

Azimi et al. (2021) took advantage of deep learning (DL) to

classify stress in plant shoots based on plant phenotype images;

Zhou et al. (2021) applied advanced deep learning (DL) methods

based on convolutional neural networks to carry out the analysis

of corn phenotype. The above researches show that DL/ML has

favorable potential in the classification of plant phenotype, but

the obtained plant morphological traits are comparatively single

and there are few studies to predict plant species and analyze

insect resistance genotypes based on the morphological traits of

leaves, and the related ML/DL models are highly susceptible to

the influence of environment, images, data sets, etc. during the

implementation of detection. In this paper, we will try to solve

the above problems.

To evaluate crops based on soybean plant phenotypic

information, the traditional popular machine learning (ML)

often uses Shallow Neural networks, such as support vector

machine (SVM), back propagation neural network (BP),

generalized regression neural network (GRNN), and other

models based on small datasets are often applied to construct

plant gene-insect resistance models in the field of agricultural

engineering (Kamilaris and Prenafeta-Boldú, 2018). Deep

learning techniques, such as deep neural networks (DNN) (Du

et al., 2019) , convolutional neural networks (CNN) (Cong et al.,

2019) , recurrent neural networks (RNN) (Yu et al., 2019), and

residual neural networks (Resnet) (Alom et al., 2019), require a

large amount of data for modeling and are significantly less

effective than shallow neural networks for small data

(Chlingaryan et al., 2018). Owing to the difficulty of soybean

phenotypic data collection, therefore, we constructed a small

data set between plant phenotypes and varieties. Based on this,

we used popular shallow neural networks such as Support Vector

Machine (SVM), Back Propagation Neural Network (BP) and
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Generalized Regression Neural Network (GRNN)to build the

model respectively to classify its species based on the phenotypic

characteristics of soybean leaves.

Therefore, the aim of this study is to accurately extract

phenotypic trait parameters from the leaves of plants with

different gene expression forms of the same variety using the

LPM algorithm based on the application of the SFM algorithm

combined with the MVS reconstruction technique in plants. It will

construct a triple linkage between genotype-phenotype-insect

resistance and establish a prediction and classification model of

soybean varieties. This study is organized as follows: (1) A 3D target

acquisition system based on the SFM algorithm combined with

MVS reconstruction technology is designed and constructed to

perform 3D reconstruction of soybean plants with different gene

expression forms (ko-Williams82, oe-Williams82, and Williams82)

of the same variety and obtain their 3D point cloud models. (2)

Point cloud data, such as individual plants, stems, and leaves, are

automatically segmented using low-pass filtering, Gaussian filtering,

ordinary least squares (OLS) plane fitting, and Laplacian

smoothing. (3) Eleven phenotypic parameters of the leaves,

including length, width, volume, projection area, projection

length, tilt information and so on, are obtained using the LPM

algorithm. (4) The reconstruction accuracy of the SFM-MVS

algorithm is analyzed using regression evaluation indicators

(RMSE, MAPE, R2), and the association between genotype,

phenotype, and insect resistance is constructed by combining the

plant penetrance parameters of different gene expression forms. (5)

Three models, SVM, BP, and GRNN, are constructed to compare

the prediction and classification models of soybean species based on

six characteristic phenotypic parameters of leaves.
2 Materials and methods

2.1 Experimental materials and
data acquisition

Three soybean varieties, ko-Williams82, oe-Williams82, and

Williams82 (hereinafter referred to as C3, 47-6, and W82,

respectively) were selected from the Baima Base of Nanjing

Agricultural University. There were 15 plants of each variety

(planted in three replicates, each in a separate row with five

plants of each variety in a row), and a total of 45 soybean plant

samples were collected. The soybean row spacing was 40 cm and

the plant spacing was 80 cm. For the convenience of data

processing in the later stage, the experimental samples were

planted with potted plants (diameter of 27 cm; height of 21 cm)

to avoid occlusion between plants. The soil used for soybean

planting was first dried in the sun, then the dried soil was first

crushed, and then the stones and weeds in the soil were removed

through a 6 mm mesh screen to ensure the homogeneity of the

soil. Finally, the sieved soil and nutrient soil (organic matter

content >15%, total N, P, and K content >0.88%, ph7~7.5) were

divided into 3:1 evenly mixed, loaded quantitatively into a plastic

pot with a diameter of 30 cm, and water added to make the
frontiersin.org
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absolute water content of the soil 30%. Five soybean seeds were

placed in each pot at a sown depth of 3.0 cm. The soybean plants

were placed in a net chamber and provided normal water and

fertilizer management during soybean growth. When the

soybean grew to R4 stage, the density of one spot bug per

plant was used for insect treatment. After 10 days of damage,

dynamic non-destructive measurement and manual comparison

verification of plant height, leaf length, leaf width, and other

parameters of soybean plants were carried out, and the

association between soybean plant genotype, phenotype, and

insect resistance was established.

A smartphone (iPhone 11) was used as the acquisition device to

capture the soybean plant for 40 s. The resolution was set to 1080p

HD, 60fps before video acquisition to ensure the universality of the

video acquisition device. To avoid the influence of smart phone

mirror shooting on 3D reconstruction, an electric turntable

(diameter of 26 cm) with a speed of 0.05 r/s and a load bearing of

40 KG was used as the plant bearing platform. The smartphone was

placed on a scaffold with a height of 45 cm at a distance of 25 cm

from the plant, and the data at different angles of the plant were

collected by tilting down 30° at a horizontal height of approximately

30 cm above the plant. The carrying platform was rotated for two

weeks for video shooting, and 300 multi-view images were extracted

by frame in JPG format with 1080×1920 resolution. The back and

bottom of the platform were covered with a black fleece to ensure a

stable and reliable recording environment and to minimize noise

interference (Figure 1).

The specific steps of the manual measurement of soybean plant

height, leaf width, and leaf length are as follows. Four workers

measured the height of the same soybean plant using a scale ruler as

the reference line along the basin and measured the leaf length

(from leaf base to leaf tip, excluding petiole) and leaf width (the

widest part on the leaf that is perpendicular to the main vein) of all

the leaves of each soybean plant using a standard calculation paper

with a straight ruler. The average of the readings of the four workers

was taken as the final manually measured value of the phenotypic

parameters of the soybean plant.

The software used for the experiment was Free Studio, the 3D

reconstruction open-source software Visual SFM, and MATLAB

2022a. The electric turntable worked continuously for 40 s at a

speed of 0.05 r/s to obtain the image video of the soybean plant.

Three hundred multi-view images were extracted from the video

obtained by frame. To ensure a large amount of accurate point

cloud data, the ROI were selected from the multi-view images of the

plant, and the point cloud data were generated by 3D

reconstruction. The point cloud data were sampled and denoised;

low-pass filtering, point cloud clustering, OLS fitting, and Laplacian

smoothing were used. Parameters, such as plant height, the number

of leaves, leaf length, leaf width, minimum bounding box volume of

a single plant, minimum bounding box volume of a single leaf, the

volume of a leaf, leaf projection area, projection length, projection

width, and angle were automatically measured using the maximum

traversal and greedy projection triangle algorithms. The accuracy

and robustness of the SFM reconstruction of soybean plants were

evaluated and compared with the manual measurement of plant

height, leaf length, and leaf width.
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2.2 Overall process of SFM-MVS
method for reconstructing 3D
model of soybean plants

In this study, the SFM-MVSmethod was used to reconstruct the

3D models of soybean plants. A workflow diagram is shown in

Figure 2. It consists of seven steps: (1) capturing multi-view images

of soybean plants; (2) selecting the Plant ROI; (3) finding key points

from multi-view images and reconstructing the 3D point cloud of

the plant; (4) filtering and segmentation algorithms to separate

leaves and stems; (5) reconstructing the smooth surface of the leaf

point cloud using the plane fitting algorithm and the Laplacian

smoothing algorithm; (6) extracting and evaluating plant structural

phenotype parameters based on the distance maximum traversal

algorithm and the greedy projection triangulation algorithm; and

(7) establishing the identification of soybean varieties based on

phenotypic information.
2.3 Extraction of ROI from soybean plants

This study proposes an improved detection and matching

strategy to accurately obtain the key feature points of multi-view

images and improve the efficiency of feature matching (Figure 3).

The proportion of the region of interest (ROI) is increased by

cropping the original image, and the scale of the image is reduced to

reduce the number of calculations for feature detection.

The preliminary segmentation of soybean plant regions in

multi-view images based on the ROI algorithm is a key part of

the 3D reconstruction. The multi-view image sequence is cropped

based on the ROI of each image, effectively reducing the resolution

of the image and increasing the proportion of the soybean plant in

the whole image. The rate of generation of dense point clouds was

increased by 81.62% by the SFM-MVS algorithm for the 3D

reconstruction of soybean plants after soybean plant

ROI extraction.
2.4 3D model reconstruction of
soybean plants

We used VisualSVM software to conduct the standard sfm-mvs

workflow and obtained the plant point clouds. The process of 3D

model reconstruction, as shown in Figure 4. The main steps in

soybean plant 3D model reconstruction are feature point extraction

and matching, sparse point cloud reconstruction, and dense point

cloud reconstruction.
2.5 Processing of soybean plants point
cloud data

As a result of the many dense leaves of soybean plants

(Figure 5A), the reconstructed data were large and interspersed

with a number of noisy background point clouds (Figure 5B). Point

cloud data sampling, denoising, optimization, coordinate
frontiersin.org

https://doi.org/10.3389/fpls.2023.1181322
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


He et al. 10.3389/fpls.2023.1181322
correction, and other processes are required because the soybean

3D point cloud model is inconsistent with the actual plant in the

standard 3D space direction and scale (Figure 5C).

2.5.1 Sampling of point cloud data
Owing to the large redundancy, long reconstruction time, and

low efficiency of 3D point cloud data reconstructed using Visual SFM

software, a point cloud simplification algorithm based on voxelized

grid downsampling was used. Voxelized grid downsampling creates a

minimum 3D voxel grid based on the point cloud data (Han et al.,

2017), divides the point cloud data into a 3D voxel grid, selects a data

point as the center of gravity point of the grid, and retains the data

point closest to the center of gravity of the small grid. This method is

simple, efficient, and does not require the establishment of a complex

topological structure to simplify point cloud data, reduce operation

time, and improve the program running speed (Liang et al., 2020). As

shown in Figure 5B, the number of point clouds was reduced to 11%

of that presented in Figure 5A, and the soybean plant phenotype did

not show any change, which did not affect the extraction of its

phenotypic shape parameters.

2.5.2 Point cloud denoising
Owing to the influence of a series of external factors, such as

data sampling equipment, external environment, and experience of

experimental operators, noise points and outliers in the
Frontiers in Plant Science 05
reconstruction process have adverse effects on trait extraction,

feature matching, and surface reconstruction (Li and Cheng,

2018). A low-pass filtering algorithm was used to locally fit the

soybean, and the appropriate threshold (Points/Radius was set to

0.098264, Maxerror was set to 2) was set to remove the points that

deviated from the fitting plane. The background noise and most of

the edge noise were removed by setting the RGB of the background

(the main background noise in this study was the point cloud of the

soil and basin along the color). The denoising effect of the 3D point

cloud of the soybean plant is shown in Figure 5C, where the number

of point clouds was reduced to 89% of the number of point clouds of

a single plant after sampling. As shown in Figure 5B, the reduced

points were background noise points.

2.5.3 Coordinate correction of point cloud data
(1) To accurately extract the phenotypic trait parameters of

soybean plants, coordinate correction is required for the 3D point

cloud of soybean, and the proportional coordinates are calculated

using the potted plant as the reference. The length of the potted

plant in the point cloud data was calculated using the Euclidean

distance algorithm and converted to obtain the transformation

coefficients to obtain the true coordinates of the soybean plant.

The calculation formula is as follows:

(x, y, z) = a(x 0, y 0, z 0 ) (1)
FIGURE 1

3D object acquisition platform.
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where (x, y, z)   is the length of reference in the point cloud, (x 0,
y 0, z 0 )   is the real length of reference, and a is the transformation

coefficient of point cloud coordinates.

(2) The random sample consensus algorithm (RANSAC) is

used to detect the ground and obtain the normal vector of the

ground ~m, and the rotation angle q is obtained by combining the

normal vector ~n(0, 0, 1)   of the Z-axis. The rotation matrix can be
Frontiers in Plant Science 06
obtained by using the Rodriguez rotation formula, and the

calculation formula is as follows:

~m ·~n = m ∗ n ∗ cos q (2)

q = cos−1 (
~m ·~n
m ∗ n

) (3)
FIGURE 2

Workflow of 3D reconstruction and accuracy evaluation.
FIGURE 3

Clipping of the ROI.
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Rrot =~E ∗ cos q + (~m ·~n) ∗~d ∗R(q) + (~m ∗~n) ∗ sin q (4)

Rrot = ½
cos q + d1R(q) d1d2(R(q) − d3 sin q) d2 sin q + d1d3R(q)

d3 sin q + d1d2(q) cos q + d22R(q) −d1 sin q + d1d2R(q)

−d2 sin q + d1d3R(q) d1 sin q + d2d3R(q) cos q + d23R(q)

�

(5)

where defined R(q) = 1 − cos q , respectively, m and n are

respectively the lengths of ~m and ethe ~n, ~E is the third-order

identity matrix, q is the rotation angle, and ~d(d1, d2, d3) is the

unit vector of  ~m ∗~n.

2.5.4 Point cloud segmentation
The 3D point cloud segmentation of soybean plants mainly

aims to segment and extract the leaves and stems of soybean plants,

as shown in Figure 6. A gap exists between any two leaves, which is a
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prerequisite for individual leaf segmentation. A point cloud

clustering algorithm was used to segment different parts of the

leaves, a cylindrical fit to the stalk of the soybean plant based on a

random sampling consistency algorithm, and a statistical method to

remove noise and extraneous points from the root part of the leaves

was used.

2.5.5 Point cloud optimization
After the point cloud segmentation of leaves and stalks, white

noise generated by surface reflection or occlusion around leaves was

removed based on the difference between the color of the noise and

the characteristics of the leaf point cloud. The KD-Tree was used to

determine the point cloud data and the distance between the fields,

and the point cloud density was obtained by statistical analysis.

Clutter was eliminated using the data analysis method, and the

calculation formula is as follows:
FIGURE 4

3D model reconstruction process.
A B C

FIGURE 5

Down-sampling and denoising effect of soybean point cloud. (A) Original 3D point cloud image; (B) The 3D point cloud is downsampled; (C) 3D
point cloud denoising.
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di =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(xij − xi)

2 + (yij − yi)
2 + (zij − zi)

2

k

s
(6)

di =
on

i=1di
n

(7)

s = o
n
i=1(di − di)

2

n
(8)

where, di is the distance between soybean point cloud and other

K adjacent areas, di is the average value of the di, s standard

deviation of soybean.
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To better realize the effect of Gaussian filtering, scalar fields

were used to establish the Z-coordinate axis and draw the

chromatographic diagram of the point cloud in Figure 7A.

The Gaussian filter algorithm was used to set the covariance of

the Gaussian filtering, draw the Gaussian distribution and filtering

result diagram of the soybean point cloud, which are shown in

Figures 7B, C.

The OLS plane fitting method was used to find the best

matching function by minimizing the square error (Rannik et al.,

2020) for the plane fitting of soybean leaves. The Laplacian

smoothing algorithm was used to smooth the edges and surfaces

of the soybean leaves after the initial fitting. A statistical filtering
FIGURE 6

Effect of point cloud segmentation.
FIGURE 7

Point cloud Gaussian filtering, (A) soybean point cloud chromatogram, (B) soybean Gaussian distribution, and (C) filtering result.
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algorithm was used to optimize the soybean stalks. A 3D soybean

point cloud model was obtained by splicing the optimized point

cloud leaf and stem models.
2.6 The LPM algorithm was used to extract
soybean plants traits

Based on the 3D point cloud of the soybean model, the LPM

algorithm is proposed in this study to calculate plant height, leaf

number, length and width, minimum bounding box volume of a

single plant, minimum bounding box volume of a single leaf and

leaf volume, projection area, projection length, and width. The

extraction process of the trait parameters is shown in Figure 8.

First, soybean plant point cloud is displayed, the height of
Frontiers in Plant Science 09
soybean plant and minimum volume of bounding box per

plant were measured. Then, the phenotypic parameters of

leaves were extracted after segmentation. The specific

parameters were calculated as follows:

2.6.1 Height of soybean plants
Plant height is an important indicator of plant growth in

various environments (Xiao et al., 2020). The point clouds of

individual soybean plants (Figure 8A) were extracted, and all

points were traversed. After coordinate correction, the growth

direction of the soybean was consistent with the z-axis direction.

Therefore, the maximum value of the Z-axis coordinates

between soybean and potted plants was selected, and the

absolute value of the difference was the height of a single

soybean plant (Figure 8B).
FIGURE 8

Extraction of soybean plant trait parameters. (A) Point cloud of soybean plant; (B) Extract the height of the plant; (C) The minimum bounding box
volume per plant was obtained; (D) Segmentation of leaf point clouds by clustering; (E) Point cloud of soybean leaves; (F) The minimum bounding
box volume of a single leaf is obtained; (G) Extraction of leaf length; (H) Extracting leaf width; (I) Display leaf point cloud; (J) Leaf volume acquisition;
(K) Projection of leaf; (L) Leaf projection area; (M) Leaf projection length; (N) Leaf projection width; (O) Leaf tilt information.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1181322
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


He et al. 10.3389/fpls.2023.1181322
2.6.2 Minimum volume of bounding box
per plant

The individual soybean plants were corrected to the main

direction, and the cuboid composed of yellow lines was the

bounding box. The maximum x, y, and z coordinate values and

the minimum x, y, and z coordinate values of the point cloud of the

individual soybean plant after correction were determined, and

eight vertices were obtained. The cuboid volume formed by the

connection of the eight vertices corresponds to the minimum

bounding box volume of the individual plant (Figure 8C).

2.6.3 Number of soybean leaves
The non-stem point cloud was extracted to remove noise and

external points, and the point cloud clustering algorithm was used

to segment soybean leaves into different parts of a single plant

(different colors represent different classes), where the number of

different classes clustered was the number of leaves (Figure 8D).

2.6.4 Minimum bounding box volume of a
single leaf

The individual soybean plants were corrected to the main

direction, and any parts of the leaves were cut (Figure 8E). The

cuboid, which is composed of yellow lines, is the bounding box. The

maximum x, y, and z coordinates and the minimum x, y, and z

coordinates of the point cloud of the corrected individual soybean

plants were determined, and eight vertices were obtained. The

volume of the cuboid formed by the connection of these eight

vertices was the minimum bounding box volume of a single

plant (Figure 8F).

2.6.5 Length of soybean leaves
The length of soybean leaves were calculated by the distance

along the surface of the leaf, and any segmented leaf was

extracted. The Euclidean distance algorithm was used to obtain

the distance between the leaf base and leaf tip as the leaf

length (Figure 8G).

2.6.6 Width of soybean leaves
The width of soybean leaves were calculated by the distance along

the surface of the leaf, and any segmented leaf was extracted. The

Euclidean distance algorithm was used to obtain the maximum

distance perpendicular to the leaf length as the leaf width (Figure 8H).

2.6.7 Leaf volume of soybean
After extraction and segmentation, any soybean leaf is displayed

(Figure 8I), and Gaussian filtering is used to de-noise the point

cloud, and the envelope of its 3D point cloud is extracted. Each

point cloud was divided into discrete grids, and the volume of the

corresponding cell of each grid was calculated and summed to

obtain the soybean leaf volume (Figure 8J).

2.6.8 Projected area of soybean leaves
The segmented arbitrary soybean leaves were projected onto the

oxy-plane, and the corresponding projected leaf point cloud was

generated (Figure 8K). The projected leaves were triangulated using
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a greedy projection algorithm (Zhang Y et al., 2019), and the

projected soybean leaves after triangulation were composed of

small triangles. The leaf projection area of a single leaf was

calculated based on the Helen formula and area summation

formula (Figure 8L). The formula used is given by

Si =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pj(pi − aj)(pj − bj)(pj − cj)

q
(9)

S2D =om
j=0Sj (10)

where, pj is half of the perimeter of the triangulated triangle,

aj, bj and cj are the lengths of each side of the triangulated

triangle, m is the total number of triangulated triangles, j is the

index number of triangulated triangles, Sj   is the projection area

of a single planar triangulated facet, and S2D is the total

projection area of a single leaf.

2.6.9 Projection length of soybean leaves
The segmented soybean leaves were projected onto the oxy

plane to generate the corresponding projected leaf point cloud, and

the maximum and minimum values of the length-direction

coordinates were calculated. The absolute value of the difference

was the default length of the soybean leaf projections (Figure 8M).

2.6.10 Projection width of soybean leaves
The segmented soybean leaves were projected onto the oxy

plane to generate the corresponding projected leaf point cloud, and

the maximum and minimum values of the width-direction

coordinates were calculated. The absolute value of the difference

was the default width of the soybean leaf projections (Figure 8N).

2.6.11 Tilt information of leaves
The growth situation and environmental problems of soybeans

can be determined based on the tilt information of soybean leaves.

RANSAC plane fitting was used to obtain the plane, fitting variance

RMSE, and tilt matrix, which can judge the tilt direction from a series

of point cloud information using an iterative method (Figure 8O).
2.7 Modeling based on plant
phenotype prediction

In this study, for three soybean varieties (C3, 47-6, W82) in R4

stage, because it is difficult to obtain the information of leaves and

only a small data set is available, we used popular shallow neural

networks such Support Vector Machine (SVM), Back Propagation

Neural Network (BP) and Generalized Regression Neural Network

(GRNN) to construct the model and select the optimal one.

Support Vector Machine (SVM) (Deng et al., 2019) is based on

statistical theory and its learning model algorithm, which

determines the optimal classification hyperplane in the high-

dimensional feature space of data by solving optimization

problems. The least-squares support vector machine (LS-SVM)

overcomes the computational burden of its constrained

optimization programming based on SVM to handle complex

data classification more effectively.
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Back Propagation Neural Network (BP) (Ju and Feng, 2019)

neural network is a multi-layer feedforward network trained by an

error backpropagation algorithm. The phenotypic data of plant

leaves were used as the input of the BP neural network, and the

output was the predicted value of the plant varieties.

Generalized Regression Neural Network (GRNN) (Dai et al.,

2019) has strong nonlinear mapping ability and learning speed. In

terms of classification and fitting, the GRNN model performed

better when the accuracy of the plant phenotypic parameter data

was poor.

Since model prediction was made based on leaf morphological

traits and the light source maps the leaf vertically, the data of leaf

length and width are highly similar to the data of leaf projection

length and width. Therefore, Six experimental parameters (minimum

bounding box volume of a single leaf, leaf volume, projection length

of soybean leaves, projection width of soybean leaves, projected area

of soybean leaves and leaf tilt information) are preferably selected.

The input datatype for training (e.g., X is (447 x 6) array that records

6 traits of 447 leaves, Y is (447 x 1) array that records the cultivars of

corresponding, use integer as labels) to construct the models of

soybean sample variety prediction. For each prediction model, 80%

samples are randomly selected as the training set and 20% samples

are used as the test set to detect the prediction effect.
2.8 Accuracy evaluation

The soybean plant height, leaf length, and leaf width measured

by the algorithm were compared with manual measurement values

to evaluate the accuracy of the proposed method. The accuracy was

measured using the mean absolute percentage error (MAPE), root

mean square error (RMSE), and determination coefficient (R2) to

evaluate the accuracy of the SFM algorithm. Correlation coefficients

of calibration (Rc)、Root mean square error of calibration

(RMSEC)、Correlation coefficients of prediction (Rp) and Root

mean square error of prediction (RMSEP) are often used for

evaluating the accuracy of models.

Mean absolute percentage error (MAPE) (Chen et al., 2020)

is often used to evaluate the prediction of performance, which

intuitively reflects the difference between the real value and the

predicted value, usually in the range up to 100%. Root mean

square error (RMSE) (Hodson, 2022) is used to measure the

deviation between the predicted value and true value, and is

more sensitive to outliers in the data. Determination coefficient

(R2) (Piepho, 2019) is an important statistic that reflects the

goodness of fit of the model. The value ranges from 0 to 1, and

closer to 1 means better; Correlation coefficients of calibration

(Rc) (Wang et al., 2020) as the correlation coefficient of

determination for calibration, commonly used to evaluate

model results, and with the value closer to 1 being better;

Roo t me an s qu a r e e r r o r o f c a l i b r a t i o n (RMSEC)

(Hacisalihoglu et al., 2022) is often used as an evaluation of

quantitative models; Correlation coefficients of prediction (Rp)

(Wang et a l . , 2020) as the correlat ion coefficient of

determination for the prediction set, with the value closer to 1

means better; Root mean square error of prediction (RMSEP)
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(Cominotte et al., 2020) is commonly used to verify the

prediction error of the model internally or externally, and is

the most critical parameter for evaluating the goodness of

a model.
3 Results

3.1 Results and analysis of LPM algorithm

In this study, a total of 45 soybean samples from three

soybean varieties (C3, 47-6, W82) in the R4 stage were used for

3D reconstruction using the SFM algorithm, and the plant

height and leaf point clouds of soybean plants were

automatically segmented, measured, and analyzed. In the 3D

point cloud of the soybean plant, the plant trait parameters

measured by the algorithm were proportionally converted, and

the automatically measured plant height, leaf length, and leaf

width were compared with the manually measured values.

Figure 9 shows the results.

As shown in Figure 9A, R2=0.9775, MAPE = 2.7013%, RMSE =

0.9997 cm, and the accuracy of the plant height measurement by the

algorithm was 97.2987%. In addition, R2=0.9785, MAPE = 1.4706%,

and RMSE = 0.2357 cm, and the accuracy of the leaf length

measurement was 98.5294%, as shown in Figure 9B. As shown in

Figure 9C, R2 = 0.9487, MAPE= 1.8669%, and RMSE = 0.2666 cm,

and the accuracy of leaf width measurement by the algorithm was

98.1331%. According to Figure 9, the results show that the proposed

method has high accuracy, and the algorithm measurements are in

good agreement with human measurements.
3.2 Prediction results of plant varieties

In this study, three modeling methods, such as BP, SVM, and

GRNN were used to establish soybean plant variety prediction

models. Soybean leaf phenotypic parameters and the soybean plant

variety were used as model inputs and the output, respectively.

Among them, RMSEC is often used as an evaluation of quantitative

models; RMSEP is often used to validate the prediction error of a

model internally or externally; Rc as the correlation coefficient of

determination for calibration; Rp is used as the correlation

coefficient of determination of the prediction set. The modeling

results based on the six leaf phenotypic parameters are listed

in Table 1.

By modeling the leaf phenotypic parameters in Table 1 to

predict the types of soybean plants, the GRNN model had the

highest prediction accuracy. The training set Rc of soybean plants

was 0.9744, and the prediction set Rp was 0.9211.
4 Discussion

Zareef et al. (2019) used Partial Least Squares Regression

(PLSR) based on the phenolic compounds of Congo black tea to

predict and construct the model. The prediction accuracy of
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Gallic acid was 0.9111, and the prediction accuracy of Rutin was

0.8255; Hasan et al. (2021) applied six commonly ML methods

(SVM, Adaboost, Logistic Regression, etc.), the gene models of

Roaceae, rice and Arabidopsis were predicted and constructed,

and the prediction accuracy was 0.918,0.827,0.635, respectively;

Yoosefzadeh-Najafabadi et al. (2021) took advantage of three

common ML (MLP, SVM, RF) based on hyperspectral
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reflectance data to predict and construct a soybean seed yield

model, and the accuracy of the model was 0.87. The above

methods use multiple models to classify and predict the

phenotypes and compounds of multiple experimental objects

quickly and efficiently, but the accuracy is relatively low.

The LPM algorithm used in this paper is combined with

GRNN to construct a soybean prediction model, and the
A

B

C

FIGURE 9

Comparison of manual and algorithmic measurements of soybean plant traits, (A) Height of the plant, (B) Length of the leaf, (C) Width of the leaf.
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TABLE 1 Modeling results of leaf phenotypic parameters.

Model Rc RMSEC Rp RMSEP

LS-SVM 0.6934 0.5979 0.6536 0.6995

BPNN 0.7781 0.6419 0.5716 0.9528

GRNN 0.9744 18.3263 0.9211 18.9024
F
rontiers in Plant Science
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FIGURE 10

Measurement results of soybean plant trait parameters, (A) Minimum bounding box volume per plant, (B) Number of leaves, (C) Minimum bounding
box volume of a single leaf, (D) Leaf volume, (E) Leaf projection area, (F) Leaf projection length, (G) Leaf projection width, (H) Leaf tilt information.
tiersin.org

https://doi.org/10.3389/fpls.2023.1181322
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


He et al. 10.3389/fpls.2023.1181322
accuracy of model can reach 0.9211. In the paper, the 3D model

of soybean plant can be reconstructed quickly and accurately by

using motion restoration structure algorithm and multi-view

stereo vision algorithm; The LPM algorithm can effectively

measure the phenotypic parameters of 11 plant three-

dimensional models, and constructed the relationship between

phenotype and insect resistance; The optimal model GRNN was

established to accurately predict and identify plant varieties

based on the morphological traits of leaves.

In terms of individual plant character parameters (minimum

bounding box volume per plant, number of leaves, minimum

bounding box volume per leaf, leaf volume, leaf projection area,

leaf projection width, leaf projection length, and leaf tilt

information), the soybeans of the C3 variety were lower than that

of the 47-6 and W82 varieties, as shown in Figure 10. Soybean plant

variety 47-6 were higher than soybean of variety W82 in terms of

four trait parameters (minimum enclosing box volume per plant,

number of leaves, leaf projected width, and leaf projected area).

Soybean of varieties 47-6 and W82 were higher than soybean of

variety W82 in four trait parameters (minimum enclosing box

volume per plant, number of leaves, minimum enclosing box

volume per leaf, and leaf projection area). There were no highly

significant differences between the 47-6 and W82 varieties in terms

of four trait parameters (leaf projection length, leaf volume, leaf

projection width, and leaf tilt information).

C3, 47-6, and W82 are different gene expression forms of the

same variety, where 47-6 (oe-Williams82) is a certain gene

overexpression strain and C3 (ko-Williams82) is a gene knockout

strain. Differences in gene expression may be the reason for the

changes in the overall parameters, and the differences in gene

expression will lead to changes in the surface hairs of the

soybean. These hairs of soybean pods of the 47-6 overexpressed

variety were sparse, and the pods were easily fed on by stink bugs.

The stink bugs bite the soybean pods through the mouth, resulting

in the normal development of soybean seeds (Chen et al., 2018) and

the formation of aborted seeds. Here, the sink and source

relationship is confusing. Therefore, the plant will use more

nutrients to promote the vegetative growth and growth of its

node, make the plant taller, and increase the volume of the

minimum bounding box per plant and the number of leaves.

However, pod feeding of M. obstatus did not affect changes in

leaf morphology-related information, such as leaf projection length,

leaf volume, leaf projection width, and leaf tilt information. C3 is an

insect-resistant line, which is considerably slightly damaged by the

bug. Thus, the trait parameters of C3 are significantly less than 47-6,

and gene knockout affects the changes in leaf morphology-related

information parameters. Plant phenotypic traits can be divided into

physiological, morphological, and component traits (Danilevicz

et al., 2022). Among the three major targets of breeding, such as

the yield, quality, and resistance, the resistance target (biotic stress

or abiotic stress) is particularly important and indicates the core

productivity to ensure stable yield. Among them, changes in

morphological and structural traits, such as plant height and leaf

area, are the most intuitive reflections of plant resistance and they

play an important role in the study of insect resistance (Nelson

et al., 2018).
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5 Conclusion

The soybean plant 3D structure was successfully obtained by

SfM, and a good correction (R2>0.94) and small RMSE (<0.24) were

observed with manual measured. Compared to SVM and BPNN,

the GRNN showed the highest accuracy (0.9211) of the cultivar

classification tasks.

In this paper, we mainly focus on the 3D reconstruction of

soybean plants (ko-Williams82, oe-Williams82, and Williams82),

and analyze the relationship between phenotypic traits and insect

resistance genes. In the later stage, a whole set of machines will be

developed to expand the number of soybean varieties and monitor

the growth changes of soybean plants in real-time to further

enhance the practicability and realize more comparisons of

soybeans between species and genotypes to select superior insect-

resistant varieties.
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